高考数学第二轮专题复习教案三角恒等变换
- 格式:doc
- 大小:54.50 KB
- 文档页数:2
高考数学二轮复习考点知识与题型专题讲解第19讲 三角恒等变换与解三角形[考情分析] 1.三角恒等变换主要考查化简、求值,解三角形主要考查求边长、角度、面积等,三角恒等变换作为工具,将三角函数与三角形相结合考查求解最值、范围问题.2.三角恒等变换以选择题、填空题为主,解三角形以解答题为主,中等难度.考点一 三角恒等变换 核心提炼1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β;(2)cos(α±β)=cos αcos β∓sin αsin β;(3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(3)tan 2α=2tan α1-tan 2α.例1 (1)(2022·新高考全国Ⅱ)若sin(α+β)+cos(α+β)=22cos ⎝⎛⎭⎫α+π4sin β,则() A .tan(α-β)=1B .tan(α+β)=1C .tan(α-β)=-1D .tan(α+β)=-1答案 C解析 由题意得sin αcos β+cos αsin β+cos αcos β-sin αsin β=22×22(cos α-sin α)sin β,整理,得sin αcos β-cos αsin β+cos αcos β+sin αsin β=0,即sin(α-β)+cos(α-β)=0,所以tan(α-β)=-1.(2)(2021·全国甲卷)若α∈⎝⎛⎭⎫0,π2,tan 2α=cos α2-sin α,则tan α等于( ) A.1515 B.55 C.53 D.153答案 A解析 方法一因为tan 2α=sin 2αcos 2α=2sin αcos α1-2sin 2α, 且tan 2α=cos α2-sin α, 所以2sin αcos α1-2sin 2α=cos α2-sin α,解得sin α=14. 因为α∈⎝⎛⎭⎫0,π2, 所以cos α=154,tan α=sin αcos α=1515. 方法二 因为tan 2α=2tan α1-tan 2α=2sin αcos α1-sin 2αcos 2α=2sin αcos αcos 2α-sin 2α=2sin αcos α1-2sin 2α, 且tan 2α=cos α2-sin α, 所以2sin αcos α1-2sin 2α=cos α2-sin α,解得sin α=14. 因为α∈⎝⎛⎭⎫0,π2, 所以cos α=154,tan α=sin αcos α=1515. 规律方法 三角恒等变换的“4大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等;(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等;(3)降幂与升幂:正用二倍角公式升幂,逆用二倍角公式降幂;(4)弦、切互化:一般是切化弦.跟踪演练1 (1)(多选)(2022·张家口模拟)已知sin θcos θ+3cos 2θ=cos θ+32,θ∈⎝⎛⎭⎫0,π2,则θ等于( ) A.π3 B.π6 C.π12 D.π18答案 BD解析 sin θcos θ+3cos 2θ =12sin 2θ+3×1+cos 2θ2=cos ⎝⎛⎭⎫2θ-π6+32=cos θ+32, 故cos ⎝⎛⎭⎫2θ-π6=cos θ, 所以2θ-π6=θ+2k π或2θ-π6=-θ+2k π(k ∈Z ), 故θ=π6+2k π或θ=π18+2k π3(k ∈Z ). 又θ∈⎝⎛⎭⎫0,π2,所以θ=π6或π18. (2)已知函数f (x )=sin x -2cos x ,设当x =θ时,f (x )取得最大值,则cos θ=________.答案 -255解析 f (x )=sin x -2cos x =5sin(x -φ),其中cos φ=55,sin φ=255, 则f (θ)=5sin(θ-φ)=5,因此θ-φ=π2+2k π,k ∈Z ,则cos θ=cos ⎝⎛⎭⎫φ+π2+2k π=-sin φ=-255. 考点二 正弦定理、余弦定理核心提炼1.正弦定理:在△ABC 中,a sin A =b sin B =c sin C=2R (R 为△ABC 的外接圆半径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C ,sin A =a 2R ,sin B =b 2R ,sin C =c 2R ,a ∶b ∶c =sin A ∶sin B ∶sin C 等.2.余弦定理:在△ABC 中,a 2=b 2+c 2-2bc cos A .变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc . 3.三角形的面积公式:S =12ab sin C =12ac sin B =12bc sin A .例2 (1)(2022·济南模拟)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b sin 2A =a sin B ,且c =2b ,则a b等于( ) A .3 B.13 C.33D. 3 答案 D解析 因为b sin 2A =a sin B ,所以2b sin A cos A =a sin B ,利用正弦定理可得2ab cos A =ab , 所以cos A =12,又c =2b , 所以cos A =b 2+c 2-a 22bc =b 2+4b 2-a 24b 2=12, 解得a b= 3.(2)(2022·全国乙卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C sin(A -B )=sin B sin(C -A ).①证明:2a 2=b 2+c 2;②若a =5,cos A =2531,求△ABC 的周长. ①证明 方法一由sin C sin(A -B )=sin B sin(C -A ),可得sin C sin A cos B -sin C cos A sin B=sin B sin C cos A -sin B cos C sin A ,结合正弦定理a sin A =b sin B =c sin C, 可得ac cos B -bc cos A =bc cos A -ab cos C ,即ac cos B +ab cos C =2bc cos A (*).由余弦定理可得ac cos B =a 2+c 2-b 22, ab cos C =a 2+b 2-c 22,2bc cos A =b 2+c 2-a 2, 将上述三式代入(*)式整理,得2a 2=b 2+c 2.方法二 因为A +B +C =π,所以sin C sin(A -B )=sin(A +B )sin(A -B )=sin 2A cos 2B -cos 2A sin 2B=sin 2A (1-sin 2B )-(1-sin 2A )sin 2B=sin 2A -sin 2B ,同理有sin B sin(C -A )=sin(C +A )sin(C -A )=sin 2C -sin 2A .又sin C sin(A -B )=sin B sin(C -A ),所以sin 2A -sin 2B =sin 2C -sin 2A ,即2sin 2A =sin 2B +sin 2C ,故由正弦定理可得2a 2=b 2+c 2.②解 由①及a 2=b 2+c 2-2bc cos A 得,a 2=2bc cos A ,所以2bc =31.因为b 2+c 2=2a 2=50,所以(b +c )2=b 2+c 2+2bc =81,得b +c =9,所以△ABC 的周长l =a +b +c =14.规律方法 正、余弦定理的适用条件(1)“已知两角和一边”或“已知两边和其中一边的对角”应采用正弦定理.(2)“已知两边和这两边的夹角”或“已知三角形的三边”应采用余弦定理.注意:应用定理要注意“三统一”,即“统一角、统一函数、统一结构”.跟踪演练2 (1)在△ABC 中,若cos C =79,b cos A +a cos B =2,则△ABC 外接圆的面积为() A.49π8 B.81π8 C.81π49 D.81π32答案 D解析 根据正弦定理可知b =2R sin B ,a =2R sin A ,得2R sin B cos A +2R sin A cos B=2R sin(A +B )=2,因为sin(A +B )=sin(π-C )=sin C =1-cos 2C =429,所以R =928,所以△ABC 外接圆的面积S =πR 2=81π32.(2)(2022·衡水中学模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且tan A tan B =2c -bb .①求角A 的大小;②若a =2,求△ABC 面积的最大值及此时边b ,c 的值.解 ①在△ABC 中,由正弦定理得,c =2R sin C ,b =2R sin B ,则tan A tan B =2c b -1=2sin C sin B -1,tan A tan B +1=2sin C sin B, 化简得cos A sin B +sin A cos B =2sin C cos A .即sin(A +B )=2sin C cos A ,∵A +B =π-C ,∴sin(A +B )=sin C ≠0,∴cos A =12, ∵0<A <π,∴A =π3. ②由余弦定理得a 2=b 2+c 2-2bc cos A ,又A =π3,∴b 2+c 2-bc =4, 又b 2+c 2≥2bc ,∴bc ≤4,则S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立, ∴△ABC 面积的最大值为3,此时b =2,c =2.考点三 解三角形的实际应用核心提炼解三角形应用题的常考类型(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.例3 (1)滕王阁,位于江西省南昌市西北部沿江路赣江东岸,始建于唐朝永徽四年,因唐代诗人王勃的诗句“落霞与孤鹜齐飞,秋水共长天一色”而流芳后世.如图,小明同学为测量滕王阁的高度,在滕王阁的正东方向找到一座建筑物AB ,高为12 m ,在它们的地面上的点M (B ,M ,D 三点共线)测得楼顶A 、滕王阁顶部C 的仰角分别为15°和60°,在楼顶A 处测得滕王阁顶部C 的仰角为30°,则小明估算滕王阁的高度为(精确到1 m)()A .42 mB .45 mC .51 mD .57 m答案 D解析 由题意得,在Rt △ABM 中,AM =AB sin 15°, 在△ACM 中,∠CAM =30°+15°=45°,∠AMC =180°-15°-60°=105°,所以∠ACM =30°,由正弦定理得AM sin ∠ACM =CM sin ∠CAM, 所以CM =sin ∠CAM sin ∠ACM·AM =2AB sin 15°, 又sin 15°=sin(45°-30°) =22×32-22×12=6-24, 在Rt △CDM 中,CD =CM sin 60°=6AB 2sin 15°=1262×6-24=36+123≈57(m). (2)雷达是利用电磁波探测目标的电子设备,电磁波在大气中大致沿直线传播,受地球表面曲率的影响,雷达所能发现目标的最大直视距离L =(R +h 1)2-R 2+(R +h 2)2-R 2=2Rh 1+h 21+2Rh 2+h 22(如图),其中h 1为雷达天线架设高度,h 2为探测目标高度,R 为地球半径.