2021年眉山市中考数学试卷及答案
- 格式:doc
- 大小:330.50 KB
- 文档页数:12
四川省眉山市2021年·中考数学试卷一、选择题绝对值为1的实数共有〔〕.个个个个【答案】C【解析】分析:直接利用绝对值的性质得出答案.详解:绝对值为1的实数有:1,-1共2个.应选:C.点睛:此题主要考查了实数的性质以及绝对值,正确把握绝对值的性质是解题关键.2.据相关报道,开展精准扶贫工作以来,我国约有65000000人摆脱贫困,将65000000用科学记数法表示为〔〕.A.65×106×108×106 D.×107【答案】D【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.详解:×107,应选:D.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.以下计算正确的选项是〔〕.A.(x+y)2=x2+y2B.(-xy2〕3=-x3y6C.x6÷x3=x2D.=2【答案】D【解析】分析:根据完全平方公式、积的乘方法那么、同底数幂的除法法那么和算术平方根的定义计算,判断即可.详解:〔x+y〕2=x2+2xy+y2,A错误;〔-xy2〕3=-x3y6,B错误;x6÷x3=x3,C错误;=2,D正确;应选:D.点睛:此题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法那么、同底数幂的除法法那么和算术平方根的定义是解题的关键.4.以下立体图形中,主视图是三角形的是〔〕.A. B. C. D.【答案】B【解析】分析:根据从正面看得到的图形是主视图,可得图形的主视图.详解:A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;应选:B.点睛:此题考查了简单几何体的三视图,圆锥的主视图是三角形.5.将一副直角三角板按如下图的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,那么∠α的度数是〔〕.A. 45°B.60°C.75°D.85°【答案】C【解析】分析:先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.详解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,那么∠α=∠D+∠DGB=30°+45°=75°,应选:C.点睛:此题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.如下图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,假设∠P=36°,那么∠B等于〔〕.【答案】A【解析】分析:直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP=54°,结合圆周角定理得出答案.详解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=27°.应选:A.点睛:此题主要考查了切线的性质以及圆周角定理,正确得出∠AOP的度数是解题关键.7.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的〔〕.A.众数B.中位数C.平均数D.方差【答案】B【解析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.应选:B.点睛:此题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数8.假设α,β是一元二次方程3x2+2x-9=0的两根,那么的值是〔〕.A.B.- C.-D.【答案】C【解析】分析:根据根与系数的关系可得出α+β=-、αβ=-3,将其代入=中即可求出结论.详解:∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴===.应选:C.点睛:此题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.以下命题为真命题的是〔〕.两条直线被一组平行线所截,所得的对应线段成比例相似三角形面积之比等于相似比对角线互相垂直的四边形是菱形顺次连结矩形各边的中点所得的四边形是正方形【答案】A【解析】分析:根据平行线分线段成比例定理、相似三角形的性质、菱形的判定定理、中点四边形的性质判断即可.