PLL锁相环电路
- 格式:ppt
- 大小:255.50 KB
- 文档页数:61
《应用于LVDS的锁相环电路研究》一、引言随着现代电子技术的飞速发展,数据传输速率的要求日益提高,低电压差分信号传输(LVDS)技术因其低功耗、高速度和低噪声的特性,在高速数据传输领域得到了广泛应用。
锁相环(PLL)电路作为LVDS系统中的关键部分,其性能的优劣直接影响到整个系统的稳定性和传输质量。
因此,对应用于LVDS的锁相环电路进行研究具有重要的现实意义。
二、锁相环电路的基本原理锁相环电路是一种闭环相位控制系统,主要由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成。
其基本原理是通过鉴相器比较输入信号和压控振荡器输出的信号之间的相位差,将相位差转换为电压或电流信号,经过环路滤波器的滤波后,控制压控振荡器的频率和相位,使输出信号的相位与输入信号的相位保持一致。
三、LVDS中锁相环电路的应用在LVDS系统中,锁相环电路主要用于实现数据的同步传输。
由于LVDS采用差分信号传输方式,要求发送端和接收端之间的时钟信号必须保持严格的同步。
锁相环电路通过捕获输入信号的相位信息,将其与压控振荡器输出的信号进行比对和调整,从而保证数据的准确传输。
四、应用于LVDS的锁相环电路设计要点在应用于LVDS的锁相环电路设计中,需要注意以下几个要点:1. 输入范围和稳定性:设计时应考虑到输入信号的范围、频率波动和噪声干扰等因素,确保鉴相器能够准确捕获输入信号的相位信息。
2. 环路滤波器的设计:环路滤波器的作用是滤除鉴相器输出的高频噪声和杂散信号,为压控振荡器提供稳定的控制信号。
设计时需要考虑滤波器的带宽、阶数和稳定性等因素。
3. 压控振荡器的选择:压控振荡器的性能直接影响到锁相环电路的频率和相位调整范围。
选择时需要考虑其频率范围、相位噪声、功耗和稳定性等因素。
4. 电路布局与调试:在电路布局和调试过程中,需要考虑到电磁干扰(EMI)和电磁兼容性(EMC)等问题,确保锁相环电路的稳定性和可靠性。
五、实验结果与分析通过实验验证了应用于LVDS的锁相环电路的有效性和性能。
1摘 要随着通信及电子系统的飞速发展,促使集成锁相环和数字锁相环突飞猛进。
本次毕业设计的主要任务是,采用0.180.18μμm CMOS 工艺,设计实现一个基于改进的鉴频鉴相器,压控振荡器,环路滤波器的全集成的CMOS PLL 锁相环电路,设计重点为PLL 锁相环电路的版图设计,设计工具为Laker 。
本论文介绍了PLL 锁相环电路的基本原理以及其完整的版图设计结果。
本次设计表明,采用该方案实现的锁相环电路主要功能工作正常,初步达到设计要求。
求。
关键词:PLL 锁相环电路,鉴频鉴相器,压控振荡器,环路滤波器,版图设计,0.180.18μμm CMOS 工艺工艺AbstractWith the development of the communications and electronic systems, the technology of the integrated PLL and digital PLL develops rapidly.The main task of graduation is to design and realize a fully integrated CMOS PLL circuit which is based on an improved phase detector, VCO, loop filter using the 0.18μm CMOS technology 0.18μm CMOS technology. The design focus on the layout of the PLL circuit, and the . The design focus on the layout of the PLL circuit, and the design tools is the Laker.This paper introduces the basic principles of PLL phase locked loop circuit and its comprehensive layout results. This design shows that the program implemented by the main function of PLL circuit is working well, and it meets the design requirements.Key words:PLL phase locked loop circuits, popularly used phase