考虑到电磁波的弯曲、折射等因素,R等效取8 490 km,故R远大于h1,h2.假设某探测目标高度为25 m,为保护航母的安全,须在直视距离412 km外探测到目标,并发出预警,则舰载预警机的巡航高度至少约为(参考数据:2×8.49≈4.12)()A.6 400 m B.8 100 mC.9 100 m D.1 000 m答案 C解析根据题意可知L=412 km,R=8 490 km,h2=0.025 km,因为L=(R+h1)2-R2+(R+h2)2-R2=2Rh1+h21+2Rh2+h22,即412=(8 490+h1)2-8 4902+(8 490+0.025)2-8 4902≈(8 490+h1)2-8 4902+20.6,解得h1≈9.02(km)≈9 100(m).所以舰载预警机的巡航高度至少约为9 100 m.规律方法解三角形实际问题的步骤跟踪演练3(1)如图,已知A,B,C,D四点在同一条直线上,且平面P AD与地面垂直,在山顶P点测得点A ,C ,D 的俯角分别为30°,60°,45°,并测得AB =200 m ,CD =100 m ,现欲沿直线AD 开通穿山隧道,则隧道BC 的长为()A .100(3+1)mB .200(3+1)mC .200 3 mD .100 3 m答案 C解析 由题意可知A =30°,D =45°,∠PCB =60°,所以∠PCD =120°,∠APC =90°,∠DPC =15°,因为sin 15°=sin(45°-30°) =22×32-22×12=6-24, 所以在△PCD 中,由正弦定理得CD sin ∠DPC =PC sin D, 即1006-24=PC 22, 解得PC =100(3+1)m ,所以在Rt △P AC 中,AC =2PC =200(3+1)m ,所以BC =AC -AB =2003(m).(2)如图是建党百年展览的展馆——国家博物馆.现欲测量博物馆正门柱楼顶部一点P 离地面的高度OP (点O 在柱楼底部).现分别从地面上的两点A ,B 测得点P 的仰角分别为30°,45°,且∠ABO =60°,AB =60 2 米,则OP 等于( )A.40米B.30米C.30 2 米D.30 3 米答案 C解析如图所示,设OP=h,由题意知∠OAP=30°,∠OBP=45°.在Rt△AOP中,OA=OPtan 30°=3h,在Rt△BOP中,OB=h.在△ABO中,由余弦定理,得OA2=AB2+OB2-2AB·OB cos 60°,代入数据计算得到h=302(米).即OP=302(米).专题强化练一、单项选择题1.(2021·全国甲卷)在△ABC中,已知B=120°,AC=19,AB=2,则BC等于() A.1 B. 2 C. 5 D.3答案 D解析 由余弦定理AC 2=AB 2+BC 2-2AB ·BC cos B ,得BC 2+2BC -15=0,解得BC =3或BC =-5(舍去).2.(2021·全国乙卷)cos 2π12-cos 25π12等于( ) A.12 B.33 C.22 D.32答案 D解析 cos 2π12-cos 25π12=1+cos π62-1+cos 5π62=1+322-1-322=32. 3.(2022·榆林模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为3154,b -c =1,cos A =14,则a 等于( ) A .10 B .3 C.10 D. 3答案 C解析 因为cos A =14,所以sin A =154, 又S △ABC =12bc sin A =158bc =3154, 所以bc =6,又b -c =1,可得b =3,c =2,所以a 2=b 2+c 2-2bc cos A =10,即a =10.4.已知cos α=55,sin(β-α)=-1010,α,β均为锐角,则β等于( ) A.π12B.π6C.π4D.π3答案 C解析 ∵α,β均为锐角,即α,β∈⎝⎛⎭⎫0,π2, ∴β-α∈⎝⎛⎭⎫-π2,π2, ∴cos(β-α)=1-sin 2(β-α)=31010, 又sin α=1-cos 2α=255, ∴cos β=cos[(β-α)+α]=cos(β-α)cos α-sin(β-α)sin α =31010×55-⎝⎛⎭⎫-1010×255=22, 又β∈⎝⎛⎭⎫0,π2,∴β=π4. 5.故宫是世界上现存规模最大、保存最为完整的木质结构古建筑群,故宫宫殿房檐设计恰好使北房在冬至前后阳光满屋,夏至前后屋檐遮阴.已知北京地区夏至前后正午太阳高度角约为75°,冬至前后正午太阳高度角约为30°.图1是顶部近似为正四棱锥、底部近似为正四棱柱的宫殿,图2是其示意图,则其出檐AB 的长度(单位:米)约为( )A .3米B .4米C .6(3-1)米D .3(3+1)米答案 C解析 如图,根据题意得∠ACB =15°,∠ACD =105°,∠ADC =30°,∠CAD =45°,CD =24米,所以∠CAD =45°,在△ACD 中,由正弦定理得CDsin ∠CAD =ACsin ∠ADC ,即24sin 45°=AC sin 30°,解得AC =122(米),在Rt △ACB 中,sin ∠ACB =AB AC ,即sin 15°=AB122,解得AB =122sin 15°=122sin(60°-45°)=122×⎝⎛⎭⎫32×22-12×22 =122×6-24=32(6-2)=6(3-1)米.6.(2022·济宁模拟)已知sin α-cos β=3cos α-3sin β,且sin(α+β)≠1,则sin(α-β)的值为() A .-35B.35C .-45D.45答案 C解析 由sin α-cos β=3cos α-3sin β得,sin α-3cos α=cos β-3sin β=sin ⎝⎛⎭⎫π2-β-3cos ⎝⎛⎭⎫π2-β,设f (x )=sin x -3cos x =10⎝⎛⎭⎫110sin x -310cos x=10sin(x -φ), 其中cos φ=110,sin φ=310,φ为锐角,已知条件即为f (α)=f ⎝⎛⎭⎫π2-β,所以π2-β=2k π+α,或π2-β-φ+α-φ=2k π+π,k ∈Z ,若π2-β=2k π+α,k ∈Z ,则α+β=-2k π+π2,k ∈Z ,sin(α+β)=sin π2=1与已知矛盾,所以π2-β-φ+α-φ=2k π+π,k ∈Z ,α-β=2k π+π2+2φ,k ∈Z ,则sin(α-β)=sin ⎝⎛⎭⎫2k π+π2+2φ =sin ⎝⎛⎭⎫π2+2φ=cos 2φ=2cos 2φ-1=-45.二、多项选择题7.(2022·张家口质检)下列命题中,正确的是( )A .在△ABC 中,若A >B ,则sin A >sin BB .在锐角△ABC 中,不等式sin A >cos B 恒成立C .在△ABC 中,若a cos A =b cos B ,则△ABC 是等腰直角三角形D .在△ABC 中,若B =π3,b 2=ac ,则△ABC 必是等边三角形 答案 ABD解析 对于A ,由A >B ,可得a >b ,利用正弦定理可得sin A >sin B ,正确;对于B ,在锐角△ABC 中,A ,B ∈⎝⎛⎭⎫0,π2, ∵A +B >π2, ∴π2>A >π2-B >0, ∴sin A >sin ⎝⎛⎭⎫π2-B =cos B ,因此不等式sin A >cos B 恒成立,正确;对于C ,在△ABC 中,a cos A =b cos B ,利用正弦定理可得sin A cos A =sin B cos B ,∴sin 2A =sin 2B ,∵A ,B ∈(0,π),∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2, ∴△ABC 是等腰三角形或直角三角形,错误;对于D ,由于B =π3,b 2=ac ,由余弦定理可得 b 2=ac =a 2+c 2-ac ,可得(a -c )2=0,解得a =c ,则A =C =B =π3, ∴△ABC 必是等边三角形,正确.8.函数f (x )=sin x (sin x +cos x )-12,若f (x 0)=3210,x 0∈⎝⎛⎭⎫0,π3,下列结论正确的是( ) A .f (x )=22sin ⎝⎛⎭⎫2x -π4 B .直线x =π4是f (x )图象的一条对称轴C .f (x )在⎝⎛⎭⎫0,π3上的最小值为-22D .cos 2x 0=210答案 AD解析 f (x )=sin 2x +sin x cos x -12 =1-cos 2x2+12sin 2x -12=12(sin 2x -cos 2x )=22sin ⎝⎛⎭⎫2x -π4,故A 正确;当x =π4时,sin ⎝⎛⎭⎫2x -π4=22,∴x =π4不是f (x )的对称轴,故B 错误;当x ∈⎝⎛⎭⎫0,π3时,2x -π4∈⎝⎛⎭⎫-π4,5π12,∴f (x )在⎝⎛⎭⎫0,π3上单调递增,∴f (x )在⎝⎛⎭⎫0,π3上无最小值,故C 错误;∵f (x 0)=3210,∴sin ⎝⎛⎭⎫2x 0-π4=35, 又2x 0-π4∈⎝⎛⎭⎫-π4,5π12, ∴cos ⎝⎛⎭⎫2x 0-π4=45, ∴cos 2x 0=cos ⎣⎡⎦⎤⎝⎛⎭⎫2x 0-π4+π4 =22⎣⎡⎦⎤cos ⎝⎛⎭⎫2x 0-π4-sin ⎝⎛⎭⎫2x 0-π4=210, 故D 正确.三、填空题9.(2022·烟台模拟)若sin α=cos ⎝⎛⎭⎫α+π6,则tan 2α的值为________. 答案 3解析 由sin α=cos ⎝⎛⎭⎫α+π6, 可得sin α=cos αcos π6-sin αsin π6 =32cos α-12sin α,则tan α=33, tan 2α=2tan α1-tan 2α=2×331-⎝⎛⎭⎫332= 3. 10.(2022·泰安模拟)已知sin ⎝⎛⎭⎫π3-α=14,则sin ⎝⎛⎭⎫π6-2α=________. 答案 -78解析 sin ⎝⎛⎭⎫π6-2α=sin ⎣⎡⎦⎤2⎝⎛⎭⎫π3-α-π2 =-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π3-α =-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π3-α=-⎝⎛⎭⎫1-18=-78. 11.(2022·开封模拟)如图,某直径为55海里的圆形海域上有四个小岛,已知小岛B 与小岛C 相距5海里,cos ∠BAD =-45.