第三章 三角恒等变换(教案)
- 格式:doc
- 大小:59.00 KB
- 文档页数:5
教学过程一、课堂导入思路1.我们知道变换是数学的重要工具,也是数学学习的主要对象之一,三角函数主要有以下三个基本的恒等变换:代数变换、公式的逆向变换和多向变换以及引入辅助角的变换.前面已经利用诱导公式进行了简单的恒等变换,本节将综合运用和(差)角公式、倍角公式进行更加丰富的三角恒等变换.思路2.三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点.二、复习预习复习三角函数值的计算及诱导公式(一)-(六)。
απαsin )2sin(=+k , απαcos )2cos(=+k , απαtan )2tan(=+k (公式一) sin()sin , cos()cos , tan()tan (公式二) sin()sin , cos()cos , tan()tan (公式三)ααπsin sin(=-), ααπ-cos cos(=-), ααπtan tan(-=-) (公式四)sin()cos 2 (公式五)sin()cos 2 (公式六)cos()sin2cos()sin2三、知识讲解考点1两角和的正弦、余弦、正切公式⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).考点2二倍角的正弦、余弦、正切公式⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-.2tan 12tan 1 cos ;2tan 12tan 2 sin :222αααααα万能公式+-=+=考点3 辅助角公式把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。
人教版高中必修4(B版)第三章三角恒等变换课程设计一、课程背景本课程设计是针对高中必修课程《数学四》(B版)第三章三角恒等变换的教学实践。
在本章节中,学生将学习三角函数的基本概念,包括正弦、余弦、正切等;以及三角函数的基本性质、图像特征等知识。
在此基础上,进一步学习三角恒等变换的定义、性质、应用等内容,帮助学生感受数学美妙,拓展学生的数学思维和实际应用能力。
二、课程目标•知识目标1.掌握三角函数的概念、性质、基本图像和相关公式;2.掌握三角恒等变换的概念、性质和基本应用;3.理解三角恒等变换与三角函数图像的关系,培养学生对数学美的感悟。
•能力目标1.能灵活应用三角函数及其相关公式;2.能理解并应用三角恒等变换在实际问题中得到解决;3.能有效运用数学知识解决实际问题,并能形成自己的思考方式。
•情感目标1.通过学习,培养学生感受数学美妙的情感和兴趣;2.让学生理解数学是实践中最常用的一门学科;3.激发学生爱思考、勇于探究、善于合作的精神。
三、课程内容1.三角函数基础知识复习;2.三角恒等变换;3.三角函数图像变化。
四、教学方法1.讲授法:通过课堂讲解,准确阐述三角恒等变换的基本概念、性质、公式等,并通过简单的计算题、实例演练等方式帮助学生掌握相关知识;2.实践结合法:通过实际问题的解答,引导学生思考、动手解决,培养学生的数学实践能力;3.合作学习法:通过小组讨论、合作解题等方式,让学生在团队中相互交流、借鉴、提高彼此能力。
五、教学设计第一节课时间:1学时主要内容:三角函数基础知识复习1.引入三角函数知识,介绍正弦、余弦、正切的定义、符号、图像及基本性质;2.以例子为主,提高学生对于三角函数的计算能力;3.通过课堂测验,及时调整教学内容,帮助弱势学生摆脱困境。
第二节课时间:1学时主要内容:三角恒等变换1.引入三角恒等变换的定义、本质及重要性;2.提出三角恒等变换相关的公式,并进行简单的计算;3.通过实例演示,帮助学生理解三角恒等变换在证明中的应用。
第三章 三角恒等变换3.2 简单的三角恒等变换一、教学内容及其分析本节内容《简单的三角恒等变换》选自人教A 版必修四第三章第二节,其中新任务是通过已知的两角和差公式及二倍角公式探索简单的三角恒等变换,通过简单运用,使学生初步理解简单的三角恒等变换的基本原则、方法. 本节把三角恒等变换的应用放在三角变换与三角函数间的内在联系上,从而使三角函数性质的研究得到延伸.二、教学目标及学科素养分析课程目标:1、能用两角和与差的正弦、余弦,二倍角正弦、余弦公式进行简单的三角恒等变换,记住sin cos y a x b x ωω=+的化简方法.2、能正确的对形如sin()y A x ωϕ=+的三角函数性质进行讨论,能灵活利用公式,通过三角恒等变换,解决函数的最值、周期、单调性等问题.3、能运用三角公式解决一些实际问题.4、通过三角恒等变换的训练,能够培养转化与化归的数学思想. 学科素养:1、 数学抽象:三角函数公式之间的内在联系;2、 逻辑推理:运用三角函数公式进行简单的三角恒等变换;3、 数学运算:利用三角函数公式进行计算和化简;4、 直观想象:让学生感受由特殊到一般的数学思想方法;5、 数学建模:通过对实际问题的探究过程,感知应用数学解决问题的方法,理解转化、化归、换元等数学思想方法在数学中的应用.三、教学重难点教学重点:引导学生以已有的十一个公式为依据,进行三角恒等变换,对形如sin()y A x ωϕ=+的三角函数性质进行讨论教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.对形如sin()y A x ωϕ=+三角函数的应用. 四、教学方法采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,通过各种教学媒体,调动学生参与课堂教学的主动性和积极性.五、教学过程探究一:形如sin()y A x ωϕ=+函数性质的探究三角函数主要刻画的是周期性质,随着周期变化,函数的图象发生变化,从而导致函数的相关性质而发生改变.问题1.求函数2sin(2)()6y x x R π=+∈的周期,最大值. 生:函数2sin(2)()6y x x R π=+∈的周期为T π=,最大值为2.问题2.求函数sin ()y x x x R =+∈的周期,最大值.生:函数sin ()y x x x R =+∈的最大值为2,周期为2T π=.学生也可能不会回答.师:通过第一章的学习我们已经对形如sin()y A x ωϕ=+的函数性质做了探究,今天再继续探究形如sin()y A x ωϕ=+的函数性质.只不过今天我们研究的函数没有直接给出sin()y A x ωϕ=+的形式,需要先将所给的函数式化简为sin()y A x ωϕ=+的形式,从而使三角函数的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.这就是本节课我们学习的内容.问题.函数sin y x x =+如何化简为sin()y A x ωϕ=+的形式?提问学生回答:因为sin y x x =12(sin cos )22x x =+ 2(sin cos cos sin )33x x ππ=+2sin()3x π=+. 所以函数sin ()y x x x R =+∈的最大值为2,周期为2T π=.问题4.刚才所化简的函数是形如sin cos y a x b x ωω=+的函数,那么我们如何将形如sin cos y a x b x ωω=+的函数化简为sin()y A x ωϕ=+的形式呢? 生:思考后讨论(2分钟),提问回答:sin cos )y a x b x x x ωωωω=+=+ 令cos ϕϕ==则sin cos y a x b x ωω=+cos cos sin )x x ωϕωϕ=+)x ωϕ=+.师:sin cos y a x b x ωω=+)x ωϕ+,其中tan b aϕ=.这个公式我们称为辅助角公式.现在我们利用这个公式解决下面的例题.例题:函数3sin ()22x x y x R =∈的周期为 .生:思考后,提问回答:3sin 22x x y =-1cos )222x x =-cos cos sin )2626x x ππ=-sin()26x π=-. 所以函数3sin ()22x x y x R =∈的周期为=4T π.。