detectors, discrimination, VCO loop filter, layout design, 0.18 μm CMOS process目 录 (11)摘 要.............................................................................................................................. (22)Abstract .......................................................................................................................... (44)第1章 绪论................................................................................................................ (44)1.1 锁相技术的发展.............................................................................................. (44)1.2 锁相环路的主要特性......................................................................................1.3 PLL锁相环的应用领域 (5)第2章 基于CMOS锁相环的电路设计 (7)2.1 锁相环的基本组成.......................................................................................... (77) (77)2.2 锁相环工作原理.............................................................................................. (88)2.3 鉴相器..............................................................................................................2.3.1 鉴频鉴相器(PFD) (9) (110)2.3.2 鉴频鉴相器设计.................................................................................. (110)2.4 环路滤波器....................................................................................................11 (11)2.5 压控振荡器....................................................................................................第3章 关于COMS锁相环的版图设计 (12) (112)3.1 电路设计........................................................................................................3.2 版图设计........................................................................................................ (112) (113)3.2.1 版图设计规则检查.............................................................................. (113)3.2.2 注意事项..............................................................................................3.3 锁相环的版图设计........................................................................................ (115) (117)第4章 结束语............................................................................................................ (118)参考文献...................................................................................................................... (119)致谢..............................................................................................................................第1章 绪论1.1锁相技术的发展 锁相技术起源于20世纪30年代,提出无线电调幅信号的锁相同步检波技术。
简述锁相环电路的关键指标锁相环(PLL)是一种电路系统,它以某个外部参考信号为基准,通过比较输出信号和输入信号的相位差,实现信号的同步和跟踪。
锁相环电路广泛应用于通信、计算机、控制系统等领域,其关键指标对于性能和稳定性具有重要意义。
锁相环电路的关键指标有以下几个方面:1. 频率稳定性:频率稳定性是指锁相环输出信号的频率与参考信号的频率之间的稳定性。
一般情况下,频率稳定性可以用频率偏差和频率漂移来描述。
频率偏差是指锁相环输出信号的实际频率与参考信号频率之间的偏离程度,频率漂移是指锁相环输出信号的频率随时间的变化趋势。
在实际应用中,频率稳定性通常是评价锁相环电路性能的重要指标,特别是在无线通信系统中,频率稳定性的好坏直接影响到系统的性能和覆盖范围。
2. 锁定时间:锁定时间是指锁相环从失锁状态到稳定锁定状态所需的时间。
在实际应用中,锁定时间也是锁相环性能的重要指标之一。
一般情况下,锁相环的锁定时间越短越好,因为锁定时间短意味着锁相环能够更快地跟踪和同步输入信号。
在快速变化的环境中,锁定时间短可以使锁相环更好地适应信号的变化,保持稳定的工作状态。
3. 相位噪声:相位噪声是指锁相环输出信号的相位随机扰动的程度。
通常情况下,相位噪声可以通过相位噪声密度来描述。
相位噪声对于一些高精度的应用来说是非常重要的,比如雷达、卫星导航等系统,因为相位噪声的存在会影响到系统的精度和测量精度。
4. 抑制比:抑制比是指锁相环输出信号与输入信号的比较结果的信噪比。
在实际应用中,抑制比是评价锁相环抑制噪声和干扰的重要指标之一。
抑制比越大,意味着锁相环对输入信号的跟踪能力和抗干扰能力越强。
除了以上几个关键指标之外,锁相环的带宽、稳定性、幅度恢复时间、输出电平等指标也是需要考虑的重要因素。
带宽是指锁相环对输入信号的跟踪范围,通常用于描述锁相环的跟踪速度和跟踪能力。
在很多应用中,锁相环的带宽需要根据具体的要求来调整,以满足不同的跟踪和同步要求。
pll锁相环原理PLL锁相环原理PLL锁相环是一种常见的电路,它可以将输入信号的频率和相位与参考信号同步。
PLL锁相环的原理是通过反馈控制,使输出信号的频率和相位与参考信号保持一致。
PLL锁相环广泛应用于通信、计算机、音频、视频等领域。
PLL锁相环由相位检测器、低通滤波器、振荡器和分频器组成。
相位检测器用于比较输入信号和参考信号的相位差,输出一个误差信号。
低通滤波器用于滤除误差信号中的高频成分,得到一个平滑的误差信号。
振荡器用于产生输出信号,其频率和相位受到误差信号的控制。
分频器用于将输出信号分频,以便与参考信号进行比较。
PLL锁相环的工作原理如下:首先,输入信号和参考信号经过相位检测器比较,得到一个误差信号。
然后,误差信号经过低通滤波器滤除高频成分,得到一个平滑的误差信号。
接着,平滑的误差信号控制振荡器产生输出信号,其频率和相位受到误差信号的控制。
最后,输出信号经过分频器分频,与参考信号进行比较,得到一个新的误差信号,反馈给相位检测器,形成一个闭环控制系统。
PLL锁相环的优点是具有高精度、高稳定性、快速响应等特点。
它可以将输入信号的频率和相位与参考信号同步,实现信号的精确控制和处理。
PLL锁相环在通信系统中广泛应用,例如频率合成器、时钟恢复器、调制解调器等。
在计算机系统中,PLL锁相环用于时钟同步、数据传输等方面。
在音频、视频系统中,PLL锁相环用于数字信号处理、数字时钟恢复等方面。
PLL锁相环是一种重要的电路,它可以实现信号的精确控制和处理。
它的原理是通过反馈控制,使输出信号的频率和相位与参考信号保持一致。
PLL锁相环在通信、计算机、音频、视频等领域都有广泛的应用。
PLL的概念我们所说的PLL。
其实就是锁相环路,简称为锁相环。
许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。