则小岛B 与小岛D 之间的距离为________海里;小岛B ,C ,D 所形成的三角形海域BCD 的面积为________平方海里.答案 35 15解析 由圆的内接四边形对角互补,得cos ∠BCD =cos(π-∠BAD )=-cos ∠BAD=45>0, 又∠BCD 为锐角,所以sin ∠BCD =1-cos 2∠BCD =35, 在△BCD 中,由正弦定理得BD sin ∠BCD =BD 35=55,则BD =35(海里). 在△BCD 中,由余弦定理得 (35)2=CD 2+52-2×CD ×5×45, 整理得CD 2-8CD -20=0,解得CD =10(负根舍去).所以S △BCD =12×10×5×35=15(平方海里). 12.(2022·汝州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =2,cos 2C =cos 2A +4sin 2B ,则△ABC 面积的最大值为________.答案23解析 由cos 2C =cos 2A +4sin 2B 得,1-2sin 2C =1-2sin 2A +4sin 2B ,即sin 2A =sin 2C +2sin 2B ,由正弦定理得a 2=c 2+2b 2=4,由余弦定理得a 2=b 2+c 2-2bc cos A =4,∴c 2+2b 2=b 2+c 2-2bc cos A ,即cos A =-b 2c<0, ∵A ∈(0,π),∴sin A =1-b 24c 2, ∴S △ABC =12bc sin A =12b 2c 2⎝⎛⎭⎫1-b 24c 2 =12b 2c 2-14b 4, ∵c 2+2b 2=4,∴c 2=4-2b 2,∴S △ABC =12b 2(4-2b 2)-14b 4 =12-94b 4+4b 2, 则当b 2=89时, ⎝⎛⎭⎫-94b 4+4b 2max =-94×6481+4×89=169, ∴(S △ABC )max =12×43=23. 四、解答题13.(2022·新高考全国Ⅱ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3.已知S 1-S 2+S 3=32,sin B =13. (1)求△ABC 的面积;(2)若sin A sin C =23,求b . 解 (1)由S 1-S 2+S 3=32, 得34(a 2-b 2+c 2)=32, 即a 2-b 2+c 2=2,又a 2-b 2+c 2=2ac cos B ,所以ac cos B =1.由sin B =13, 得cos B =223或cos B =-223(舍去), 所以ac =322=324, 则△ABC 的面积S =12ac sin B =12×324×13=28. (2)由sin A sin C =23,ac =324及正弦定理知 b 2sin 2B =ac sin A sin C =32423=94, 即b 2=94×19=14,得b =12. 14.(2022·抚顺模拟)在①(2c -a )sin C =(b 2+c 2-a 2)sin B b ;②cos 2A -C 2-cos A cos C =34;③3c b cos A=tan A +tan B 这三个条件中,任选一个,补充在下面问题中,问题:在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =23,________.(1)求角B ;(2)求2a -c 的取值范围.解 (1)选择①:∵(2c -a )sin C =(b 2+c 2-a 2)sin B b, ∴由正弦定理可得(2c -a )c =b 2+c 2-a 2=2bc cos A ,∴2c -a =2b cos A ,可得cos A =2c -a 2b, ∴由余弦定理可得cos A =2c -a 2b =b 2+c 2-a 22bc , 整理可得c 2+a 2-b 2=ac ,∴cos B =c 2+a 2-b 22ac =ac 2ac =12, ∵B ∈(0,π),∴B =π3. 选择②:∵cos 2A -C 2-cos A cos C =1+cos (A -C )2-cos A cos C =1-cos A cos C +sin A sin C 2=1-cos (A +C )2=34, ∴cos(A +C )=-12, ∴cos B =-cos(A +C )=12, 又∵B ∈(0,π),∴B =π3. 选择③: 由正弦定理可得3c b cos A =3sin C sin B cos A,又tan A +tan B =sin A cos A +sin Bcos B=sin A cos B +cos A sin Bcos A cos B =sin Ccos A cos B , 由3cb cos A =tan A +tan B , 可得3sin Csin B cos A =sin Ccos A cos B ,∵sin C >0,∴tan B =3, ∵B ∈(0,π),∴B =π3.(2)在△ABC 中,由(1)及b =23, 得b sin B =a sin A =c sin C =2332=4,故a =4sin A ,c =4sin C ,2a -c =8sin A -4sin C=8sin A -4sin ⎝⎛⎭⎫2π3-A=8sin A -23cos A -2sin A =6sin A -23cos A=43sin ⎝⎛⎭⎫A -π6,∵0<A <2π3,则-π6<A -π6<π2,-12<sin ⎝⎛⎭⎫A -π6<1,-23<43sin ⎝⎛⎭⎫A -π6<43﹒∴2a -c 的取值范围为()-23,43.。
2019-2020年高考数学二轮复习教案(10)三角恒等变换新人教A版【专题要点】两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,半角公式,积化和差、和差化积公式(不要求记忆);三角公式的灵活运用,包括正用、逆用、变形使用等,运用公式进行化简、求值、证明以及解三角形或结合三角函数图象解题【考纲要求】1.和与差的三角函数公式(1)向量的数量积推导出两角差的余弦公式.(2)用两角差的余弦公式导出两角差的正弦、正切公式.(3)用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(4)体会化归思想的应用,能运用它们进行简单的三角函数式的化简、求值及恒等式的证明(5)理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;2.简单的三角恒等变换运用上述公式进行简单的恒等变换,以引导学生推导半角公式,积化和差、和差化积公式(不要求记忆)作为基本训练,使学生进一步提高运用转化的观点去处理问题的自觉性,体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用【知识纵横】11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、±β代替β、α=β等换元法可以推导出其它公式。
你能根据下图回顾推导过程吗?【教法指引】高考对三角恒等式部分的考查仍会是中低档题,无论是小题还是大题中出现都是较容易的.主要有三种可能:(1)以小题形式直接考查:利用两角和与差以及二倍角公式求值、化简;(2)以小题形式与三角函数、向量、解三角形等知识相综合考查两角和与差以及二倍角等公式;(3)以解答题形式与三角函数、向量、解三角形、函数等知识相综合考查,对三角恒等变换的综合应用也可能与解三角形一起用于分析解决实际问题的应用问题,主要考查综合运用数学知识分析问题和解决问题的能力复习时,教师要教给学生注重对问题中角、函数名及其整体结构的分析,提高公式选择的恰当性,还要重视相关的思想方法,如数形结合思想、特值法、构造法、等价转换法等的总结和应用,这有利于缩短运算程序,提高解题效率【典例精析】例1、利用和、差角余弦公式求、的值.分析:把、构造成两个特殊角的和、差.解:()231cos75cos4530cos45cos30sin45sin30222=+=-=⨯-=()231cos15cos4530cos45cos30sin45sin302=-=+=⨯=点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.例2、已知,5,,cos,213παπββ⎛⎫∈=-⎪⎝⎭是第三象限角,求的值.解:因为,由此得3 cos5α===-又因为是第三象限角,所以12sin 13β===-所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角、的象限,也就是符号问题. 例2、利用和(差)角公式计算下列各式的值: (1)、sin 72cos42cos72sin 42-; (2)、cos20cos70sin 20sin 70-; (3)、.解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象.(1)、()1sin 72cos42cos72sin 42sin 7242sin302-=-==; (2)、()cos20cos70sin 20sin 70cos 2070cos900-=+==;(3)、()1tan15tan 45tan15tan 4515tan 6031tan151tan 45tan15++==+==--.例3、化简解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?)()1cos sin 30cos cos30sin 22sin 3022x x x x x x x ⎫-=-=-=-⎪⎪⎭思考:是怎么得到的?,我们是构造一个叫使它的正、余弦分别等于和的.小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.例4、(xx 浙江理12).已知,且,则的值是 . 解:将两边平方得,所以249(sin cos )12sin cos 25θθθθ-=-=,则,又,所以,所以, 故227cos 2cossin (cos sin )(cos sin )25θθθθθθθ=-=+-=-. 例5、(xx 年广东卷理12).已知函数()(sin cos )sin f x x x x =-,,则的最小正周期是 . 解:21cos 21()sin sin cos sin 222x f x x x x x -=-=-,此时可得函数的最小正周期. 例6.(xx 年江苏卷15).如图,在平面直角坐标系中,以轴为始边做两个锐角,,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为. (1)求tan()的值; (2)求的值. 解:由条件的cos 10αβ==,因为,为锐角,所以= 因此 (1)tan()=(2) ,所以()tan tan 2tan 211tan tan 2αβαβαβ++==--∵为锐角,∴,∴=。
教学计划:《三角恒等变换》一、教学目标知识与技能:学生能够理解并掌握三角恒等变换的基本公式,包括和差化积、积化和差、二倍角公式等。