详解:两条直线被一组平行线所截,所得的对应线段成比例,A是真命题;相似三角形面积之比等于相似比的平方,B是假命题;对角线互相垂直的平行四边形是菱形,C是假命题;顺次连结矩形各边的中点所得的四边形是菱形,D是假命题;应选:A.点睛:此题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,那么平均每次下调的百分率是〔〕.A. 8%B.9%C.10%D.11%【答案】C【解析】分析:设平均每次下调的百分率为x,那么两次降价后的价格为6000〔1-x〕2,根据降低率问题的数量关系建立方程求出其解即可.详解:设平均每次下调的百分率为x,由题意,得6000〔1-x〕2=4860,解得:x1,x2〔舍去〕.答:平均每次下调的百分率为10%.应选:C.点睛:此题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.11.关于x的不等式组仅有三个整数解,那么a的取值范围是〔〕.A.≤a<1B.≤a≤1<a≤1D.a<1C.【答案】A【解析】分析:根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案。
2024年四川省眉山市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每个小题给出的四个选项中只有一项是正确的,请把答题卡上相应题目的正确选项涂黑.1.(4分)下列四个数中,无理数是()A.B.C.D.2.(4分)下列交通标志中,属于轴对称图形的是()A.B.C.D.3.(4分)下列运算中正确的是()A.B.C.D.4.(4分)为落实阳光体育活动,学校鼓励学生积极参加体育锻炼.已知某天五位同学体育锻炼的时间分别为(单位:小时):1,1.5,1.4,2,1.5,这组数据的中位数和众数分别是()A.1.5,1.5B.1.4,1.5C.1.48,1.5D.1,25.(4分)如图,在□中,点是的中点,过点,下列结论:①;②;③;④,其中正确结论的个数为()A.1个B.2个C.3个D.4个6.(4分)不等式组的解集是()A.B.C.或D.7.(4分)如图,在中,,,分别以点,点为圆心,大于的长为半径作弧,两弧交于点,,过点,作直线交于点,连结,则的周长为()A.7B.8C.10D.128.(4分)眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为,则可列方程为()A.B.C.D.9.(4分)如图,在矩形中,,,点在上,把沿折叠,点恰好落在边上的点处,则的值为()A.B.C.D.10.(4分)定义运算:,例如,则函数的最小值为()A.B.C.D.11.(4分)如图,图1是北京国际数学家大会的会标,它取材于我国古代数学家赵爽的“弦图”,是由四个全等的直角三角形拼成.若图1中大正方形的面积为24,小正方形的面积为4,现将这四个直角三角形拼成图2,则图2中大正方形的面积为()A.24B.36C.40D.4412.(4分)如图,二次函数的图象与轴交于点,与轴交于点,对称轴为直线,下列四个结论:①;②;③;④若,则,其中正确结论的个数为()A.1个B.2个C.3个D.4二、填空题:本大题共6个小题,每小题4分,共24分。
初中毕业、升学考试试卷数 学考生须知:1、全卷满分为150分;考试时间为120分钟.2、全卷分“卷一”和“卷二”两部分;其中“卷一”为选择题卷;“卷二”为非选择题卷.3、答题前;请在答题卡上先填写姓名和准考证号;再用铅笔将准考证号和科目对应的括号或方框涂黑.4、请在“卷二”密封区内填写座位号、县(市、区)学校、姓名和准考证号.5、答题时;允许使用计算器.卷一说明:本卷有一大题;12小题;共48分.请用铅笔在答题卡上将所选选项的对应字母的方框涂黑、涂满.一、细心选一选(本题有12小题;每小题4分;共48分.请选出各题中一个符合题意的正确选项;不选、多选、错选均不给分) 1.-2的绝对值是(A )2 (B )-2 (C )12 (D )-122.tan45°的值是 (A )1 (B )12(C )22 (D )33.据丽水气象台“天气预报”报道;今天的最低气温是17℃;最高气温是25℃;则今天气温t (℃)的范围是(A )t <17 (B )t >25 (C )t=21 (D )17≤t ≤254.把n aa a a a 个记作(A )n a (B )n +a (C )n a (D )a n5.