锁相环路是一种反馈控制电路,简称锁相环(PLL)。
锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
目前锁相环主要有模拟锁相环,数字锁相环以及有记忆能力(微机控制的)锁相环。
PLL的组成锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。
锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。
压控振荡器(VCO)的基本概念调节可变电阻或可变电容可以改变波形发生电路的振荡频率,一般是通过人的手来调节的。
而在自动控制等场合往往要求能自动地调节振荡频率。
常见的情况是给出一个控制电压(例如计算机通过接口电路输出的控制电压),要求波形发生电路的振荡频率与控制电压成正比。
这种电路称为压控振荡器,又称为VCO或u-f转换电路。
压控振荡器是锁相环中关键部件,在实际应用中有很多种结构。
压控振荡器(VCO)电路的举例和原理利用集成运放就可以构成精度高、线性好的压控振荡器。
我们知道积分电路输出电压变化的速率与输入电压的大小成正比,如果积分电容充电使输出电压达到一定程度后,设法使它迅速放电,然后输入电压再给它充电,如此周而复始,产生振荡,其振荡频率与输入电压成正比。
即压控振荡器。
PLL电路的基本工作原理1.1PLL电路的三大组成各部分Phase lock loop锁相环电路适用于生成与输入信号同步的新的信号电路。
PLL电路基本上由三大部分组成:1)鉴相器(phase detector)鉴相器用于检测出两个输入信号的相位差。
鉴相器的工作方式多种多样,大部分是数字方式的,也有模拟方式工作的鉴相器,主要方式检测出两个信号上升沿的差。
2)环路滤波器(loop filter)环路滤波器是将鉴相器输出的含有波纹的直流信号平均化,将次变换为交流成分较少的低通滤波器。
环路滤波器滤除了滤除波纹的功能外,还有一个重要的功能,即决定稳定进行PLL环路控制的传输特性。
稳定的PLL电路的环路滤波特性是非常重要的。
关系到整个系统的性能。
3)压控振荡器(voltage controlled osillator)压控振荡器就是用输入的直流信号控制振荡频率,它是一种可变频振荡器。
1.1.2PLL的应用与频率合成器在图中可以看到,将输入信号与VCO输出信号进行比较,控制两个信号使其保持相位同步。
两个输入信号同相位,当然也可以对频率进行同样的控制,这样一来就可以是VCo输出的振荡频率能够跟踪输入信号的频率了。
这时,VcO的振荡频率变化由环路滤波器的时间常数决定。
时间常数越大,频率的变化越慢;时间常数越小,频率变化越快。
这样,VCo的振荡频率同步跟踪输入信号的频率。
在图中若跟踪速度设计得当,由VCO可得到接受信号或与电磁波同步的信号。
例如,接受电磁波信号中叠加有噪声时,VCO立即停止接收该信号,不收噪声影响,VCO与接收信号平品均频率稳定同步,并持续振荡。
另外,在图中,若VCO输出与鉴相器输入之间接入分频器,则输入频率与VCO输出频率的分频频率同步。
也就是说,VCO的振荡频率对输入信号的分频频率进行控制。
因此,若在PLL输入信号中加上由晶振等产生的稳定频率信号,并对分频器的频率进行切换,则由VCO的输出得到与输入频率同样精度的分频信号。
PLL(锁相环)电路原理及设计[收藏]PLL(锁相环)电路原理及设计在通信机等所使用的振荡电路,其所要求的频率范围要广,且频率的稳定度要高。
无论多好的LC振荡电路,其频率的稳定度,都无法与晶体振荡电路比较。
但是,晶体振荡器除了可以使用数字电路分频以外,其频率几乎无法改变。
如果采用PLL(锁相环)(相位锁栓回路,PhaseLockedLoop)技术,除了可以得到较广的振荡频率范围以外,其频率的稳定度也很高。
此一技术常使用于收音机,电视机的调谐电路上,以及CD唱盘上的电路。
一PLL(锁相环)电路的基本构成PLL(锁相环)电路的概要图1所示的为PLL(锁相环)电路的基本方块图。
此所使用的基准信号为稳定度很高的晶体振荡电路信号。
此一电路的中心为相位此较器。
相位比较器可以将基准信号与VCO (Voltage Controlled Oscillator……电压控制振荡器)的相位比较。
如果此两个信号之间有相位差存在时,便会产生相位误差信号输出。
(将VCO的振荡频率与基准频率比较,利用反馈电路的控制,使两者的频率为一致。
)利用此一误差信号,可以控制VCO的振荡频率,使VCO的相位与基准信号的相位(也即是频率)成为一致。
PLL(锁相环)可以使高频率振荡器的频率与基准频率的整数倍的频率相一致。
由于,基准振荡器大多为使用晶体振荡器,因此,高频率振荡器的频率稳定度可以与晶体振荡器相比美。