学生能够熟练运用三角恒等变换公式进行化简、求值及证明。
培养学生的逻辑推理能力和代数运算能力。
过程与方法:通过观察、分析、归纳等数学活动,引导学生发现三角恒等变换的规律。
采用“公式推导—例题讲解—练习巩固”的教学模式,帮助学生逐步掌握三角恒等变换的方法。
鼓励学生自主探究,通过小组合作解决复杂问题,培养团队协作能力。
情感态度与价值观:激发学生对数学学习的兴趣,感受数学的美妙与和谐。
培养学生的耐心和细心,养成严谨的科学态度。
引导学生认识到数学在解决实际问题中的重要性,增强应用数学的意识。
二、教学重点和难点重点:三角恒等变换的基本公式及其推导过程;运用公式进行化简、求值及证明。
难点:灵活运用三角恒等变换公式解决复杂问题;理解并记忆众多公式的内在联系。
三、教学过程1. 导入新课(5分钟)情境引入:通过展示一些与三角恒等变换相关的实际问题(如天文学中的角度计算、物理学中的波动分析等),引导学生思考这些问题背后可能涉及的数学知识,从而引出三角恒等变换的主题。
复习旧知:简要回顾三角函数的基本性质、图像及诱导公式,为学习三角恒等变换做好铺垫。
明确目标:介绍本节课的学习目标,即掌握三角恒等变换的基本公式及其应用。
2. 公式推导(15分钟)和差化积公式推导:通过图形展示和代数运算相结合的方式,引导学生推导出和差化积公式。
强调公式的推导过程,帮助学生理解公式的来源和含义。
积化和差公式推导:类比和差化积公式的推导过程,引导学生自主推导积化和差公式。
鼓励学生提出疑问和见解,促进课堂互动。
二倍角公式推导:利用三角函数的倍角关系,引导学生推导出二倍角公式。
强调公式的记忆方法和应用技巧。
3. 例题讲解(10分钟)基础例题:选取具有代表性的基础例题进行讲解,如利用三角恒等变换公式化简表达式、求三角函数值等。
第2讲 三角恒等变换与解三角形三角恒等变换与求值(基础型)两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α. 三角恒等变换的“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等.(2)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等.(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦.[考法全练]1.已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=2,则cos ⎝⎛⎭⎪⎫α-π4=________.解析:因为α∈⎝⎛⎭⎪⎫0,π2,tan α=2, 所以sin α=255,cos α=55,所以cos ⎝ ⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4 =22×⎝ ⎛⎭⎪⎫255+55=31010. 答案:310102.已知cos α=13,cos(α+β)=-13,且α,β∈⎝⎛⎭⎪⎫0,π2,则cos(α-β)=________.解析:因为α∈⎝⎛⎭⎪⎫0,π2,所以2α∈(0,π).因为cos α=13,所以cos 2α=2cos 2α-1=-79,所以sin 2α=1-cos 22α=429,又α,β∈⎝⎛⎭⎪⎫0,π2,所以α+β∈(0,π),所以sin(α+β)= 1-cos 2(α+β)=223, 所以cos(α-β)=cos[2α-(α+β)] =cos 2αcos(α+β)+sin 2αsin(α+β)=⎝ ⎛⎭⎪⎫-79×⎝ ⎛⎭⎪⎫-13+429×223=2327. 答案:23273.已知sin β=35⎝ ⎛⎭⎪⎫π2<β<π,且sin(α+β)=cos α,则tan(α+β)=________. 解析:因为sin β=35,且π2<β<π,所以cos β=-45,tan β=-34.因为sin(α+β)=sin αcos β+cos αsin β=cos α, 所以tan α=-12,所以tan(α+β)=tan α+tan β1-tan αtan β=-2.答案:-2正、余弦定理在解三角形中的应用(综合型)正弦定理及其变形在△ABC 中,a sin A =b sin B =csin C =2R (R 为△ABC 的外接圆半径).变形:a =2R sin A ,sin A =a2R,a ∶b ∶c =sin A ∶sin B ∶sin C 等.余弦定理及其变形在△ABC 中,a 2=b 2+c 2-2bc cos A ;变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc.三角形面积公式S △ABC =12ab sin C =12bc sin A =12ac sin B .[典型例题]命题角度一 求解三角形中的角已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且b cos C +b sin C =a . (1)求角B 的大小;(2)若BC 边上的高等于14a ,求cos A 的值.【解】 (1)由b cos C +b sin C =a , 得sin B cos C +sin B sin C =sin A . 因为A +B +C =π,所以sin B cos C +sin B sin C =sin(B +C ),即sin B cos C +sin B sin C =sin B cos C +cos B sin C , 因为sin C ≠0,所以sin B =cos B . 因为B ∈(0,π),所以B =π4. (2)设BC 边上的高为AD ,则AD =14a .因为B =π4,所以BD =AD =14a ,所以CD =34a ,所以AC =AD 2+DC 2=104a ,AB =24a . 由余弦定理得cos A =AB 2+AC 2-BC 22AB ·AC =-55.利用正、余弦定理求三角形的角,常见形式有:(1)已知两边及其夹角,先由余弦定理求第三边,再由正弦定理求角. (2)已知三边,直接由余弦定理求角.(3)已知两边及其中一边的对角,先由正弦定理求另一边的对角,再由三角形内角和求第三角,注意此类问题有一解、两解或无解的情况.命题角度二 求解三角形中的边与面积如图所示,在△ABC 中,点D 为BC 边上一点,且BD =1,E 为AC 的中点,AE =32,cos B =277,∠ADB =2π3.(1)求AD的长; (2)求△ADE 的面积.【解】 (1)在△ABD 中,因为cos B =277,B ∈(0,π),所以sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫2772=217,所以sin ∠BAD =sin(B +∠ADB )=217×⎝ ⎛⎭⎪⎫-12+277×32=2114. 由正弦定理知AD sin B =BD sin ∠BAD ,得AD =BD ·sin Bsin ∠BAD=1×2172114=2.(2)由(1)知AD =2,依题意得AC =2AE =3,在△ACD 中,由余弦定理得AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC ,即9=4+DC 2-2×2×DC cos π3,所以DC 2-2DC -5=0,解得DC =1+6(负值舍去),所以S △ACD =12AD ·DC sin ∠ADC =12×2×(1+6)×32=3+322,从而S △ADE =12S △ACD =3+324.利用余弦定理求边,一般是已知三角形的两边及其夹角.利用正弦定理求边,必须知道两角及其中一边,如该边为其中一角的对边,要注意解的多样性与合理性.而三角形的面积主要是利用两边与其夹角的正弦值求解.[对点训练]1.(2018·高考全国卷Ⅰ)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos ∠ADB ; (2)若DC =22,求BC .解:(1)在△ABD 中,由正弦定理得BD sin ∠A =ABsin ∠ADB.由题设知,5sin 45°=2sin ∠ADB ,所以sin ∠ADB =25.由题设知,∠ADB <90°,所以cos ∠ADB =1-225=235. (2)由题设及(1)知,cos ∠BDC =sin ∠ADB =25. 在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2·BD ·DC ·cos ∠BDC=25+8-2×5×22×25=25. 所以BC =5.2.(2018·山西八校第一次联考)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且(a +c )2=b 2+3ac .(1)求角B 的大小;(2)若b =2,且sin B +sin(C -A )=2sin 2A ,求△ABC 的面积. 解:(1)由(a +c )2=b 2+3ac ,整理得a 2+c 2-b 2=ac ,由余弦定理得cos B =a 2+c 2-b 22ac =ac 2ac =12,因为0<B <π,所以B =π3.(2)在△ABC 中,A +B +C =π, 即B =π-(A +C ), 故sin B =sin(A +C ),由已知sin B +sin(C -A )=2sin 2A 可得sin(A +C )+sin(C -A )=2sin 2A , 所以sin A cos C +cos A sin C +sin C cos A -cos C sin A =4sin A cos A , 整理得cos A sin C =2sin A cos A . 若cos A =0,则A =π2,由b =2,可得c =2tan B =233,此时△ABC 的面积S =12bc =233.若cos A ≠0,则sin C =2sin A , 由正弦定理可知,c =2a ,代入a 2+c 2-b 2=ac ,整理可得3a 2=4,解得a=233,所以c =433,此时△ABC 的面积S =12ac sin B =233.综上所述,△ABC 的面积为233.解三角形的综合问题(综合型)[典型例题]命题角度一 正、余弦定理与平面几何的综合(2018·成都模拟)如图,在直角梯形ABDE 中,已知∠ABD =∠EDB =90°,C 是BD 上一点,AB =3-3,∠ACB =15°,∠ECD =60°,∠EAC =45°,则线段DE 的长度为________.【解析】 易知∠ACE =105°,∠AEC =30°,在直角三角形ABC 中,AC =ABsin 15°,在三角形AEC 中,ACsin 30°=CE sin 45°⇒CE =AC sin 45°sin 30°,在直角三角形CED 中,DE =CE sin 60°,所以DE =CE sin 60°=sin 45°sin 60°sin 30°×AB sin 15°=22×3212×3-36-24=6.【答案】 6利用正、余弦定理求解平面几何中的问题,应根据图形特征及已知条件,将所给量及待求量放在同一个三角形中,结合三角形内角和定理,外角和定理及正、余弦定理求解.