高中数学必修4 第3章 三角恒等变换 3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单使用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础. 二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不但有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,使用已学知识和方法的水平问题,等等. 三、教学设想: (一)导入:问题1: 我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家能够猜测,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜测是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-= (二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也能够用角α的余弦线来表示。
思考?.1角函数线来探求公式怎样联系单位圆上的三(1) 怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)?)2(的余弦线和余弦线的正弦线怎样作出角βαβα-,、、思考2:怎样联系向量的数量积探求公式?(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的?(2)怎样利用向量的数量积的概念的计算公式得到探索结果? 两角差的余弦公式:βαβαβαsin sin cos cos )cos(⋅+⋅=-(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值. 解:分析:把75、15构造成两个特殊角的和、差.()231cos75cos 4530cos 45cos30sin 45sin 30222=+=-=⨯=()231cos15cos 4530cos 45cos30sin 45sin 302222=-=+=⨯=点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活使用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===-所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.思考:此题中没有),2ππα⎝⎛∈,呢? (四)练习:不查表计算以下各式的值:︒︒+︒︒20sin 80sin 20cos 80cos 1)(︒+︒15sin 2315cos 212)(解: ︒︒+︒︒20sin 80sin 20cos 80cos 1)( 2160cos )2080cos(=︒=︒-︒= (五)小结:两角差的余弦公式,首先要理解公式结构的特征,理解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角α、β的象限,也就是符号问题,学会灵活使用.(1)牢记公式.S S C C C ⋅+⋅=-)(βα(2)在“给值求值”题型中灵活处理已、未知关系. (六)作业3.1.2两角和与差的正弦、余弦、正切公式一、教材分析本节的主要内容是两角和与差的正弦、余弦和正切公式,为了引起学生学习本章的兴趣,理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用从而激发学生对本章内容的学习兴趣和求知欲。
课题三角恒等变换课型复习授课人余伟1、利用两角和与差的正弦、余弦、正切公式及二倍角公式进行化简、求值是高考考查的热点,本部分内容常与三角函数的性质、向量、解三角形的知考情分析识相结合命题2、命题形式多种多样,既有选择题、填空题也有综合性解答题1、通过同类型题目的训练,加深对三角恒等变换中各个公式的理解和记忆,培养学生的运算能力及逻辑推理能力,提高学生的数学素养。
2、通过三角恒等变换中公式的运用,会进行简单的化简、求值,体会转化教学目标思想在数学中的应用,使学生进一步掌握联系的观点,提高学生分析问题、解决问题的能力。
3、通过本节课的学习,使学生体会探究的乐趣,激发学生分析、探求的学习乐趣。
教学重点和差角、倍角公式、辅助角公式的灵活运用教学难点给值求值问题中合理运用和差角公式教学过程知识梳理:1.两角和与差的正弦、余弦、正切公式:2.二倍角的正弦、余弦、正切公式:3.降幂公式:4.辅助角公式:典例讲评:题型 1三角函数式的化简、求值给角求值”: 一般所给出的角都是非特殊角, 从表面上来看是很难的, 但仔细观察非特殊角与特殊角总有一定关系, 解题时, 要利用观察得到的关系, 结合公式转化为特殊角并且消除非特殊角的三角函数而得解.【例 1】( 1)( 2015 年课标全国Ⅰ) sin 20 cos10cos160 sin 10( )3 3 1 1 A.B.C.D.2222sin 110 sin 20 )( 2)计算sin 2 的值为( cos 2 155 1553 3 1 1 A.B.C.D.22 22cos40等于()(3)化简cos 25 1 sin 40A.1B. 3C. 2D.2(4) sin 50 1 3 tan10【规律方法】三角函 数式的化简要遵循“三看”原则(1) 一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2) 二看“函数名称”, 看函数名称之间的差异, 从而确定使用的公式, 常见的有“切化弦”;(3) 三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.题型 2 给值求值问题 ( 已知某角的三角函数值,求另一角的三角函数值 )“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.【例 2】( 1)(教材课后练习)已知sin 303,60150 ,则 cos 5( 2)已知cos sin 437的值是,则 sin665(3)已知02,且 cos21, sin2,则923cos的值为( 4)已知、为锐角, cos 153, sin,则 cos 714( 5)( 10 月月考)已知cos2,为锐角,则 cos 21084题型 3给值求角问题( 已知某角的三角函数值,求另一角的值)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.【典例 3】(1)设、为钝角,且 sin 5, cos310的值为()5,则10A.3B.5C.7D.5或7 44444( 2)若sin 2510,,3,则, sin,且,51042的值为()A.7B.9C.5或9D.5或7444444【规律方法】(1)角的变换:转化为同角、特殊角、已知角或它们的和、差、两倍、一半等等;如, 2.(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是0,,选正、余弦皆可;若角的范围是(0 ,2π) ,选余弦较好;若角的范围为, ,选正弦较好.22(3) 解这类问题的一般步骤:①求角的某一个三角函数值;②确定角的范围;③根据角的范围写出所求的角.课堂小结本节课复习了两角和与差的正弦、余弦、正切公式,二倍角公式,降幂公式,辅助角公式,思考:1、如何求解给值求值的问题2、如何求解给值求角的问题3、在化简中哪些技巧值得我们注意。