只要是基准频率的整数倍,便可以得到各种频率的输出。
从图1的PLL(锁相环)基本构成中,可以知道其是由VCO,相位比较器,基准频率振荡器,回路滤波器所构成。
在此,假设基准振荡器的频率为fr,VCO的频率为fo。
在此一电路中,假设frgt;fo时,也即是VC0的振荡频率fo比fr低时。
此时的相位比较器的输出PD 会如图2所示,产生正脉波信号,使VCO的振荡器频率提高。
相反地,如果frlt;fo时,会产生负脉波信号。
(此为利用脉波的边缘做二个信号的比较。
一文让你彻底明白“什么是锁相环PLL及其工作原理”锁相环(Phase-Locked Loop,简称PLL)是一种广泛应用于通信、数据传输、时钟同步等领域的电子电路。
它在这些应用中起着重要的作用,可以解决信号同步、频率合成、相位调制等问题。
本文将详细介绍什么是锁相环、它的工作原理,以及一些常见的应用场景。
一、什么是锁相环锁相环是一种反馈控制系统,通过比较输入信号的相位与参考信号的相位之间的差异来调整输出信号的相位和频率,使得输出信号与参考信号保持相位和频率的一致。
原理上,锁相环通过不断采样输入信号,并将其与参考信号进行比较,然后根据比较结果调整输出信号的相位和频率。
通过这种方式,锁相环可以将输入信号的频率和相位稳定在与参考信号一致的状态下。
一般来说,锁相环由锁相检测器、低通滤波器、电压控制振荡器和频率分割器等主要组成。
二、锁相环的工作原理1. 锁相检测器(Phase Detector):锁相检测器是锁相环的核心部分。
它用于比较输入信号的相位差异,并产生一个误差信号。
常见的锁相检测器有相位比较器、采样比较器等。
相位比较器将输入信号和参考信号进行比较,并输出一个高电平或低电平的信号,表示输入信号相位与参考信号的相位关系。
2. 低通滤波器(Low Pass Filter):低通滤波器用于平滑锁相检测器输出的误差信号,减小噪声的影响。
它通过将误差信号经过滤波器,然后输出平滑后的信号给电压控制振荡器。
3. 电压控制振荡器(Voltage-Controlled Oscillator,简称VCO):电压控制振荡器是锁相环的另一个关键组件。
它的输出频率与输入电压成线性关系,即输出频率随着输入电压的变化而变化。
通过改变电压控制振荡器的输入电压,即通过低通滤波器输出的信号,可以调整输出信号的频率,从而使得输出信号与参考信号的频率一致。
4. 频率分割器(Frequency Divider):频率分割器用于将电压控制振荡器的输出频率分割成较低的频率。
锁相环(PLL)的工作原理1.锁相环的基本组成许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。
锁相环路是一种反馈控制电路,简称锁相环(PLL,Phase-Locked Loop)。
锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
锁相环通常由鉴相器(PD,Phase Detector)、环路滤波器(LF,Loop Filter)和压控振荡器(VCO,Voltage Controlled Oscillator)三部分组成,锁相环组成的原理框图如图8-4-1所示。
锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。
2.锁相环的工作原理锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。
鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:(8-4-1)(8-4-2)式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。
则模拟乘法器的输出电压u D为:用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C (t)。
即u C(t)为:(8-4-3)式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:即(8-4-4)则,瞬时相位差θd为:(8-4-5)对两边求微分,可得频差的关系式为(8-4-6)上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,u c(t)为恒定值。
不同频率的pll,对参考时钟摆幅的要求
PLL(锁相环)是一种反馈电路,用于将一个电路板上的时钟相位与外部时序信号同步。
PLL的工作原理是将外部信号的相位与压控晶体振荡器(VCXO)产生的时钟信号的相位进行比较,然后调整振荡器时钟信号的相位以匹配参考信号的相位,从而实现两个信号的同相。