据丽水市统计局2005年公报;我市2004年人均生产总值约为10582元;则近似数10582的有效数字有(A )1个 (B )3个 (C ) 4个 (D )5个6.如图;抛物线的顶点P 的坐标是(1;-3);则此抛物线对应的二次函数有(A )最大值1 (B )最小值-3 (C )最大值-3 (D )最小值1亲爱的同学:充满信心吧;成功等着你!7.如图, 在Rt △ABC 中, ∠ACB=90°,CD ⊥AB 于D;若AD=1;BD=4;则CD=(A )2 (B )4 (C )2 (D )38.方程20x -=的解是(A )x =2 (B )x =4 (C )x =-2 (D )x =0 9.两圆的半径分别为3㎝和4㎝;圆心距为1㎝;则两圆的位置关系是(A )外切 (B )内切 (C )相交 (D )外离10.如图;将图中的阴影部分剪下来;围成一个几何体的侧面;使AB 、DC 重合;则所围成的几何体图形是(A ) (B )(C ) (D )11.如图;小明周末到外婆家;走到十字路口处;记不清前面哪条路通往外婆家;那么他能一次选对路的概率是(A )12 (B )13(C )14(D )012.如图;在山坡上种树;已知∠A=30°;AC=3米;则相邻两株树的坡面距离AB=(A )6米 (B )3米 (C )23米 (D )22米初中毕业、升学考试试卷DCBA(第7题)(第10题) (第11题)CAB(第12题)数学卷二大题号二三卷二总分小题号13~18 19 20 21 22 23 24 25得分说明:本卷有二大题;13小题;共102分;请用蓝黑墨水的钢笔或圆珠笔直接在试卷上答题.二、专心填一填(本题有6小题;每小题5分;共30分)13.已知52ab=;则a bb-= .14.当a≥0时;化简:23a= .15.因式分解:x3-x= .16.在平行四边形、矩形、菱形、正方形、等腰梯形的五种图形中;既是轴对称、又是中心对称的图形是.17.下列是三种化合物的结构式及分子式;请按其规律;写出后一种化合物的分子..式..18.如图;ABCD是⊙O的内接四边形;AB是⊙O的直径;过点D的切线交BA的延长线于点E;若∠ADE=25°;则∠C= 度.三、耐心答一答(本题有7小题;共72分)以下各题必须写出解答过程.19.(本题8分)选做题(请在下面给出的二个小题中选做一小题;若每小题都答;按得分高的给分)(1)计算:(-2)0 +4×(-12).得分评卷人得分评卷人C3H8C2H6CH4HHHHHH HHHHHHHH CCCCCH HHHC(第18题)只要选做一题就可以噢!(2)计算:2(x+1)-x.20(本题8分)已知关于x的一元二次方程x2-(k+1) x-6=0的一个根是2;求方程的另一根和k的值.21(本题8分)如图;在⊙O中;弦AB与CD相交于点P;连结AC、DB.(1)求证:△PAC∽△PDB;(2)当ACDB为何值时;PACPDBSS=4.得分评卷人PDC BAO22、(本题10分)某校的围墙上端由一段段相同的凹曲拱形栅栏组成;如图所示;其拱形图形为抛物线的一部分;栅栏的跨径AB 间;按相同的间距0.2米用5根立柱加固;拱高OC 为0.6米.(1) 以O 为原点;OC 所在的直线为y 轴建立平面直角坐标系;请根据以上的数据;求出抛物线y=ax 2的解析式;(2)计算一段栅栏所需立柱的总长度.(精确到0.1米)23、(本题12分)某公园有一个边长为4米的正三角形花坛;三角形的顶点A 、B 、C 上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行四边形花坛;要求三棵古树不能移动;且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程中画图工具不限. (1)按圆形设计;利用图1画出你所设计的圆形花坛示意图;得分评卷人得分评卷人(2)按平行四边形设计;利用图2画出你所设计的平行四边形花坛示意图; (3)若想新建的花坛面积较大;选择以上哪一种方案合适?请说明理由.24、(本题12分)如图;AB 是⊙O 的直径;CB 、CE 分别切⊙O 于点B 、D; CE 与BA 的延长线交于点E;连结OC 、OD . (1)求证:△OBC ≌△ODC ;(2)已知DE=a;AE=b;BC=c;请你思考后;选用以上适当的数;设计出计算⊙O 半径r 的一种方案:得分评卷人图1 图2AB CABC你选择a 、b 、c 时可要慎重噢!!b a OED A①你选用的已知数是;②写出求解过程.