命题角度二 正、余弦定理与最值(范围)问题的综合(1)(2018·潍坊模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,外接圆的半径为1,且tan A tan B =2c -bb,则△ABC 面积的最大值为________.(2)(2018·西安模拟)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2-c 2)(a cos B +b cos A )=abc ,若a +b =2,则c 的取值范围为________.【解析】 (1)因为tan A tan B =2c -b b ,所以b sin A cos A =(2c -b )sin Bcos B,由正弦定理得sin B sinA cosB =(2sinC -sin B )sin B cos A ,又sin B ≠0,所以sin A cos B =(2sin C -sin B )cos A ,所以sin A cos B +sin B cos A =2sin C cos A ,sin(A +B )=2sin C cos A ,即sin C =2sinC cos A ,又sin C ≠0,所以cos A =12,sin A =32.设外接圆的半径为r ,则r =1,由余弦定理得bc =b 2+c 2-a 22cos A=b 2+c 2-a 2=b 2+c 2-(2r sin A )2=b 2+c 2-3≥2bc -3(当且仅当b =c时,等号成立),所以bc ≤3,所以S △ABC =12bc sin A =34bc ≤334.(2)由sin A cosB +sin B cos A =sin(A +B )=sinC 及正弦定理,可知a cos B +b cos A =c ,则由(a 2+b 2-c 2)(a cos B +b cos A )=abc ,得a 2+b 2-c 2=ab ,由余弦定理可得cos C =12,则C =π3,B =2π3-A , 由正弦定理a sin A =b sin B =c sin C ,得asin A=b sin ⎝ ⎛⎭⎪⎫2π3-A =csinπ3,又a +b =2,所以c sin A32+c sin ⎝⎛⎭⎪⎫2π3-A 32=2,即c =3sin A +sin ⎝ ⎛⎭⎪⎫2π3-A =1sin ⎝⎛⎭⎪⎫A +π6,因为A ∈⎝ ⎛⎭⎪⎫0,2π3,所以A +π6∈⎝ ⎛⎭⎪⎫π6,5π6,sin ⎝⎛⎭⎪⎫A +π6∈⎝ ⎛⎦⎥⎤12,1,则c ∈[1,2).【答案】 (1)334(2)[1,2)解三角形中的最值与范围问题主要有两种解决方法:一是利用基本不等式求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围确定所求式的范围.命题角度三 正、余弦定理与实际问题的综合某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C 处(点C 在水平地面下方,O 为CH 与水平地面ABO 的交点)进行该仪器的垂直弹射,水平地面上两个观察点A ,B 两地相距100米,∠BAC =60°,其中A 到C 的距离比B 到C 的距离远40米.A 地测得该仪器在C 处的俯角为∠OAC =15°,A 地测得最高点H 的仰角为∠HAO =30°,则该仪器的垂直弹射高度CH 为( )A .210(6+2)米B .1406米C .2102米D .20(6-2)米【解析】 由题意,设AC =x 米,则BC =(x -40)米,在△ABC 内,由余弦定理得BC 2=BA 2+CA 2-2BA ·CA ·cos ∠BAC ,即(x -40)2=x 2+10 000-100x ,解得x =420米.在△ACH 中,AC =420米,∠CAH =30°+15°=45°,∠CHA =90°-30°=60°, 由正弦定理:CH sin ∠CAH =ACsin ∠AHC ,可得CH =AC ·sin ∠CAHsin ∠AHC =1406(米).【答案】 B(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.[对点训练]1.(2018·合肥第一次质量检测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a -2b )cos C +c cos A =0.(1)求角C ;(2)若c =23,求△ABC 周长的最大值.解:(1)根据正弦定理,由已知得(sin A -2sin B )cos C +sin C cos A =0, 即sin A cos C +sin C cos A =2sin B cos C , 所以sin(A +C )=2sin B cos C , 因为A +C =π-B ,所以sin(A +C )=sin(π-B )=sin B >0, 所以sin B =2sin B cos C ,所以cos C =12.因为C ∈(0,π),所以C =π3. (2)由(1)及余弦定理得cos C =a 2+b 2-c 22ab =12,又c =23,所以a 2+b 2-12=ab ,所以(a +b )2-12=3ab ≤3⎝ ⎛⎭⎪⎫a +b 22,即(a +b )2≤48(当且仅当a =b =23时等号成立). 所以a +b ≤43,a +b +c ≤6 3. 所以△ABC周长的最大值为6 3.2.(2018·武汉调研)在锐角△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,满足cos2A -cos 2B +2cos ⎝ ⎛⎭⎪⎫π6-B ·cos ⎝ ⎛⎭⎪⎫π6+B =0. (1)求角A 的值;(2)若b =3且b ≤a ,求a 的取值范围. 解:(1)由cos 2A -cos 2B +2cos ⎝⎛⎭⎪⎫π6-B cos ⎝ ⎛⎭⎪⎫π6+B =0,得2sin 2B -2sin 2A +2⎝ ⎛⎭⎪⎫34cos 2B -14sin 2B =0,化简得sin A =32,又△ABC 为锐角三角形,故A =π3.(2)因为b =3≤a ,所以c ≥a ,所以π3≤C <π2,π6<B ≤π3,所以12<sin B ≤32.由正弦定理a sin A =b sin B ,得a 32=3sin B,所以a =32sin B ,由sin B ∈⎝ ⎛⎦⎥⎤12,32得a ∈[3,3).[A 组 夯基保分专练]一、选择题1.(2018·高考全国卷Ⅰ)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4解析:选B.易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=32(2cos 2x -1)+32+1=32cos 2x +52,则f (x )的最小正周期为π,当x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.2.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若c =2a ,b sin B -a sin A =12a sinC ,则sin B 为( )A.74B.34C.73 D.13解析:选A.由b sin B -a sin A =12a sin C ,且c =2a , 得b =2a ,因为cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34, 所以sin B =1-⎝ ⎛⎭⎪⎫342=74.3.(2018·洛阳第一次统考)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则cb sin B=( )A.32B.233C.33D. 3解析:选B.由a ,b ,c 成等比数列得b 2=ac ,则有a 2=c 2+b 2-bc ,由余弦定理得cos A=b 2+c 2-a 22bc =bc 2bc =12,故A =π3,对于b 2=ac ,由正弦定理得,sin 2B =sin A sinC =32·sinC ,由正弦定理得,c b sin B =sin C sin 2 B =sin C 32sin C=233.故选B.4.(2018·昆明模拟)在△ABC 中,已知AB =2,AC =5,tan ∠BAC =-3,则BC 边上的高等于( )A .1 B. 2 C. 3D .2解析:选A.法一:因为tan ∠BAC =-3,所以sin ∠BAC =310,cos ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC =5+2-2×5×2×⎝⎛⎭⎪⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABC BC =2×323=1,故选A.法二:因为tan ∠BAC =-3,所以cos ∠BAC =-110<0,则∠BAC 为钝角,因此BC 边上的高小于2,故选A.5.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π3解析:选B.因为sin B +sin A (sin C -cos C )=0,所以sin(A +C )+sin A sin C -sinA cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以tan A =-1,因为A ∈(0,π),所以A =3π4.由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.6.如图,在△ABC 中,∠C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A.223 B.24 C.64D.63解析:选 C.依题意得,BD =AD =DEsin A=22sin A,∠BDC =∠ABD +∠A =2∠A .在△BCD 中,BC sin ∠BDC =BD sin C ,4sin 2A =22sin A ×23=423sin A ,即42sin A cos A =423sin A,由此解得cos A =64. 二、填空题7.若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=________. 解析:依题意得cos ⎝⎛⎭⎪⎫π3+2α=-cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3+2α =-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3-α =2sin 2⎝ ⎛⎭⎪⎫π3-α-1=2×⎝ ⎛⎭⎪⎫142-1 =-78.答案:-788.(2018·高考全国卷Ⅱ改编)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =________.解析:因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2. 