在PLL中,参考时钟的摆幅会对PLL的性能产生影响。
理论上,参考时钟的摆幅越大,PLL的跟踪速度和噪声抑制能力越强。
因此,对于不同频率的PLL,对参考时钟摆幅的要求可能会有所不同。
一般来说,为了获得更好的性能,建议选择摆幅较大的参考时钟。
然而,在实际应用中,PLL的性能不仅仅取决于参考时钟的摆幅,还受到其他因素的影响,如环路带宽、滤波器设计等。
因此,对于具体的PLL应用,需要根据实际需求和系统要求进行综合设计和考虑。
如果需要更深入和具体的信息,建议查阅相关的锁相环(PLL)设计和应用资料,或者咨询相关领域的专家。
1引言锁相环是一种能使输出信号在频率和相位上与输入信号同步的电路,即系统进入锁定状态(或同步状态)后,震荡器的输出信号与系统输入信号之间相差为零,或者保持为常数。
传统的锁相环各个部件都是由模拟电路实现的,一般包括鉴相器(PD)、环路滤波器(LF)、压控振荡器(VCO)三个环路基本部件。
随着数字技术的发展,全数字锁相环ADPLL(AllDigital Phase-Locked Loop)逐步发展起来。
所谓全数字锁相环,就是环路部件全部数字化,采用数字鉴相器、数字环路滤波器、数控振荡器构成锁相环路,并且系统中的信号全是数字信号。
与传统的模拟电路实现的锁相环相比,由于避免了模拟锁相环存在的温度漂移和易受电压变化影响等缺点,从而具备可靠性高、工作稳定、调节方便等优点。
全数字锁相环的环路带宽和中心频率编程可调,易于构建高阶锁相环,并且应用在数字系统中时,不需A/D及D/A转换。
在调制解调、频率合成、FM立体声解码、图像处理等各个方面得到广泛的应用。
随着电子设计自动化(EDA)技术的发展,可以采用大规模可编程逻辑器件(如CPLD或FPGA)和VHDL语言来设计专用芯片ASIC和数字系统。
本文完成了全数字锁相环的设计,而且可以把整个系统嵌入SoC,构成片内锁相环。
2全数字锁相环的体系结构和工作原理74XX297是出现最早,应用最为广泛的一款全数字锁相环,在本文中以该芯片为参考进行设计、分析。
ADPLL基本结构如图1所示,主要由鉴相器、K变模可逆计数器、脉冲加减电路和除N计数器4部分构成。
K变模计数器和脉冲加减电路的时钟分别为M fc和2Nfc。
这里fc是环路中心频率,一般情况下M和N都是2的整数幂。
2.1鉴相器常用的鉴相器有两种类型:异或门(XOR)鉴相器和边沿控制鉴相器(ECPD)。
异或门鉴相器比较输入信号Fin相位和输出信号Fout相位之间的相位差θe,并输出误差信号Se作为K变模可逆计数器的计数方向信号。
锁相电路(PLL)及其应用自动相位控制(APC)电路,也称为锁相环路(PLL),它能使受控振荡器的频率和相位均与输入参考信号保持同步,称为相位锁定,简称锁相。
它是一个以相位误差为控制对象的反馈控制系统,是将参考信号与受控振荡器输出信号之间的相位进行比较,产生相位误差电压来调整受控振荡器输出信号的相位,从而使受控振荡器输出频率与参考信号频率相一致。
在两者频率相同而相位并不完全相同的情况下,两个信号之间的相位差能稳定在一个很小的范围内。
目前,锁相环路在滤波、频率综合、调制与解调、信号检测等许多技术领域获得了广泛的应用,在模拟与数字通信系统中已成为不可缺少的基本部件。
一、锁相环路的基本工作原理1.锁相环路的基本组成锁相环路主要由鉴频器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分所组成,其基本组成框图如图3-5-16所示。
图1 锁相环路的基本组成框图将图3-5-16的锁相环路与图1的自动频率控制(AFC)电路相比较,可以看出两种反馈控制的结构基本相似,它们都有低通滤波器和压控振荡器,而两者之间不同之处在于:在AFC环路中,用鉴频器作为比较部件,直接利用参考信号的频率与输出信号频率的频率误差获取控制电压实现控制。
因此,AFC系统中必定存在频率差值,没有频率差值就失去了控制信号。
所以AFC系统是一个有频差系统,剩余频差的大小取决于AFC系统的性能。
在锁相环路(PLL)系统中,用鉴相器作为比较部件,用输出信号与基准信号两者的相位进行比较。
当两者的频率相同、相位不同时,鉴相器将输出误差信号,经环路滤波器输出控制信号去控制VCO ,使其输出信号的频率与参考信号一致,而相位则相差一个预定值。
因此,锁相环路是一个无频差系统,能使VCO 的频率与基准频率完全相等,但二者间存在恒定相位差(稳态相位差),此稳态相位差经鉴相器转变为直流误差信号,通过低通滤波器去控制VCO ,使0f 与r f 同步。
2.锁相环路的捕捉与跟踪过程当锁相环路刚开始工作时,其起始时一般都处于失锁状态,由于输入到鉴相器的二路信号之间存在着相位差,鉴相器将输出误差电压来改变压控振荡器的振荡频率,使之与基准信号相一致。