3.2 简单的三角恒等变换[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 139~P 142的内容,回答下列问题. (1)α与α2是什么关系?提示:倍角关系.(2)如何用cos α表示sin 2α2,cos 2α2和tan 2α2?提示:sin α2=1-cos α2,cos α2=1+cos α2,tan α2=1-cos α1+cos α.2.归纳总结,核心必记 (1)半角公式(2)三角恒等变换的特点三角恒等变换常常寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式.[问题思考](1)能用不含根号的形式用sin α,cos α表示tan α2吗?提示:tan_α2=sin α1+cos α=1-cos αsin α.(2)如何用tanα2表示sin α,cos α及tan α?提示:sin_α=2sinα2·cosα2=2sin α2·cosα2sin 2α2+cos 2α2=2tanα21+tan 2α2._cos_α=cos 2_α2-sin 2_α2=cos 2α2-sin 2α2cos 2α2+sin 2α2=1-tan 2α21+tan 2 α2.tan_α=sin αcos α=2tanα21-tan 2α2.[课前反思](1)半角公式的有理形式: ;(2)半角公式的无理形式:.讲一讲1.已知sin α=-45,π<α<3π2,求sin α2,cos α2,tan α2的值.[尝试解答] ∵π<α<3π2,sin α=-45,∴cos α=-35,且π2<α2<3π4,∴sin α2=1-cos α2=255,cos α2=-1+cos α2=-55,tan α2=sinα2cosα2=-2.解决给值求值问题的思路方法已知三角函数式的值,求其他三角函数式的值,一般思路为: (1)先化简已知或所求式子;(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手);(3)将已知条件代入所求式子,化简求值. 练一练1.已知sin α2-cos α2=-15,450°<α<540°,求tan α2的值.解:由题意得⎝⎛⎭⎪⎫sin α2-cos α22=15,即1-sin α=15,得sin α=45.∵450°<α<540°, ∴cos α=-35,∴tan α2=1-cos αsin α=1-⎝ ⎛⎭⎪⎫-3545=2.讲一讲2.化简:(1+sin α+cos α)⎝⎛⎭⎪⎫sin α2-cos α22+2cos α(180°<α<360°).[尝试解答] 原式=⎝⎛⎭⎪⎫2cos 2 α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α22·2cos 2α2=2cos α2⎝⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪cos α2=cos α2(-cos α)⎪⎪⎪⎪⎪⎪cos α2.又∵180°<α<360°,∴90°<α2<180°,∴cos α2<0,∴原式=cos α2·(-cos α)-cosα2=cos α.化简问题中的“三变”(1)变角:三角变换时通常先寻找式子中各角之间的联系,通过拆、凑等手段消除角之间的差异,合理选择联系它们的公式.(2)变名:观察三角函数种类的差异,尽量统一函数的名称,如统一为弦或统一为切.(3)变式:观察式子的结构形式的差异,选择适当的变形途径.如升幂、降幂、配方、开方等.练一练 2.化简:(1)1+sin θ-1-sin θ⎝ ⎛⎭⎪⎫3π2<θ<2π; (2)sin (2α+β)sin α-2cos(α+β).解:(1)原式=⎪⎪⎪⎪⎪⎪sin θ2+cos θ2-⎪⎪⎪⎪⎪⎪sin θ2-cos θ2,∵3π2<θ<2π,∴3π4<θ2<π,∴0<sin θ2<22,-1<cos θ2<-22,从而sin θ2+cos θ2<0,sin θ2-cos θ2>0. ∴原式=-⎝⎛⎭⎪⎫sin θ2+cos θ2-⎝ ⎛⎭⎪⎫sin θ2-cos θ2=-2sin θ2.(2)∵2α+β=α+(α+β),∴原式=sin[(α+β)+α]-2cos (α+β)sin αsin α=sin (α+β)cos α-cos (α+β)sin αsin α=sin[(α+β)-α]sin α=sin βsin α.讲一讲3.(1)若π<α<3π2,证明:1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α=-2cos α2;(2)已知sin α=A sin(α+β),|A |>1,求证:tan(α+β)=sin βcos β-A. [尝试解答] (1)左边=sin 2α2+cos 2α2+2sin α2cosα21+⎝ ⎛⎭⎪⎫2cos 2 α2-1-1-⎝⎛⎭⎪⎫1-2sin 2 α2+sin 2α2+cos 2α2-2sin α2cosα21+⎝ ⎛⎭⎪⎫2cos 2 α2-1+1-⎝⎛⎭⎪⎫1-2sin 2 α2=⎝⎛⎭⎪⎫sin α2+cos α222⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪cos α2-⎪⎪⎪⎪⎪⎪sin α2+⎝⎛⎭⎪⎫sin α2-cos α222⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪cos α2+⎪⎪⎪⎪⎪⎪sin α2因为π<α<3π2,所以π2<α2<3π4,所以sin α2>0>cos α2. 所以左边=⎝⎛⎭⎪⎫sin α2+cos α222⎝⎛⎭⎪⎫-cos α2-sin α2+⎝⎛⎭⎪⎫sin α2-cos α222⎝⎛⎭⎪⎫-cos α2+sin α2=-12⎝ ⎛⎭⎪⎫sin α2+cos α2+12⎝⎛⎭⎪⎫sin α2-cos α2=-2cos α2=右边.所以原等式成立. (2)因为sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β,所以sin α=A sin(α+β)化为sin(α+β)cos β-cos(α+β)·sin β=A sin(α+β),所以sin(α+β)(cos β-A )=cos(α+β)sin β, 所以tan(α+β)=sin βcos β-A.三角恒等式证明的常用方法(1)执因索果法:证明的形式一般化繁为简;(2)左右归一法:证明左右两边都等于同一个式子;(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同;(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”;(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.练一练3.求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos xsin x.证明:左边=2sin x cos x⎝ ⎛⎭⎪⎫2sin x 2cos x 2-2sin 2 x 2⎝ ⎛⎭⎪⎫2sin x 2cos x 2+2sin 2x 2=2sin x cos x4sin 2x 2⎝⎛⎭⎪⎫cos 2x2-sin 2x 2=sin x2sin 2 x 2=cosx2sin x 2=2cos 2x22sin x 2cosx 2=1+cos xsin x=右边.∴原等式成立.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是半角公式,难点是半角公式的应用. 2.要掌握三角恒等变换的三个应用 (1)求值问题,见讲1; (2)化简问题,见讲2;(3)三角恒等式的证明,见讲3. 3.对半角公式的四点认识(1)半角公式的正弦、余弦公式实际上是由二倍角公式变形得到的.(2)半角公式给出了求α2的正弦、余弦、正切的另一种方式,即只需知道cos α的值及相应α的条件,便可求出sin α2,cos α2,tan α2.(3)由于tan α2=sin α1+cos α及tan α2=1-cos αsin α不含被开方数,且不涉及符号问题,所以求解关于tan α2的题目时,使用相对方便,但需要注意该公式成立的条件.