答案:4 29.(2018·惠州第一次调研)已知a ,b ,c 是△ABC 中角A ,B ,C 的对边,a =4,b ∈(4,6),sin 2A =sin C ,则c 的取值范围为________.解析:由4sin A =c sin C ,得4sin A =csin 2A ,所以c =8cos A ,因为16=b 2+c 2-2bc cosA ,所以16-b 2=64cos 2A -16b cos 2A ,又b ≠4,所以cos 2A =16-b 264-16b =(4-b )(4+b )16(4-b )=4+b 16,所以c 2=64cos 2A =64×4+b 16=16+4b .因为b ∈(4,6),所以32<c 2<40,所以42<c <210.答案:(42,210) 三、解答题10.(2018·沈阳教学质量监测(一))在△ABC 中,已知内角A ,B ,C 的对边分别是a ,b ,c ,且2c cos B =2a +b .(1)求C ;(2)若a +b =6,△ABC 的面积为23,求c .解:(1)由正弦定理得2sin C cos B =2sin A +sin B , 又sin A =sin(B +C ),所以2sin C cos B =2sin(B +C )+sin B ,所以2sin C cos B =2sin B cos C +2cos B sin C +sin B ,所以2sin B cos C +sin B =0, 因为sin B ≠0,所以cos C =-12.又C ∈(0,π),所以C =2π3.(2)因为S △ABC =12ab sin C =23,所以ab =8,由余弦定理,得c 2=a 2+b 2-2ab cos C =a 2+ab +b 2=(a +b )2-ab =28, 所以c =27.11.(2018·石家庄质量检测(二))已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且3ca cos B=tan A +tan B . (1)求角A 的大小;(2)设AD 为BC 边上的高,a =3,求AD 的取值范围. 解:(1)在△ABC 中,因为3c a cos B =tan A +tan B ,所以3sin C sin A cos B =sin A cos A +sin Bcos B,即3sin C sin A cos B =sin A cos B +sin B cos Acos A cos B,所以3sin A =1cos A ,则tan A =3,所以A =π3.(2)因为S △ABC =12AD ·BC =12bc sin A ,所以AD =12bc .由余弦定理得cos A =12=b 2+c 2-a 22bc ≥2bc -32bc ,所以0<bc ≤3(当且仅当b =c 时等号成立), 所以0<AD ≤32.12.(2018·郑州质量检测(二))已知△ABC 内接于半径为R 的圆,a ,b ,c 分别是角A ,B ,C 的对边,且2R (sin 2B -sin 2A )=(b -c )sin C ,c =3.(1)求A ;(2)若AD 是BC 边上的中线,AD =192,求△ABC 的面积. 解:(1)对于2R (sin 2B -sin 2A )=(b -c )sin C ,由正弦定理得,b sin B -a sin A =b sin C -c sin C ,即b 2-a 2=bc -c 2,所以cos A =b 2+c 2-a 22bc =12,因为0°<A <180°,所以A =60°.(2)以AB ,AC 为邻边作平行四边形ABEC ,连接DE ,易知A ,D ,E 三点共线. 在△ABE 中,∠ABE =120°,AE =2AD =19,在△ABE 中,由余弦定理得AE 2=AB 2+BE 2-2AB ·BE cos 120°,即19=9+AC 2-2×3×AC ×⎝ ⎛⎭⎪⎫-12,得AC =2.故S △ABC =12bc sin ∠BAC =332.[B 组 大题增分专练]1.(2018·长春质量监测(二))在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,其面积S =b 2sin A .(1)求cb的值;(2)设内角A 的平分线AD 交于BC 于D ,AD =233,a =3,求b .解:(1)由S =12bc sin A =b 2sin A ,可知c =2b ,即c b =2.(2)由角平分线定理可知,BD =233,CD =33,在△ABC 中,cos B =4b 2+3-b22·2b ·3,在△ABD 中,cos B =4b 2+43-432·2b ·233,即4b 2+3-b22·2b ·3=4b 2+43-432·2b ·233,解得b =1.2.(2018·贵阳模拟)已知在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,AB 边上的高h =23c .(1)若△ABC 为锐角三角形,且cos A =35,求角C 的正弦值;(2)若C =π4,M =a 2+b 2+13c 2ab,求M 的值.解:(1)作CD ⊥AB ,垂足为D ,因为△ABC 为锐角三角形,且cos A =35,所以sin A =45,tan A =43,所以AD =c 2,BD =AB -AD =c2, 所以BC =CD 2+BD 2=⎝ ⎛⎭⎪⎫23c 2+⎝ ⎛⎭⎪⎫c 22=5c 6,由正弦定理得:sin ∠ACB =AB sin ABC =c ×455c 6=2425.(2)因为S △ABC =12c ×23c =12ab sin ∠ACB =24ab ,所以c 2=324ab ,又a 2+b 2-c 2=2ab cos ∠ACB =2ab , 所以a 2+b 2=2ab +c 2,所以a 2+b 2+13c 2=2ab +43c 2=2ab +43×324ab =22ab ,所以M =a 2+b 2+13c 2ab=22abab=2 2.3.(2018·合肥质量检测)已知△ABC 中,D 为AC 边上一点,BC =22,∠DBC =45°. (1)若CD =25,求△BCD 的面积; (2)若角C 为锐角,AB =62,sin A =1010,求CD 的长. 解:(1)在△BCD 中,CD 2=BC 2+BD 2-2BC ·BD ·cos 45°, 即20=8+BD 2-4BD ,解得BD =6,所以△BCD 的面积S =12×22×6×sin 45°=6.(2)在△ABC 中,由BC sin A =AB sin C 得221010=62sin C,解得sin C =31010.由角C 为锐角得,cos C =1010, 所以sin ∠BDC =sin(C +45°)=255.在△BCD 中,CD sin ∠DBC =BC sin ∠BDC ,即CD 22=22255,解得CD = 5.4.(2018·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sinA =a cos ⎝⎛⎭⎪⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.解:(1)在△ABC 中,由正弦定理a sin A =bsin B,可得b sin A =a sin B ,又由b sin A =a cos ⎝⎛⎭⎪⎫B -π6,得a sin B =a cos ⎝⎛⎭⎪⎫B -π6,即sin B =cos ⎝⎛⎭⎪⎫B -π6,可得tan B = 3.又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有b 2=a 2+c 2-2ac cos B =7,故b=7.由b sin A =a cos ⎝⎛⎭⎪⎫B -π6,可得sin A =37.因为a <c ,故cos A =27.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17,所以,sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.。
第2讲 三角恒等变换与解三角形自主学习导引真题感悟1.(2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α= A .-53B .-59C.59D.53 解析 利用同角三角函数的基本关系及二倍角公式求解. ∵sin α+cos α=33, ∴(sin α+cos α)2=13,∵2sin αcos α=-23,即sin 2α=-23.又∵α为第二象限角且sin α+cos α=33>0, ∴2k π+π2<α<2k π+34π(k ∈Z ),∴4k π+π<2α<4k π+32π(k ∈Z ),∴2α为第三象限角,∴cos 2α=-1-sin 22α=-53. 答案 A2.(2012·浙江)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .已知cos A =23,sin B=5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积.解析 (1)因为0<A <π,cos A =23,得sin A =1-cos 2A =53.又5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C ,所以tan C = 5.(2)由tan C =5,得sin C =56,cos C =16.于是sin B =5cos C =56,由a =2及正弦定理a sin A =csin C ,得c = 3.设△ABC 的面积为S ,则S =12ac sin B =52.考题分析新课标高考对本部分的考查,一般多以小题考查三角变换在求值、化简等方面的应用,而解答题常常有以下三种:三角变换与内部相关知识的综合性问题、三角变换与向量的交汇性问题、三角变换在实际问题中的应用问题.网络构建高频考点突破考点一:三角变换及求值【例1】设π3<α<3π4,sin ⎝⎛⎭⎪⎫α-π4=35,求sin α-cos 2α+1tan α的值. [审题导引] 解答本题的关键是求出sin α与cos α,观察所给的条件式会发现求sin α与cos α的方法有两个,一是利用角的变换,二是解关于sin α与cos α的方程组.[规范解答] 解法一 由π3<α<3π4,得π12<α-π4<π2,又sin ⎝ ⎛⎭⎪⎫α-π4=35,∴cos ⎝⎛⎭⎪⎫α-π4=45. ∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π4+π4 =cos ⎝ ⎛⎭⎪⎫α-π4cos π4-sin ⎝ ⎛⎭⎪⎫α-π4sin π4=210.∴sin α=7210.故原式=sin α+2sin 2αsin αcos α=cos α()1+2sin α=14+5250.解法二 由sin ⎝⎛⎭⎪⎫α-π4=35,得sin α-cos α=325,①平方得1-2sin αcos α=1825, 即2sin αcos α=725>0.