(结果用字母表示)25、(本题14分)视台摄制组乘船往返于丽水(A)、青田(B)两码头;在A、B间设立拍摄中心C;拍摄瓯江沿岸的景色.往返过程中;船在C、B处均不停留;离开码头A、B的距离s(千米)与航行的时间t(小时)之间的函数关系如图所示.根据图象提供的信息;解答下列问题:(1)船只从码头A→B;航行的时间为小时、航行的速度为千米/时;船只从码头B→A;航行的时间为小时、航行的速度为千米/时;(2)过点C作CH∥t轴;分别交AD、DF于点G、H;设AC=x;GH=y;求出y与x之间的函数关系式;(3)若拍摄中心C设在离A码头25千米处; 摄制组在拍摄中心C分两组行动;一组乘橡皮艇漂流而下;另一组乘船到达码头B后;立即返回.①求船只往返C、B两处所用的时间;②两组在途中相遇;求相遇时船只离拍摄中心C有多远.;初中毕业、升学考试试卷数学参考答案和评分标准一、选择题(本题有12小题;每小题4分;共48分)题次 1 2 3 4 5 6 7 8 9 10 11 12答案 A A D C D B A B B D B C二、填空题(本题有6小题;每小题5分;共30分)13. 3214. 3a 15. x(x+1)(x-1)16.矩形、菱形、正方形 17. C4H10 18. 115三、解答题(本题有6小题;共72分)以下各题必须写出解答过程.19、(本题8分)(1)解:原式=1-2 …………………………………………………6分 =-1. …………………………………………………2分(2)解:原式=2x+2-x ……………………………………………4分= x+2. ………………………………………………4分(若两小题都答;按得分高的题给分)20、(本题8分)解:设方程的另一根为x1;由韦达定理:2 x1=-6;∴ x1=-3. …………………………………………………………4分由韦达定理:-3+2=k+1;∴k=-2. ……………………………………………………………4分21、(本题8分)(1)证明:∵∠A=∠D;∠C=∠B; …………………………………2分∴△PAC∽△PDB; ………………………………………2分 (2)解:由(1)△PAC∽△PDB ;得PAC PDBS S=2()AC DB; ………………2分 即2()AC DB =4;∴ACDB=2. …………………………………………2分 22、(本题10分) 解:(1) 由已知:OC=0.6;AC=0.6;得点A 的坐标为(0.6;0.6); ……2分 代入y=ax 2;得a=53;………………2分 ∴抛物线的解析式为y=53x 2.………1分(2)点D 1;D 2的横坐标分别为0.2;0.4;…………………………1分代入y=53x 2;得点D 1;D 2的纵坐标分别为:y 1=53×0.22≈0.07;y 2=53×0.42≈0.27; ………………………………1分∴立柱C 1D 1=0.6-0.07=0.53;C 2D 2=0.6-0.27=0.33; ……………2分 由于抛物线关于y 轴对称;栅栏所需立柱的总长度为:2(C 1D 1+ C 2D 2)+OC=2(0.53+0.33)+0.6≈2.3米. ……………1分 23、(本题12分)解:(1)作图工具不限;只要点A 、B 、C 在同一圆上;…………………4分 (2)作图工具不限;只要点A 、B 、C 在同一平行四边形顶点上;…4分(3)∵r=OB=cos30BD ︒………………………………1分∴S ⊙O =πr 2=163π≈16.75; ……………………………1分 又S 平行四边形=2S △ABC =2×12×42≈13.86, (1)∵S ⊙O > S 平行四边形 ∴选择建圆形花坛面积较大. …………………1分 24、(本题12分)(1)证明:∵CD、CB 是⊙O 的切线;∴∠ODC=∠OBC=90°; …………2分 OD=OB;OC= OC; ……………………………………………………1分 ∴△OBC ≌△ODC (HL ); ………………………………………1分(2)①选择a 、b 、c;或其中2个均给2分;②若选择a 、b :由切割线定理:a 2=b (b+2r) ;得r=222a b b-.若选择a 、b 、c :方法一:在Rt△EBC 中;由勾股定理:(b+2r)2+c 2=(a+c)2;得.方法二:Rt△ODE∽Rt△CBE ;2a b rr c+=;得r=4b -+.方法三:连结AD;可证:AD//OC;a b c r =;得r=bca. 若选择a 、c :需综合运用以上的多种方法;得r=2a c+.若选择b 、c;则有关系式2r 3+br 2-bc 2=0.