(4)涉及函数的升降幂及角的二倍关系的题目,常用sin 2α2=1-cos α2,cos 2 α2=1+cos α2求解.课下能力提升(二十五) [学业水平达标练]题组1 求值问题1.设5π<θ<6π,cos θ2=a ,则sin θ4=( )A.1+a2B. 1-a2 C .-1+a2D .- 1-a2解析:选D ∵θ4∈⎝⎛⎭⎪⎫5π4,6π4, ∴sin θ4=-1-cosθ22=-1-a2.2.若f (x )=2tan x -2sin 2x2-1sin x 2cosx 2,则f ⎝ ⎛⎭⎪⎫π12的值是( )A .-433 B .8C .4 3D .-43解析:选B f (x )=2tan x -2sin 2x2-sin 2x2-cos 2x212sin x=2tan x +cos x 12sin x =2(tan x +1tan x ).又tan π12=sinπ61+cosπ6=13+2,∴原式=2⎝⎛⎭⎪⎪⎫13+2+3+2=8. 3.已知cos θ=-35,且180°<θ<270°,求tan θ2.解:法一:∵180°<θ<270°,∴90°<θ2<135°,∴tan θ2<0,∴tan θ2=-1-cos θ1+cos θ=-1-⎝ ⎛⎭⎪⎫-351+⎝ ⎛⎭⎪⎫-35=-2. 法二:∵180°<θ<270°,∴sin θ<0,∴sin θ=-1-cos 2θ=-1-925=-45,∴tan θ2=sin θ1+cos θ=-451+⎝ ⎛⎭⎪⎫-35=-2.题组2 三角函数式的化简4.化简2+cos 2-sin 21的结果是( ) A .-cos 1 B .cos 1 C.3cos 1 D .-3cos 1解析:选 C 原式=2+1-2sin 21-sin 21=3-3sin 21=3(1-sin 21)=3cos 21=3cos 1.5.化简⎝ ⎛⎭⎪⎫sin α2+cos α22+2sin 2⎝ ⎛⎭⎪⎫π4-α2得()A .2+sin αB .2+2sin ⎝ ⎛⎭⎪⎫α-π4C .2D .2+2sin ⎝⎛⎭⎪⎫α+π4解析:选C 原式=1+2sin α2cos α2+1-cos[2(π4-α2)]=2+sin α-cos ⎝ ⎛⎭⎪⎫π2-α=2+sin α-sin α=2.题组3 三角恒等式的证明6.求证:sin 2x 2cos x ⎝⎛⎭⎪⎫1+tan x ·tan x 2=tan x .证明:∵左边=2sin x ·cos x 2cos x ⎝ ⎛⎭⎪⎫1+sin x cos x ·1-cos x sin x =sin x ·⎝ ⎛⎭⎪⎫1+1-cos x cos x =sin xcos x=tan x =右边,∴原式成立.7.求证:2sin 4x +34sin 22x +5cos 4x -12(cos 4x +cos 2x )=2(1+cos 2x ).证明:左边=2⎝⎛⎭⎪⎫1-cos 2x 22+34sin 22x + 5⎝⎛⎭⎪⎫1+cos 2x 22-12(cos 4x +cos 2x ) =2×1-2cos 2x +cos 22x4+34sin 22x+5×1+2cos 2x +cos 22x 4-12(2cos 22x -1+cos 2x )=(2×14+54+12)+[2×(-2cos 2x 4)+5×2cos 2x 4-12cos 2x ]+(2×cos 22x 4+5×cos 22x 4-12×2cos 22x )+34sin 22x =94+cos 2x +34cos 22x +34sin 22x=94+cos 2x +34=3+cos 2x =3+(2cos 2x -1) =2(1+cos 2x )=右边.∴原式成立.[能力提升综合练]1.函数f (x )=cos 2⎝⎛⎭⎪⎫x +π4,x ∈R ,则f (x )( )A .是奇函数B .是偶函数C .既是奇函数,也是偶函数D .既不是奇函数,也不是偶函数解析:选D 由cos 2x =2cos 2x -1,得f (x )=cos 2(x +π4)=1+cos ⎝⎛⎭⎪⎫2x +π22=12+12cos ⎝ ⎛⎭⎪⎫2x +π2=12-sin 2x 2,所以该函数既不是奇函数,也不是偶函数.2.设a =12cos 6°-32sin 6°,b =2tan 13°1+tan 213°,c =1-cos 50°2,则有( )A .a >b >cB .a <b <cC .a <c <bD .b <c <a解析:选 C a =sin 30°cos 6°-cos 30°sin 6°=sin 24°,b =sin 26°,c =sin 25°,∴a <c <b .3.已知关于x 的方程x 2+x cos A cos B -2sin 2C2=0的两根之和等于两根之积的一半,则△ABC 一定是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形解析:选C 由一元二次方程根与系数的关系得-cos A cos B=12⎝⎛⎭⎪⎫-2sin 2 C2,即cos A cos B =sin 2C2=sin2π-(A +B )2=cos 2A +B 2=12[1+cos(A +B )].得cos(A -B )=1.∴A =B .4.若cos 2θ+cos θ=0,则sin 2θ+sin θ=________. 解析:由cos 2θ+cos θ=0得2cos 2θ-1+cos θ=0, 所以cos θ=-1或12.当cos θ=-1时,有sin θ=0; 当cos θ=12时,有sin θ=±32.于是sin 2θ+sin θ=sin θ(2cos θ+1)=0或3或-3.答案:0或±35.设α为第四象限角,且sin 3αsin α=135,则tan 2α=________.解析:sin 3αsin α=sin (2α+α)sin α=(1-2sin 2α)sin α+2cos 2αsin αsin α=2cos 2α+1=135, 所以cos 2α=45,又α是第四象限角,所以sin 2α=-35,tan 2α=-34.答案:-346.化简:(1)2sin 8+1+2cos 8+2; (2)12+1212+12cos 2α⎝⎛⎭⎪⎫3π2<α<2π. 解:(1)原式=2sin 24+cos 24+2sin 4cos 4+2(2cos 24-1)+2 =2(sin 4+cos 4)2+4cos 24 =2|sin 4+cos 4|+2|cos 4|, 由于π<4<3π2,∴sin 4<0,cos 4<0,sin 4+cos 4<0,∴原式=-2(sin 4+cos 4)-2cos 4=-2sin 4-4cos 4.(2)∵3π2<α<2π,∴3π4<α2<π.原式=12+121+cos 2α2=12+12|cos α|= 12+12cos α =1+cos α2= cos 2α2=-cos α2.7.设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称.其中ω,λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1.(1)求函数f (x )的最小正周期; (2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )的值域.解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎪⎫2ωx -π6+λ .由直线x =π是y =f (x )图象的一条对称轴, 可得sin ⎝⎛⎭⎪⎫2ωπ-π6=±1.所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以k =1,故ω=56.所以f (x )的最小正周期是6π5. (2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0,即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2,即λ=- 2.故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6-2,函数f (x )的值域为[-2-2,2- 2 ].。