由于π3<α<3π4,故π3<α<π2.(sin α+cos α)2=1+2sin αcos α=3225,故sin α+cos α=425,②联立①②,解得sin α=7210,cos α=210.∴原式sin α+2sin 2αsin αcos α=cos α(1+2sin α)=210×⎝ ⎛⎭⎪⎫1+14210=14+5250. 【规律总结】sin α、cos α的求值技巧当已知sin ⎝ ⎛⎭⎪⎫α±π4,cos ⎝ ⎛⎭⎪⎫α±π4时,利用和、差角的三角函数公式展开后都含有sin α+cos α或sin α-cos α,这两个公式中的其中一个平方后即可求出2sin αcos α,根据同角三角函数的平方关系,即可求出另外一个,这两个联立即可求出sin α,cos α的值.或者把sin α+cos α、sin α-cos α与sin 2α+cos 2α=1联立,通过解方程组的方法也可以求出sin α、cos α的值.[易错提示] 三角函数求值中要特别注意角的范围,如根据sin 2α=1-cos 2α2求sin α的值时,sin α=±1-cos 2α2中的符号是根据角的范围确定的,即当α的范围使得sin α≥0时,取正号,反之取负号.注意在运用同角三角函数关系时也有类似问题.【变式训练】1.(2012·烟台一模)若α∈⎝ ⎛⎭⎪⎫0,π2,且cos 2α+sin ⎝ ⎛⎭⎪⎫π2+2α=12,则tan α=A .1 B.33 C.36 D. 3 解析 cos 2α+sin ⎝ ⎛⎭⎪⎫π2+2α=cos 2α+cos 2α=2cos 2α-sin 2α=2cos 2α-sin 2αcos 2α+sin 2α=2-tan 2α1+tan 2α=12, 即tan 2α=1. 又α∈⎝⎛⎭⎪⎫0,π2,tan α>0,∴tan α=1.2.(2012·南京模拟)已知sin ⎝⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos α=________.解析 sin ⎝⎛⎭⎪⎫α+π3+sin α=12sin α+32cos α+sin α =32sin α+32cos α=3sin ⎝⎛⎭⎪⎫α+π6=-435, ∴sin ⎝⎛⎭⎪⎫α+π6=-45. 又∵-π2<α<0,∴-π3<α+π6<π6,∴cos ⎝⎛⎭⎪⎫α+π6=35, ∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6=32cos ⎝ ⎛⎭⎪⎫α+π6+12sin ⎝ ⎛⎭⎪⎫α+π6 =33-410. 答案33-410考点二:正、余弦定理的应用【例2】 (2012·湖南师大附中模拟)在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,且(2a -c )cos B =b cos C . (1)求角B 的大小;(2)若cos A =22,a =2,求△ABC 的面积. [审题导引] (1)把条件式中的边利用正弦定理转化为角后进行三角恒等变换可求B ; (2)利用(1)的结果求b 及c ,利用公式求面积.[规范解答] (1)因为(2a -c )cos B =b cos C ,由正弦定理,得(2sin A -sin C )cos B =sin B cos C .∴2sin A cos B =sin C cos B +sin B cos C =sin(B +C )=sin A .∵0<A <π,∴sin A ≠0,∴cos B =12.又∵0<B <π,∴B =π3.(2)由正弦定理a sin A =bsin B ,得b =6,由cos A =22可得A =π4, 由B =π3,可得sin C =6+24,∴S =12ab sin C =12×2×6×6+24=3+32【规律总结】解三角形的一般方法是(1)已知两角和一边,如已知A 、B 和c ,由A +B +C =π求C ,由正弦定理求a 、b .(2)已知两边和这两边的夹角,如已知a 、b 和C ,应先用余弦定理求c ,再应用正弦定理先求较短边所对的角,然后利用A +B +C =π求另一角.(3)已知两边和其中一边的对角,如已知a 、b 和A ,应先用正弦定理求B ,由A +B +C =π求C ,再由正弦定理或余弦定理求c ,要注意解题时可能有多种情况. (4)已知三边a 、b 、c ,可应用余弦定理求A 、B 、C . 【变式训练】3.(2012·北京东城11校联考)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若sinA =3sin C ,B =30°,b =2,则边c =________.解析 由正弦定理得a =3c ,由余弦定理可知b 2=a 2+c 2-2ac cos B ,即4=3c 2+c 2-23c 2×32,解得c =2. 答案 2考点三:解三角形与实际应用问题【例3】(2012·宿州模拟)已知甲船正在大海上航行.当它位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C 处的乙船,乙船当即也决定匀速前往救援,并且与甲船同时到达.(供参考使用:取tan 41°=32) (1)试问乙船航行速度的大小;(2)试问乙船航行的方向(试用方位角表示,譬如北偏东……度).[审题导引] 据题意作出示意图,把实际问题转化为解三角形,利用正、余弦定理求解. [规范解答] 设乙船运动到B 处的距离为t 海里.则t 2=AC 2+AB 2-2AB ·AC cos 120° =102+202+2×10×20×12=700,∴t =107,又设∠ACB =θ, 则tsin 120°=20sin θ,10732=20sin θ,则sin θ=217=0.65,∴θ=41°, ∴乙船应朝北偏东71°的方向沿直线前往B 处求援.速度为57海里/小时.【规律总结】应用解三角形知识解决实际问题需要下列四步(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案 【变式训练】4.如图所示,小丽家住在成都市锦江河畔的电梯公寓AD 内,她家河对岸新建了一座大厦BC ,为了测得大厦的高度,小丽在她家的楼底A 处测得大厦顶部B 的仰角为60°,爬到楼顶D 处测得大厦顶部B 的仰角为30°,已知小丽所住的电梯公寓高82米,请你帮助小丽算出大厦高度BC 及大厦与小丽所住电梯公寓间的距离AC.解析 设AC =x 米,则BC =3x 米, 过点D 作DE ⊥BC ,易得BE =33x , ∴3x -33x =82. ∴x =413米.∴BC =3×413=123米. 名师押题高考【押题1】已知sin ⎝⎛⎭⎪⎫α-π4cos ()π+2α=2,则sin α+cos α=________.解析 sin ⎝ ⎛⎭⎪⎫α-π4cos π+2α=sin ⎝⎛⎭⎪⎫α-π4-cos 2α=22sin α-cos αsin 2α-cos 2α =22·1sin α+cos α=2, 则sin α+cos α=12.答案 12[押题依据] 诱导公式、倍角公式等都是高考的热点,应用这些公式进行三角恒等变换是高考的必考内容.本题考点设置恰当、难度适中,体现了对基础知识和基础能力的双重考查,故押此题.【押题2】在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列.(1)若b =13,a =3,求c 的值; (2)设t =sin A sin C ,求t 的最大值.解析 (1)因为A ,B ,C 成等差数列,所以2B =A +C , 因为A +B +C =π,所以B =π3. 因为b =13,a =3,b 2=a 2+c 2-2ac cos B , 所以c 2-3c -4=0.所以c =4或c =-1(舍去).(2)因为A +C =23π,所以t =sin A sin ⎝ ⎛⎭⎪⎫2π3-A =sin A ⎝ ⎛⎭⎪⎫32cos A +12sin A=34sin 2A +12⎝ ⎛⎭⎪⎫1-cos 2a 2=14+12sin ⎝⎛⎭⎪⎫2A -π6. 因为0<A <2π3,所以-π6<2A -π6<7π6.所以当2A -π6=π2,即A =π3时,t 有最大值34.[押题依据] 本题将三角函数、余弦定理、数列巧妙地结合在一起,综合考查了三角恒等变换及余弦定理的应用,体现了高考在知识的交汇处命题的理念,故押此题.。
2021年高考数学专题复习三角函数三角恒等变换解三角形教案新人教版一考试要求(xx年普通高等学校招生全国统一考试安徽卷考试说明·文科数学)1.任意角、弧度(1)了解任意角的概念和弧度制的概念。
(2)能进行弧度与角度的互化。
2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义。
(2)能利用单位圆中的三角函数线推导出的正弦、余弦、正切的诱导公式,能画出的图像,了解三角函数的周期性。
(3)理解正弦函数、余弦函数在[0,2]上的性质(如单调性、最大值和最小值、图像与x轴的交点等),理解正切函数在内的单调性。
(4)理解同角三角函数的基本关系式:(5)了解函数的物理意义;能画出函数的图像。
了解参数对函数图像变化的影响。
(6)会用三角函数解决一些简单实际问题,了解三角函数是描述周期变化现象的重要函数模型。
3.两角和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式。
(2)会用两角差的余弦公式推导出两角差的正弦、正切公式。
(3)会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系。
4.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆)。
5.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
6.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
二 基础知识1、终边相同的角与α角终边相同的角,都可用式子k ×360°+α表示2、弧度制.:半径为r 的圆心角α所对弧长为l ,则α弧度数的绝对值为|α|=. 3.任意角的三角函数在直角坐标系中,设α是一个任意角,α终边上任意一点(除了原点)的坐标为,它与原点的距离为2222(||||0)r r x y x y =+=+>,那么 =, ,当α=(k ∈Z )时,tan α无意义 4.同角三角函数的基本关系sin 2α+cos 2α=1,(平方关系) tan α= 5.三角函数的诱导公式公式1: ,απααπαtan )2tan(,cos )2cos(=⋅+=⋅+k k公式2: sin(π+) = sin , cos(π+) = cos . tan(π+) = tan , 公式3: sin() = sin , cos() = cos . tan() = tan , 公式4: sin(π) = sin , cos(π) = cos . tan(π) = tan ,公式5:公式6:奇变偶不变,符号看象限(锐角)。