(以上解法仅供参考;只要解法正确均给6分) 25.(本题14分)解:(1)3、25;5、15;……………………………………………………4分 (2)解法一:设CH 交DE 于M;由题意:ME=AC=x ;DM=75–x; … ……………………………………1分 ∵GH//AF;△DGH ∽△DAF ; …………………………………1分∴ GH DM AF DE =;即75875y x -=; ………………………………2分 ∴ y=8875x -. …………………………………………………1分解法二:由(1)知:A→B(顺流)速度为25千米/时;B→A(逆流)速度为15千米/时;y 即为船往返C 、B 的时间. y=75752515x x --+;即y=8875x -.(此解法也相应给5分) (3)①当x=25时;y=881625753-⨯=(小时).……………………2分②解法一:设船在静水中的速度是a 千米∕时;水流的速度是b 千米∕时; a+b=25 a=20 a –b=15 b=5 船到B 码头的时间t 1=752525-=2小时;此时橡皮艇漂流了10千米.设船又过t 2小时与漂流而下橡皮艇相遇;则(5+15)t 2=75–25–10;∴t 2=2. ……………………………1分 ∴船只离拍摄中心C 距离S=(t 1+ t 2)×5=20千米. …………1分解法二:设橡皮艇从拍摄中心C 漂流至P 处与船返回时相遇;即水流的速度是5 千米∕时.…………1分即 解得得505052515CP CP-=+;∴CP=20千米.(此解法也相应给3分)。
2021年初中毕业、升学考试数 学 试 题(全卷共6页,三大题,共26小题。
满分150分。
考试时间120分钟)友情提示:所有答案都必须填涂在答题卡上,答在本试卷上无效.参考公式:抛物线的顶点是,对称轴是直线 .一、选择题(本大题有10小题,每小题4分,满分40分.每小题只有一个正确的选项,请用2B 铅笔在答题卡的相应位置填涂)1.的相反数是( ).A.3 B.- C.-3 D.2.如图所示几何体的俯视图是().3.下列运算中,结果正确的是().A. B. C. D.4.下列事件是必然事件的是().A.随意掷两个均匀的骰子,朝上面的点数之和为6B.抛一枚硬币,正面朝上C.3个人分成两组,一定有2个人分在一组D.打开电视,正在播放动画片5.如图,在⊙O 中,∠ACB =34°,则∠AOB 的度数是( ).A.17°B.34°C.56°D.68°6.今年颁布的《国家中长期教育改革和发展规划纲要》中指出,“加大教育投入.提高国家财政性教育经费支出占国内生产总值比例,2012年达到4%.”如果2012年我国国内生产总值()02≠++=a c bx ax y ⎪⎪⎭⎫⎝⎛--a b ac a b 4422,ab x 2-=3131312a a a =⋅422a a a =+523)(a a =a a a =÷33第2题图正面 ↗第5题图为435000亿元,那么2012年国家财政性教育经费支出应为(结果用科学记数法表示)( ).A.4.35×105亿元B.1.74×105亿元C.1.74×104亿元D. 174×102亿元7.下列四张扑克牌图案,属于中心对称的是().8.反比例函数(x >0)的图象如图所示,随着x 值的增大,y 值( ).A .减小B .增大C .不变D .先减小后不变9.如图,在8×4的方格(每个方格的边长为1个单位长)中,⊙A 的半径为1,⊙B 的半径为2,将⊙A 由图示位置向右平移1个单位长后,⊙A 与静止的⊙B 的位置关系是( ).A.内含B.内切C.相交D.外切10.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是( ).A .2+B .2+2C .12D .18二、填空题(本大题有8小题,每小题3分,满分24分.请将答案用黑色签字笔填入答题卡的相应位置)11.化简:_____________.12.分解因式:ax 2+2axy +ay 2=______________________.13.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是_______°.14.如图,在△ABC 中,点E 、F 分别为AB 、AC 的中点.若EF 的长为2,则BC 的长为___________.15.下表是中国2021年上海世博会官方网站公布的5月某一周入园参观人数,1y x=1010=---ba bb a a第8题图第13题图AB CEF 第14题图②34A. B. C. D.