简单的三角恒等变换一、教材分析本节内容《简单的三角恒等变换》选自人教版.必修四.第三章第二节,是学习了两角和与差的正弦、余弦、正切公式后的内容,其的中心任务是通过以知的和(差)角公式知识以及诱导公式,探索简单的三角恒等变换,通过简单运用,使学生初步理解简单的三角恒等变换的基本原则.二、目标及重难点三维目标: 1.掌握运用和(差)角公式、倍角公式进行三角变换的方法和思路;2.提高对变换过程中体现的换元、方程、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高自己的推理能力;3.由特殊到一般,由具体到抽象,不断提升学生的探究能力和数学思维能力,培养学生学数学地思考问题、解决问题.教学重点:学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.三、学情分析我们在组织和引导探索恒等变换的过程中,不仅要考虑学生学习积极性的问题,还有探索过程必需的基础知识学生是否熟练掌握的问题,运用已学知识和方法的能力问题.四、教学支持条件分析为了加强学生对.复习提问,创设情境的理解,帮助学生克服在学习过程中可能遇到的障碍,我将由和(差)角公式,倍角公式出发,推导出简单的三角恒等变换,让学生更好的理解简单的三角恒等变换。
五、教学过程教学基本流程1问题2:α与2α有什么关系?2.通过例题及变题,熟练掌握三角恒等变换的思路,方法。
例题1:试以cos α表示2sin 2α、2cos 2α、2tan 2α.分析:考虑二倍角的相对性,α可以看成2α的二倍角(此时亦可称2α为α的半角),结合刚才我们复习的二倍角公式,问题得解。
点评:本题结果还可表示为sin 2α=cos 2α=tan 2α=, 并称之为“半角公式”,符号由2α所在象限决定. 问题3:请大家观察三个结果,它们有什么共同特点?问题4:代数式变换与三角变换有什么不同?变1:求证:sin 1cos tan 21cos sin ααααα-==+ 变2:求证:21cos 22sin 2θθ++=设计意图:通过例题给出“半角公式”,并分析结构上的区别联系.变式训练为了巩固知识,提升能力。
三角恒等变换教案三角恒等变换教案一、教学目标:1.能够掌握三角恒等变换的概念和基本性质;2.能够灵活运用三角恒等变换求解简单的三角函数值;3.能够理解三角恒等变换与三角函数的图像、周期、奇偶性之间的关系。
二、教学内容:1.三角恒等变换的定义和基本性质;2.三角恒等变换与三角函数的图像、周期、奇偶性之间的关系;3.使用三角恒等变换求解简单的三角函数值。
三、教学重难点:1.三角恒等变换的基本性质的理解和运用;2.三角恒等变换与三角函数的图像、周期、奇偶性之间的关系。
四、教学方法:1.讲授结合练习,理论与实际相结合;2.举例分析和解题演练。
五、教学过程:第一步:引入新知识(10分钟)向学生简单介绍三角恒等变换的概念,并与他们讨论三角函数的图像、周期、奇偶性。
通过讨论的方法,激发学生的兴趣,引导学生主动思考。
第二步:讲解三角恒等变换的基本性质(15分钟)1.角的关系:讲解正弦、余弦、正切函数之间的关系,以及正角、负角之间的关系。
2.平方关系:讲解正弦、余弦、正切函数的平方和、平方差以及积与商之间的关系。
3.倒数关系:讲解正弦、余弦、正切函数的倒数之间的关系。
第三步:练习应用(20分钟)1.通过示例的方式,向学生展示如何使用三角恒等变换求解简单的三角函数值。
2.组织学生进行练习,让学生分小组进行解题,及时给予指导和反馈。
第四步:总结归纳(10分钟)请学生总结三角恒等变换的基本性质,并与他们讨论三角恒等变换与三角函数的图像、周期、奇偶性之间的关系。
第五步:小结(5分钟)对本节课学习的内容进行小结,并激发学生对三角函数的兴趣,鼓励他们进一步实践和研究。
六、教学反思本节课采用了理论与实际相结合的教学方法,通过讨论、演示和练习,使学生能够深入理解三角恒等变换的基本性质,并能够熟练灵活地应用。
课堂上,我积极引导学生思考和互动,激发了学生的学习兴趣和积极性。
但是,部分学生在练习环节遇到了一些困难,建议将练习题目难易程度适当调整,以使学生在解题过程中能够灵活运用所学知识。
三角恒等变形教案一、知识和方法二、教学目标1.理解、记忆并能够运用两角和、差余弦公式。
2.了解体会整体法和拆分法在解决问题中的运用。
三、教学过程1.课程导入:① 问题:的值是多少 105cos ,15cos ?② 复习:同角平方关系1cos sin 22=+αα。
两点间距离公式221221)()(y y x x ---。
2.公式推导:① 准备:在平面直角坐标系中标出ββαα-,,+的坐标。
② 思路:三角形全等,两点间距离公式。
③ 推导:带入化简得βαβαβαsin sin cos cos )cos(⋅-⋅=+。
④ 推广:βαβαβαsin sin cos cos )cos(⋅+⋅=-。
3.例题:① 简单运用:a) 的值。
求105cos ,15cos b) 。
求已知)3cos(),2,23(,53cos παππαα-∈=c) 。
求已知)cos(),23,(,43cos ),,2(,32sin βαππββππαα-∈-=∈=② 整体法和拆分法的运用:a) 。
求已知βπβαβααcos ,2,0,5147)cos(,171cos <<-=+= b) 。
)求,(),,(且已知αππβαππβαβαβα2cos 43-247,54)cos(,54)cos(∈∈+-=-=+ ③ 余弦二倍角公式: 。
求已知αππαα2cos ),,2(,135sin ∈=4.练习:① 基础练习:a) 的值。
求均为锐角,,已知βαβαβα-==,101cos ,51sin b) 的值。
,求已知22)cos (cos )sin (sin 31)cos(βαβαβα+++=-c) 的值。
求103sin 5sin 103cos 5cos ππππ- d) 的值。
-求均为锐角,、,已知)cos(,21cos cos 21sin sin βαβαβαβα=--=- e)的值。
和、,求、,已知ββαππβαππβαβαβα2cos 2cos )2,23(),2(,1312)cos(1312)cos(∈+∈-=+-=- ② 拓展练习:a) 的值。
示范教案本章知识网络教学分析本章三角函数模型是主线,三角变形是关键.三角函数及其三角恒等变形不仅有着广泛的实际应用,而且是进一步学习中学后续内容和高等数学的基础,因而成为高考中对基础知识、基本技能和基本思想方法考查的重要内容之一.本章特点是公式多,但积化和差与和差化积公式不要求记忆.切实掌握三角函数的基本变形思想是复习掌握好本章的关键.三角函数的恒等变形,不仅在三角函数的化简、求值问题中应用,而且在研究第一章三角函数的图象与性质时、在后续内容解三角形中也应用广泛.解决三角函数的恒等变形问题,其关键在掌握基本变换思想,运用三角恒等变形的主要途径-—变角,变函数,变结构,注意公式的灵活应用.三角恒等变形是一种基本技能,从题型上一般表现为对三角式的化简、求值与证明.对所给三角式进行三角恒等变形时,除使用三角公式外,一般还需运用代数式的运算法则或公式.如平方差公式、立方差公式等.对三角公式不仅要掌握其“原形”,更要掌握其“变形”,解题时才能真正达到运用自如,左右逢源的境界.基本变形思想主要是:①化成“三个一”:即化为一个角的一种三角函数的一次方的形式y=Asin(ωx+φ);②化成“两个一”:即化为一个角的一种三角函数的二次型结构,再用配方法求解;③“合二为一”:对于形如asinθ+bcosθ的式子,引入辅助角φ并化成a2+b2 sin(θ+φ)的形式(但在这里不要增加难度,仅限于特殊值、特殊角即可).高考对整个三角问题的考查主要集中在三个方面,一是三角函数的图象与性质,包括:定义域、值域、单调性、奇偶性、周期性、对称性等等;二是三角式的恒等变形,包括:化简、证明、直接求值、条件求值、求最值等;三是三角综合运用.特别是结合下一章的解三角形及与向量的交汇更是高考经久不衰的热点.