三角恒等变换【专题要点】两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,半角公式,积化和差、和差化积公式(不要求记忆);三角公式的灵活运用,包括正用、逆用、变形使用等,运用公式进行化简、求值、证明以及解三角形或结合三角函数图象解题【考纲要求】 1.和与差的三角函数公式(1)向量的数量积推导出两角差的余弦公式.(2)用两角差的余弦公式导出两角差的正弦、正切公式.(3)用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(4)体会化归思想的应用,能运用它们进行简单的三角函数式的化简、求值及恒等式的证明(5)理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系; 2.简单的三角恒等变换运用上述公式进行简单的恒等变换,以引导学生推导半角公式,积化和差、和差化积公式(不要求记忆)作为基本训练,使学生进一步提高运用转化的观点去处理问题的自觉性,体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用 【知识纵横】11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、2±β代替β、α=β等换元法可以推导出其它公式。
你能根据下图回顾推导过程吗?【教法指引】高考对三角恒等式部分的考查仍会是中低档题,无论是小题还是大题中出现都是较容易的.主要有三种可能:(1)以小题形式直接考查:利用两角和与差以及二倍角公式求值、化简;(2)以小题形式与三角函数、向量、解三角形等知识相综合考查两角和与差以及二倍角等公式;(3)以解答题形式与三角函数、向量、解三角形、函数等知识相综合考查,对三角恒等变换的综合应用也可能与解三角形一起用于分析解决实际问题的应用问题,主要考查综合运用数学知识分析问题和解决问题的能力复习时,教师要教给学生注重对问题中角、函数名及其整体结构的分析,提高公式选择的恰当性,还要重视相关的思想方法,如数形结合思想、特值法、构造法、等价转换法等的总结和应用,这有利于缩短运算程序,提高解题效率【典例精析】例1、利用和、差角余弦公式求cos 75、cos15的值. 分析:把75、15构造成两个特殊角的和、差. 解:βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+βαβαβαsin cos cos sin )sin(-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-αααcos sin 22sin =2222cos2cos sin 2cos 112sin ααααα=-=-=-ααα2tan 1tan 22tan -=()231cos75cos 4530cos 45cos30sin 45sin 3022224=+=-=⨯-=()231cos15cos 4530cos 45cos30sin 45sin 3022224=-=+=⨯+=点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活运用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===-所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题. 例2、利用和(差)角公式计算下列各式的值: (1)、sin 72cos 42cos72sin 42-; (2)、cos 20cos70sin 20sin 70-;(3)、1tan151tan15+-.解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象.(1)、()1sin 72cos 42cos72sin 42sin 7242sin 302-=-==; (2)、()cos 20cos70sin 20sin 70cos 2070cos900-=+==;(3)、()1tan15tan 45tan15tan 4515tan 6031tan151tan 45tan15++==+==--.例3xx -解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?)()1cos sin 30cos cos30sin 22sin 3022xx x x x x x⎫-=-=-=-⎪⎪⎭思考:是怎么得到的?=分别等于12.小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.例4、(2007某某理12).已知1sin cos 5θθ+=,且324θππ≤≤,则cos2θ的值是. 解:将1sin cos 5θθ+=两边平方得12sin cos 25θθ=-,所以249(sin cos )12sin cos 25θθθθ-=-=,则7sin cos 5θθ-=±,又324θππ≤≤,所以cos 0,sin 0θθ<>,所以7sin cos 5θθ-=, 故227cos 2cos sin (cos sin )(cos sin )25θθθθθθθ=-=+-=-.例5、(2008年某某卷理12).已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是.解:21cos 21()sin sin cos sin 222x f x x x x x -=-=-,此时可得函数的最小正周期22T ππ==.例6.(2008年某某卷15).如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为,105.(1)求tan(αβ+)的值; (2)求2αβ+的值.解:由条件的cos 10αβ==因为α,β为锐角,所以sin α=10β= 因此1tan 7,tan 2αβ== (1)tan(αβ+)=tan tan 31tan tan αβαβ+=--(2)22tan 4tan 21tan 3βββ==-,所以()tan tan 2tan 211tan tan 2αβαβαβ++==-- ∵,αβ为锐角,∴3022παβ<+<,∴2αβ+=34π。
[解析] 由题意S △ABC =12ab sin C =a2+b2-c24.即sin C =a2+b2-c22ab .由余弦定理可知sin C =cos C .即tan C =1.又C ∈(0.π).所以C =π4.3.(20xx·全国Ⅰ卷.11)已知角α的顶点为坐标原点.始边与x 轴的非负半轴重合.终边上有两点A ()1,a .B ()2,b .且cos2α=23.则||a -b =( B )A .15B .55C .255D .1[解析] 由cos2α=2cos 2α-1=23可得cos 2α=56=cos2αsin2α+cos2α=1tan2α+1.化简可得tan α=±55;当tan α=55时.可得a 1=55.b 2=55.即a =55.b =255.此时|a -b |=55;当tan α=-55时.仍有此结果.故|a -b |=55. 4.(20xx·天津卷.6)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度.所得图象对应的函数( A )A .在区间⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增 B .在区间⎣⎢⎡⎦⎥⎤3π4,π上单调递减 C .在区间⎣⎢⎡⎦⎥⎤5π4,3π2上单调递增 D .在区间⎣⎢⎡⎦⎥⎤3π2,2π上单调递减 [解析] 选A .因为将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度.得到函数y =sin2x 的图象. 用五点法作出草图.如图:从图中可以看出选项A 正确.其他都不正确.⎝ ⎛4-α=5.sin22+=4.+c=.则△7.(20xx·淮北二模)在△ABC 中.角A .B .C 的对边分别为a .b .c .若a 2=3b 2+3c 2-23bc sin A .则C 等于π6.[解析] 由余弦定理得a 2=b 2+c 2-2bc cos A . 所以b 2+c 2-2bc cos A =3b 2+3c 2-23bc sin A .3sin A -cos A =b2+c2bc .2sin(A -π6)=b2+c2bc ≥2.因此b =c .A -π6=π2⇒A =2π3.所以C =π-2π32=π6. 8.(20xx·长沙三模)在锐角△ABC 中.D 为BC 的中点.满足∠BAD +∠C =90°.则角B .C 的大小关系为B =C .(填“B <C ”“B =C ”或“B >C ”)[解析] 设∠BAD =α.∠CAD =β.因为∠BAD +∠C =90°.所以α=90°-C .β=90°-B . 因为D 为BC 的中点. 所以S △ABD =S △ACD . 所以12c ·AD sin α=12b ·AD sin β.所以c sin α=b sin β.所以c cos C =b cos B . 由正弦定理得.sin C cos C =sin B cos B .即sin2C =sin2B .所以2B =2C 或2B +2C =π. 因为△ABC 为锐角三角形.所以B =C .9.为了竖起一块广告牌.要制造三角形支架.如图.要求∠ACB =60°.BC 的长度大于1米.且AC 比AB 长0.5米.为了稳定广告牌.要求AC 越短越好.则AC 最短为2+3.[解析] 由题意设BC =x (x >1)米. AC =t (t >0)米.依题设AB =AC -0.5 =(t -0.5)米.在△ABC 中.由余弦定理得: AB 2=AC 2+BC 2-2AC ·BC cos60°.所以sin2A =2sin A cos A =1213. cos2A =1-2sin 2A =-513. 所以sin(2A +π4)=sin2A cos π4+cos2A sin π4=7226.B 组1.(20xx·福州三模)已知a .b .c 分别是△ABC 的内角A .B .C 所对的边.点M 为△ABC 的重心.若a MA →+b MB →+33c MC →=0.则C =( D )A .π4B .π2 C .5π6D .2π3[解析] ∵M 为△ABC 的重心.则MA →+MB →+MC →=0. ∴MA →=-MB →-MC →. ∵a MA →+b MB →+33c ·MC →=0.∴a ·(-MB →-MC →)+b MB →+33c ·MC →=0.即(b -a )·MB →+(33c -a )·MC →=0.∵MB →与MC →不共线. ∴b -a =0.32c -a =0.得a b33c =111.令a =1.b =1.c =3.则cos C =a2+b2-c22ab =1+1-32×1×1=-12.∴C =2π3.故选D .2.(20xx·××市一模)若sin(π6-α)=13.则cos(2π3+2α)=( A )。