第9题图则这一周入园参观人数的平均数是__________万.日期22日23日24日25日26日27日28日 入园人数(万)36.1231.1431.434.4235.2637.738.1216.如图,在□ABCD 中,AE =EB,AF =2,则FC 等于_____.17.如图,在直径AB =12的⊙O 中,弦C D ⊥AB 于M,且M 是半径OB 的中点,则弦C D 的长是_______(结果保留根号).18.用m 根火柴可以拼成如图1所示的x 个正方形,还可以拼成如图2所示的2y 个正方形,那么用含x 的代数式表示y,得y =_____________.三、解答题(本大题有8小题,满分86分.请将解答过程用黑色签字笔写在答题卡的相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑)19.(每小题7分,满分14分)⑴ 化简:(a +2)(a -2)-a (a +1)。
2024年四川省眉山市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每个小题给出的四个选项中只有一项是正确的,请把答题卡上相应题目的正确选项涂黑.1. 下列四个数中,无理数是( )A 3.14- B. 2- C.12D.2. 下列交通标志中,属于轴对称图形的是( )A. B. C. D.3. 下列运算中正确的是( )A. 2a a a -= B. 23a a a ⋅=C. ()325aa= D. ()323626aba b =4. 为落实阳光体育活动,学校鼓励学生积极参加体育锻炼.已知某天五位同学体育锻炼的时间分别为(单位:小时):1,1.5,1.4,2,1.5,这组数据的中位数和众数分别是( )A. 1.5,1.5B. 1.4,1.5C. 1.48,1.5D. 1,25. 如图,在ABCD Y 中,点O 是BD 中点,EF 过点O ,下列结论:①AB DC ∥;②EO ED =;③A C ∠=∠;④ABOE CDOF S S =四边形四边形,其中正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个6. 不等式组212321x x x x +>+⎧⎨+≥-⎩的解集是( )A. 1x > B. 4x ≤ C. 1x >或4x ≤ D..的14x <≤7. 如图,在ABC 中,6AB AC ==,4BC =,分别以点A ,点B 为圆心,大于12AB 的长为半径作弧,两弧交于点E ,F ,过点E ,F 作直线交AC 于点D ,连结BD ,则BCD △的周长为( )A. 7B. 8C. 10D. 128. 眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为x ,则可列方程为( )A. ()67012780x ⨯+= B. ()26701780x ⨯+=C. ()26701780x⨯+= D. ()6701780x ⨯+=9. 如图,在矩形ABCD 中,6AB =,8BC =,点E 在DC 上,把ADE V 沿AE 折叠,点D 恰好落在BC 边上的点F 处,则cos CEF ∠的值为( )A.B.C.34D.5410. 定义运算:()()2a b a b a b ⊗=+-,例如()()4342343⊗=+⨯-,则函数()21y x =+⊗的最小值为( )A. 21- B. 9- C. 7- D. 5-11. 如图,图1是北京国际数学家大会的会标,它取材于我国古代数学家赵爽的“弦图”,是由四个全等的直角三角形拼成.若图1中大正方形的面积为24,小正方形的面积为4,现将这四个直角三角形拼成图2,则图2中大正方形的面积为( )A. 24B. 36C. 40D. 4412. 如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于点()3,0A ,与y 轴交于点B ,对称轴为直线1x=,下列四个结论:①0bc <;②320a c +<;③2ax bx a b +≥+;④若21c -<<-,则8433a b c -<++<-,其中正确结论的个数为( )A 1个B. 2个C. 3个D. 4二、填空题:本大题共6个小题,每小题4分,共24分。