因此复习中要充分运用数形结合的思想,利用向量的工具性,灵活运用三角函数的图象和性质解题,掌握化简和求值问题的解题规律和途径.学完本章后,前一章平面向量更有了用武之地,它是沟通代数、几何、与三角函数的一种重要工具,三角函数又具有较强的渗透力,切实提高三角函数的综合能力是复习好本章的保证.因此,我们可以通过整合,将三角函数,平面向量结成一个知识板块来复习,并进行三角与向量相融合的综合训练,这样更有利于学生对平面向量、三角函数及三角恒等变形的深刻理解及运用.三维目标1.通过复习全章知识方法,掌握两角和与差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式.并能正确地运用上述公式化简三角函数式、求某些角的三角函数值、证明较简单的三角恒等式以及解决一些简单的实际问题.2.掌握简单的三角恒等变形的基本思想方法,并结合向量解决一些基本的综合问题.3.通过三角恒等变换体会数学的逻辑性的特征,进一步理解数学的化归思想、方程思想和代换意识,认识事物之间是相互依存、相互联系的.重点难点教学重点:和角公式、差角公式、倍角公式及其灵活应用.教学难点:和角公式、差角公式、倍角公式在三角恒等变形中的综合运用.课时安排1课时错误!导入新课思路1.(直接导入)在第一章三角函数的基础上,我们一起又探究学习了第三章简单三角恒等变形的有关知识,并掌握了一定的分析问题与解决问题的方法,提高了我们的思维能力与运算能力.现在我们一起对本章进行小结与复习,进一步巩固本章所学的知识,请同学们画出本章的知识框图,由此进入复习.思路2.(问题导入)本章学习了几个公式?推导这些公式的过程中你用到了哪些基本的数学思想方法?你是从哪几个基本方面认识三角函数式的特点的?它们之间存在着怎样的逻辑关系?三角式的变形与代数式的变形有什么相同点?有什么不同点?对三角函数式特点的分析对你提高三角恒等变形的能力有什么帮助?通过学生解决这些问题展开全章的复习.推进新课错误!错误!1列出本章所学的公式,理清它们之间的关系,回顾、思考并回答:推导这些公式的过程中你用到了哪些基本的数学思想方法?你是从哪几个基本方面认识三角函数式的特点的?它们之间存在着怎样的逻辑关系?三角式的变形与代数式的变形有什么相同点?有什么不同点?三角函数式特点的分析对你提高三角恒等变形的能力有什么帮助?2三角函数的变形灵活性大、方法多,回顾从前所学,三角变形都有哪些?3如果对三角函数变形题型进行归类,那么回顾从前所学,常见的基本题型有哪些?活动:问题(1),本章的三角恒等变换公式中,余弦的差角公式是其他公式的基础,由它出发,用-β代替β,±β代替β,α=β等换元法就可以推导出其他公式.见下表:教师引导学生用类比、联系、化归的观点来理解这些公式的逻辑关系,认识公式的特点,联想与代数运算的相同与不同之处;三角函数的恒等变形,是运用三角公式,变换三角表达式中的函数、角度和结构,把一个表达式变形成另一个与它等价的表达式.三角恒等变形是代数式恒等变形的推广和发展;进行三角恒等变形,除了要熟练运用代数恒等变形的各种方法,还要抓住三角本身的特点,领会和掌握最基本最常见的变形.教师要引导学生明确三角变换不仅有三角函数式的结构形式变形,而且还有角的变形,以及不同三角函数之间的变形,使学生领悟有关公式在变形中的作用和用法,学会用恰当的数学思想方法指导选择和设计变换思路.并让学生体会到通过三角恒等变形的探究训练,能大大提高他们的推理能力和运算能力.问题(2),教师引导学生回顾总结,在学生探索时适时点拨,常见的变形有:①公式变形,数学公式变形的方法多种多样,揭示数学公式变形的一般规律对深化公式教学会有积极的意义.由于公式中的字母可以代表数、式、函数等有数学意义的式子,因此可以根据需要对公式进行适当的数学处理,或代换,或迭代,或取特殊值等等.如:tanα+tanβ=tan(α+β)(1-tanαtanβ),tanαtanβ=1-错误!,1=tanαtanβ+错误!,1+cos2α=2cos2α,1-cos2α=2sin2α等.②角的变形,角度变形是三角函数恒等变形的首选方法,在进行三角恒等变形时,对角之间关系必须进行认真的观察联想,分析角之间的和、差、倍、分关系.在数值角的三角函数式化简中,要特别注意是否能够产生特殊角;熟悉两角互余、互补的各种形式;或者引入辅助角进行角的变形等.如:α=(α+β)-β;2α=(α+β)+(α-β);错误!-α=错误!-(错误!+α);错误!+α=错误!-(错误!-α)等.还需熟练掌握一些常见的式子:如:sinx±cosx=2sin(x±π4),sinx±错误!cosx=2sin(x±错误!)等.问题(3),教师引导学生回顾总结,适时地点拨学生,常见三角恒等变形的基本题型有求值、化简、证明.对于求值,常见的有给角求值、给值求值、给值求角.①给角求值的关键是正确地分析角之间的关系,准确地选用公式,要注意产生特殊角,同时把非特殊角的三角函数值相约或相消,从而求出三角函数式的值;②给值求值的关键是分析已知式与待求式之间角、函数、结构间差异,有目的地将已知式、待求式的一方或两方加以变形,找出它们之间的联系,最后求出待求式的值;③给值求角的关键是先求出该角的某一三角函数值,其次判断该角对应函数的单调区间,最后求出角.对于化简,有两种常见的形式,①未指明答案的恒等变形,这时应把结果化为最简形式;②根据解题需要将三角函数式化为某种特定的形式,例如一角一函数的形式,以便研究它的各种性质.无论是何种形式的化简,都要切实注意角度变形、函数变形等各种变形.对于证明,它包括无条件的恒等式和有附加条件恒等式的证明.①无条件恒等式的证明,需认真分析等式两边三角函数式的特点,角度、函数、结构的差异,一般由繁的一边往简的一边证,逐步消除差异,最后达到统一.对于较难的题目,可以用分析法帮助思考,或分析法和综合法联用.②有附加条件的恒等式的证明,关键是恰当地利用附加条件,需认真分析条件式和结论式中三角函数之间的联系,从分析过程中发现条件应怎样利用,证明这类恒等式时,还常常用到消元法和基本量方法.讨论结果:(1)~(3)略.错误!思路1例1(1)化简tan2Atan(30°-A)+tan2A·tan(60°-A)+tan(30°-A)tan(60°-A);(2)已知α为锐角,且tanα=错误!,求错误!的值.活动:本例是一个三角函数化简求值问题,属于给出某些角的三角函数式的值,求另外一些三角函数式的值.关键是正确运用三角变换公式及常用思想方法,探索已知式与欲求式之间的差异和联系的途径和方法.教师可以大胆放手,让学生自己独立探究,必要时给予适时的点拨引导.但要让学生明白,从高考角度来看,关于三角函数求值问题是个重要题型、命题热点,一直备受高考的青睐.因为三角函数求值问题能综合考查考生三角变形、代数变形的基本运算能力和灵活运用公式、合理选用公式、准确选择解题方向的思维能力,且题目的答案可以简单明了.并让学生明了解决这类问题时应在认准目标的前提下,从结构式的特点去分析,以寻找到合理、简捷的解题方法,切忌不分青红皂白地盲目运用三角公式.比如在本例的(1)中,首先应想到将倍角化为单角这一基本的转化方法.教师还应点拨学生思考,求三角函数式的值必须明确求值的目标.一般来说,题设中给出的是一个或某几个特定角,即便这些角都不是特殊角,其最终结果也应该是一个具体的实数;题设中给出的是某种或几种参变量关系,其结果既可能是一个具体的实数,也可能是含参变量的某种代数式.如本例的(2)中,目标是“弦”且是“和差角",而条件是“切"且是“单角".在学生探讨向目标转化的过程中,由于视角不同,思考方式不同,学生会有多种解法,教师应鼓励学生一题多解,对新颖解法给予表扬.解:(1)∵tan(90°-2A)=tan[(30°-A)+(60°-A)]=错误!,∴tan(30°-A)+tan(60°-A)=tan(90°-2A)[1-tan(30°-A)tan(60°-A)].∴原式=tan2A[tan(30°-A)+tan(60°-A)]+tan(30°-A)tan(60°-A)=tan2Atan(90°-2A)[1-tan(30°-A)tan(60°-A)]+tan(30°-A)tan(60°-A)=1-tan(30°-A)tan(60°-A)+tan(30°-A)tan(60°-A)=1.(2)原式=错误!=错误!=错误!=错误!。
高二数学简单的三角恒等变换教案(通用11篇)高二数学简单的三角恒等变换教案 1教学目标1、理解并掌握基本的三角恒等式,如和差化积、积化和差公式。
2、能够运用三角恒等式进行简单的三角恒等变换。
3、培养学生的逻辑推理能力和数学运算能力。
教学重点1、三角恒等式的理解和记忆。
2、三角恒等变换的方法和步骤。
教学难点三角恒等式的灵活运用和复杂三角表达式的化简。
教学准备1、多媒体课件,包含三角恒等式、例题和练习题。
2、黑板和粉笔。
教学过程一、导入新课复习上节课内容,回顾三角函数的定义和性质。
提出问题:如何利用已知的三角函数公式推导出新的三角恒等式?二、新课讲解1、讲解三角恒等式的基本概念,介绍和差化积、积化和差等公式。
2、通过实例演示如何使用三角恒等式进行三角恒等变换。
3、引导学生总结三角恒等变换的.一般方法和步骤。
三、课堂练习布置一些简单的三角恒等变换练习题,让学生尝试运用所学知识解决问题。
教师巡视指导,及时纠正学生的错误,并给予适当的提示和帮助。
四、巩固提升分析一些较复杂的三角恒等变换问题,引导学生思考如何灵活运用三角恒等式进行化简。
鼓励学生相互讨论,分享解题思路和方法。
五、课堂小结总结本节课的重点内容,强调三角恒等变换的重要性和应用价值。
布置课后作业,要求学生完成一些三角恒等变换的练习题,以巩固所学知识。
教学反思本节课通过实例演示和课堂练习,使学生初步掌握了三角恒等变换的基本方法和步骤。
但在处理较复杂问题时,部分学生仍显得不够熟练,需要进一步加强练习和指导。
在今后的教学中,可以设计更多具有针对性的练习题,帮助学生巩固和提高三角恒等变换的能力。
同时,也要注重培养学生的逻辑思维能力和数学运算能力,为后续的数学学习打下坚实的基础。
高二数学简单的三角恒等变换教案 2理解并掌握三角恒等变换的基本公式,包括正弦、余弦、正切的和差公式,二倍角公式,半角公式等。
能够运用三角恒等变换解决一些简单的三角函数化简、求值及证明问题,培养学生的逻辑推理能力和数学运算能力。
高中数学教案三角恒等变换高中数学教案:三角恒等变换一、引言在高中数学中,三角恒等变换是重要的内容之一。
本教案旨在帮助学生深入理解三角恒等变换的概念、性质以及运用方法,以提升他们在解决相关数学问题时的能力。
二、基础知识概述1. 三角函数的定义- 正弦函数sin(x):在直角三角形中,对边与斜边的比值。
- 余弦函数cos(x):在直角三角形中,邻边与斜边的比值。
- 正切函数tan(x):在直角三角形中,对边与邻边的比值。
2. 三角恒等变换的基本概念- 三角恒等变换是指将一个三角函数转化为另一个三角函数的等价关系。
- 常见的三角恒等变换包括正弦函数、余弦函数和正切函数的互换关系。
三、三角恒等变换的性质1. 基本恒等变换a)正弦函数的互换:- sin(x) = cos(90° - x)- cos(x) = sin(90° - x)b)余弦函数的互换:- cos(x) = cos(-x)c)正切函数的互换:- tan(x) = cot(90° - x)- cot(x) = tan(90° - x)2. 辅助恒等变换a)正弦函数的辅助恒等变换:- sin²(x) + cos²(x) = 1- 1 + tan²(x) = sec²(x)b)余弦函数的辅助恒等变换:- 1 + cot²(x) = csc²(x)四、三角恒等变换的运用方法1. 化简复杂的三角表达式a)使用基本恒等变换来替换特定的三角函数,将复杂的表达式化简为简洁的形式。
b)利用辅助恒等变换将三角函数关系转化为其他形式的等式。
2. 证明三角恒等式a)基于已知三角函数的定义和性质,运用三角恒等变换的知识进行变换和推导,证明给定的三角恒等式。
b)通过使用辅助线、反证法等数学方法,辅助完成恒等式的证明过程。
3. 解决三角函数方程和不等式根据题目给出的条件和问题,结合三角恒等变换的知识,将方程或不等式中的三角函数改写为相同或相关的三角函数,从而简化问题的求解。
三角恒等变换—教学设计教学设计:三角恒等变换一、教学目标:1.理解三角函数的基本概念和常见三角恒等变换;2.掌握三角恒等变换的推导和证明方法;3.能够运用三角恒等变换解决与三角函数相关的问题。
二、教学内容:1.三角函数的基本概念回顾:弧度与角度制、正弦、余弦、正切函数及其图像特点等。
2.三角函数的基本关系:正弦定理、余弦定理、正切定理等。
3.三角恒等变换的基本内容:(1)同角三角函数的基本关系;(2)倒角公式与半角公式;(3)和差化积公式;(4)倍角公式与降幂公式;(5)万能公式等。
4.三角恒等变换的推导方法:(1)辅助角变换法;(2)三角均值不等式法;(3)利用三角函数图像性质法等。
5.三角恒等变换的证明方法:(1)代数证明法;(2)几何证明法;(3)视觉证明法等。
6.运用三角恒等变换解决问题的方法:(1)化简表达式;(2)证明等式或不等式;(3)求解三角方程;(4)求特殊值。
三、教学过程:1.导入新知识利用引人兴趣的例子或实际问题导入新知识,例如:假设有一个棱长为1的正方体,现在将其沿对角线切割成两半请问两半的体积是否相等?设计实验来验证。
2.知识讲解通过PPT或板书,讲解三角函数的基本概念、基本关系以及三角恒等变换的基本内容。
3.案例分析选择一些典型的问题或例子,引导学生运用三角恒等变换解决问题,例如:求证:(cotθ-1)/(cotθ+1)= tan(π/4 - θ);4.合作探究将学生分成小组,提供一些已知条件和问题,要求学生合作探究解决方案,例如:已知sinA = 2/3,求cosA的值。
5.拓展应用让学生运用所学知识解决一些拓展应用问题,例如:求解三角方程sin2θ - 3sinθ = 0。
6.归纳总结学生通过比较、归纳和总结,总结三角恒等变换的相关规律和方法。
7.练习巩固布置一些课后练习题,让学生巩固所学知识,并提供解题思路和答案。
8.总结反思教师与学生共同总结本节课的重点内容和学习体会,澄清问题,提出疑问。
简单的三角恒等变换教案(一)一.教学目标1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力。
2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用。
3、通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.二、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.三、教学设想:(一)复习:三角函数的和(差)公式,倍角公式(二)新课讲授:1、由二倍角公式引导学生思考:2αα与有什么样的关系?学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台. 例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin 2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=. 又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2.已知135sin =α,且α在第三象限,求2tan α的值。
三角恒等变换教案引言:本教案旨在介绍三角恒等变换的概念和应用。
我们将详细解释什么是三角恒等变换,为什么它们在数学和物理中如此重要,并提供一些实用的例子来帮助读者更好地理解和应用这些变换。
一、什么是三角恒等变换?三角恒等变换是指关于三角函数的一类等式,可以在不改变等式的真实性的前提下,通过变换三角函数的自变量、系数或其他形式来简化或改写等式。
三角恒等变换的目的是为了更好地理解和研究三角函数在各类问题中的性质和应用。
二、常见的三角恒等变换1. 基本恒等变换基本恒等变换是指最基础的一类三角恒等变换,其中包括正弦函数、余弦函数和正切函数的一些基本等式。