2024年四川省眉山市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每个小题给出的四个选项中只有一项是正确的,请把答题卡上相应题目的正确选项涂黑.1.下列四个数中,无理数是()A. B. C. D.【答案】D【解析】【分析】本题考查的是无理数的概念,无理数即无限不循环小数,它的表现形式为:开方开不尽的数,与π有关的数,无限不循环小数.根据无理数的定义,即可得出符合题意的选项.【详解】解:,,是有理数,是无理数,故选:D.2.下列交通标志中,属于轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】本题主要考查了轴对称图形,根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形可得答案.【详解】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不符合题意;C.不是轴对称图形,故此选项不符合题意;D.不是轴对称图形,故此选项不符合题意;故选:A.3.下列运算中正确的是()A. B.C. D.【答案】B【解析】【分析】此题考查了合并同类项,同底数幂乘法,幂的乘方和积的乘方,解题的关键是掌握以上运算法则.根据合并同类项,同底数幂乘法,幂的乘方和积的乘方进行判断即可.【详解】解:与不是同类项,无法合并,则A不符合题意;,则B符合题意;,则C不符合题意;,则D不符合题意;故选:B.4.为落实阳光体育活动,学校鼓励学生积极参加体育锻炼.已知某天五位同学体育锻炼的时间分别为(单位:小时):1,1.5,1.4,2,1.5,这组数据的中位数和众数分别是()A.1.5,1.5B.1.4,1.5C.1.48,1.5D.1,2【答案】A【解析】【分析】本题主要考查中位数和众数,根据中位数和众数的定义求解即可【详解】解:这组数据按照从小到大的顺序排列为:1,1.4,1.5,1.5,2,则中位数是1.5,1.5出现次数最多,故众数是1.5.故选:A.5.如图,在中,点是的中点,过点,下列结论:①;②;③;④,其中正确结论的个数为()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】本题主要考查平行四边形的性质,根据平行四边形的对边平行,对角线互相平分,对角相等等性质进行判断即可【详解】解:四边形是平行四边形,,,,故①③正确,,,点是的中点,,又,,,,,,故②不正确,,,,即,故④正确,综上所述,正确结论的个数为3个,故选:C.6.不等式组的解集是()A. B. C.或 D.【答案】D【解析】【分析】本题考查的是解一元一次不等式组,分别求出各不等式的解集,再求出其公共解集即可.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:,解不等式①,得,解不等式②,得,故不等式组的解集为.故选:D.7.如图,在中,,,分别以点,点为圆心,大于的长为半径作弧,两弧交于点,,过点,作直线交于点,连结,则的周长为()A.7B.8C.10D.12【答案】C【解析】【分析】本题考查了尺规作图—作垂直平分线,根据垂直平分线性质即可证明,根据的周长,即可求出答案.【详解】解:由作图知,垂直平分,,的周长,,,的周长,故选:C.8.眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为,则可列方程为()A. B.C. D.【答案】B【解析】【分析】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.设该村水稻亩产量年平均增长率为,根据题意列出方程即可.【详解】解:根据题意得:.故选:B.9.如图,在矩形中,,,点在上,把沿折叠,点恰好落在边上的点处,则的值为()A. B. C. D.【答案】A【解析】【分析】本题考查了矩形的性质,折叠的性质,勾股定理,求角的三角函数等知识点,正确利用折叠的性质是解题的关键.根据折叠的性质,可求得,,从而求得,,在中,由勾股定理,得,即可求得结果.【详解】解:四边形是矩形,,,把沿折叠,点恰好落在边上的点处,,,,,在中,,由勾股定理,得,,,,,故选:A.10.定义运算:,例如,则函数的最小值为()A. B. C. D.【答案】B【解析】【分析】本题考查二次函数求最值,根据新定义,得到二次函数关系式,进而利用二次函数的性质,求最值即可.【详解】解:由题意得,,即,当时,函数的最小值为.故选:B.11.如图,图1是北京国际数学家大会的会标,它取材于我国古代数学家赵爽的“弦图”,是由四个全等的直角三角形拼成.