例如,最常见的正弦函数的基本恒等变换是:sin²θ + cos²θ = 1这个等式表明,在任意角度θ下,正弦函数的平方加上余弦函数的平方等于1。
这个等式在很多计算中会被频繁使用到。
2. 三角函数的互余变换三角函数的互余变换是指三角函数的相互关系。
例如,正弦函数和余弦函数是互余的。
具体来说,正弦函数与余弦函数在给定角度θ下的值互为倒数,即:sinθ = 1/cosθ这个等式可以帮助我们在解决某些问题时,通过已知的三角函数的值,快速推导出其他三角函数的值。
3. 角度和的恒等变换角度和的恒等变换是指用于变换三角函数中两个角度和的等式。
在这类变换中,我们可以通过已知的三角函数的值和角度和的关系,求解其他三角函数的值。
例如,常见的角度和的恒等变换包括:sin(α + β) = sinαcosβ + cosαsinβ这个等式可以帮助我们在计算复杂的三角函数表达式时,通过将角度和转化为乘积或其他形式,简化计算过程。
三、三角恒等变换的应用领域1. 几何学中的应用三角恒等变换在几何学中有广泛的应用。
例如,我们可以利用三角恒等变换求解各类三角形的边长和角度,以及解决三角形的面积和周长等问题。
2. 物理学中的应用三角恒等变换在物理学中也有重要的应用。
例如,在机械波的传播和振动问题中,三角恒等变换可以用于描述波函数和振动函数之间的关系。
三角恒等变换教学设计教学目标:1.理解和掌握三角函数的三角恒等变换的概念;2.能够灵活运用三角恒等变换解决相关的数学问题;3.提高学生的逻辑思维、推理能力和数学计算能力。
教学准备:1.教师准备PPT和黑板;2.学生准备教材和笔。
教学内容和步骤:Step 1:引入三角恒等变换的概念(10分钟)教师使用PPT和黑板,先引导学生回顾和复习三角函数的基本知识,如正弦函数、余弦函数和正切函数的定义、基本特性等。
然后给出一个实际问题,如一根高杆上的太阳镜影子长150米,太阳高度角为45°,要求学生思考并尝试用三角函数解决问题。
Step 2:引导学生发现三角恒等变换的需求(10分钟)Step 3:介绍三角恒等变换的基本内容(20分钟)教师使用PPT和黑板,向学生介绍三角恒等变换的基本内容,包括三角函数的正值、余值、割值的定义和性质以及三角函数的符号表达式等。
Step 4:学习基本的三角恒等变换公式(30分钟)教师向学生详细讲解三角恒等变换的常用公式,包括:1. 正弦函数的三角恒等变换:sin(θ) = sin(π - θ) = sin(θ + 2πk)2. 余弦函数的三角恒等变换:cos(θ) = cos(π - θ) = cos(θ + 2πk)3. 正切函数的三角恒等变换:tan(θ) = - tan(π - θ) = tan(θ + πk),其中k为整数教师使用示例问题和计算步骤演示如何运用这些公式解决实际问题,鼓励学生积极参与讨论和习题。
Step 5:综合应用与拓展(30分钟)教师提供一些综合性的问题,让学生综合运用三角恒等变换的知识解决,或者抽象推导三角恒等变换的其他公式(如正弦函数的三角恒等变换公式为1 - 2sin²(θ/2))。
鼓励学生在小组活动中合作解决问题,并展示自己的答案和思路。
Step 6:总结与拓展(10分钟)教师对本节课的内容进行总结,强调三角恒等变换的重要性和实际应用价值,并提醒学生在课后复习和练习相关知识。
三角恒等变换
知识点精讲:
1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ
αβαβ
--=
+(()()tan tan tan 1tan tan αβαβαβ-=-+);
⑹()tan tan tan 1tan tan αβ
αβαβ
++=
-(()()tan tan tan 1tan tan αβαβαβ+=+-).
2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=. ⑵
2222cos2cos sin 2cos 112sin ααααα
=-=-=-(
2cos 21
cos 2
αα+=
,
21cos 2sin 2
α
α-=
). ⑶22tan tan 21tan α
αα
=
-.
3、()sin cos αααϕA +B =
+,其中tan ϕB =
A
. 经典例题: 例
1.已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2
α
1-tan α的值.
例2.设x ∈[0,π3],求函数y =cos(2x -π3)+2sin(x -π
6)的最值.
例3.已知tan 2
θ=2tan 2
α+1,求证:cos2θ+sin 2
α=0.
例4.已知向量a =(cos 3x
2,sin 3x
2),b =(cos x 2,-sin x
2),c =(
3-1),其中x ∈R .
(1)当a ⊥b 时,求x 值的集合; (2)求|a -c |的最大值.
例5.设函数f (x )=22cos(2x +π
4)+sin 2
x
(Ⅰ)求函数f (x )的最小正周期;
(Ⅱ)设函数g (x )对任意x ∈R ,有g (x +π2)=g (x ),且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,
g (x )=12-f (x );
求函数g (x )在[-π,0]上的解析式。
巩固训练:
一、选择题
1.sin
2
π12-cos 2π
12
的值为( ) A .-12
B.1
2 C .-
32
D.32
2.函数f (x )=sin2x -cos2x 的最小正周期是( ) A.π2
3 B .π C .2π
D .4π
3.已知cos θ=13,θ∈(0,π),则cos(3π
2+2θ)=( )
A .-42
9
B .-79
C.42
9
D.79
4.若tan α=3,tan β=4
3,则tan(α-β)等于( )
A .-3
B .-13
C .3
D.13
5.cos 275°+cos 2
15°+cos75°·cos15°的值是( ) A.54 B.
62
C.32
D .1+
23
6.y =cos 2
x -sin 2
x +2sin x cos x 的最小值是( ) A. 2 B .- 2 C .2
D .-2
7.若tan α=2,tan(β-α)=3,则tan(β-2α)=( ) A .-1 B .-15
C.57
D.17
8.已知点P (cos α,sin α),Q (cos β,sin β),则|PQ →
|的最大值是( ) A. 2 B .2 C .4
D.22
9.函数y =cos2x +sin2x
cos2x -sin2x 的最小正周期为( )
A .2π
B .π C.π2
D.π4
10.若函数f (x )=sin 2
x -12(x ∈R ),则f (x )是( )
A .最小正周期为π
2的奇函数
B .最小正周期为π的奇函数
C .最小正周期为2π的偶函数
D .最小正周期为π的偶函数
11.y =sin(2x -π
3)-sin2x 的一个单调递增区间是( )
A .[-π6,π3]
B .[π12,7
12π]
C .[512π,13
12
π]
D .[π3,5π6
]
12.已知sin(α+β)=12,sin(α-β)=1
3,则log
5
(
tan αtan β
)2
等于( ) A .2 B .3 C .4 D .5
二、填空题
13.(1+tan17°)(1+tan28°)=________.
14.(2012·全国高考江苏卷)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为______.
15.已知cos2α=13
,则sin 4α+cos 4
α=________.
16.设向量a =(32,sin θ),b =(cos θ,13),其中θ∈(0,π
2),若a ∥b ,则θ=________.
三、解答题
17.(本题满分12分)已知函数f (x )=(1-tan x )·[1+2sin(2x +π
4)],求:
(1)函数f (x )的定义域和值域; (2)写出函数f (x )的单调递增区间.。