若图1中大正方形的面积为24,小正方形的面积为4,现将这四个直角三角形拼成图2,则图2中大正方形的面积为()A.24B.36C.40D.44【答案】D【解析】【分析】本题考查勾股定理,设直角三角形的两直角边为,,斜边为,根据图1,结合已知条件得到,,进而求出的值,再用分割法求解即可.【详解】解:如图,直角三角形的两直角边为,,斜边为,图1中大正方形的面积是24,,小正方形的面积是4,,,图2中最大的正方形的面积为;故选:D.12.如图,二次函数的图象与轴交于点,与轴交于点,对称轴为直线,下列四个结论:①;②;③;④若,则,其中正确结论的个数为()A.1个B.2个C.3个D.4【答案】C【解析】【分析】此题考查了二次函数的图象和性质,数形结合是解题的关键,利用开口方向和对称轴的位置即可判断①,利用对称轴和特殊点的函数值即可判断②,利用二次函数的最值即可判断③,求出,进一步得到,又根据得到,即可判断④.【详解】解:①函数图象开口方向向上,;对称轴在轴右侧,、异号,,抛物线与轴交点在轴负半轴,,,故①错误;②二次函数的图象与轴交于点,与轴交于点,对称轴为直线,,,时,,,,,故②正确;③对称轴为直线,,最小值,,∴,故③正确;④,,,,,,,,故④正确;综上所述,正确的有②③④,故选:C二、填空题:本大题共6个小题,每小题4分,共24分。
2021年四川省眉山市中考数学试卷一、选择题(本大题共12小题,共48.0分) 1. 6的相反数是( )A. −16B. 16C. −6D. 62. 2020年7月23日,中国首次火星探测任务“天问一号”探测器在海南文昌航天发射场由长征五号遥四运载火箭发射升空,每天基本飞行200万千米,并于2021年5月15日成功着陆预选区,火星上首次留下了中国的足迹.将200万用科学记数法表示为( )A. 2×102B. 2×106C. 2×109D. 0.2×1073. 下列计算中,正确的是( )A. a 5×a 3=a 15B. a 5÷a 3=aC. (−a 2b 3)4=a 8b 12D. (a +b)2=a 2+b 24. 如图,将直角三角板放置在矩形纸片上,若∠1=48°,则∠2的度数为( )A. 42°B. 48°C. 52°D. 60°5. 正八边形中,每个内角与每个外角的度数之比为( )A. 1:3B. 1:2C. 2:1D. 3:16. 化简(1+1a−1)÷a 2a 2−1的结果是( ) A. a +1 B.a+1aC.a−1aD.a+1a 27. 全民反诈,刻不容缓!陈科同学参加学校举行的“防诈骗”主题演讲比赛,五位评委给出的分数分别为90,80,86,90,94,则这组数据的中位数和众数分别是( )A. 80,90B. 90,90C. 86,90D. 90,948. 我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是( )A. 7.2πB. 11.52πC. 12πD. 13.44π9.已知一元二次方程x2−3x+1=0的两根为x1,x2,则x12−5x1−2x2的值为()A. −7B. −3C. 2D. 510.如图,在以AB为直径的⊙O中,点C为圆上的一点,BC⏜=3AC⏜,弦CD⊥AB于点E,弦AF交CE于点H,交BC于点G.若点H是AG的中点,则∠CBF的度数为()A. 18°B. 21°C. 22.5°D. 30°11.在平面直角坐标系中,抛物线y=x2−4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为()A. y=−x2−4x+5B. y=x2+4x+5C. y=−x2+4x−5D. y=−x2−4x−512.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E 和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2√3,其中正确结论的序号为()A. ①④B. ①②③C. ②③④D. ①②③④二、填空题(本大题共6小题,共24.0分)13.分解因式:x3y−xy=______.14.一次函数y=(2a+3)x+2的值随x值的增大而减少,则常数a的取值范围是______ .15.如图,△ABC中,AB=AC=5,BC=6,AD平分∠BAC交BC于点D,分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于点M和点N,作直线MN,交AD于点E,则DE的长为______ .16.若关于x的不等式x+m<1只有3个正整数解,则m的取值范围是______ .17.观察下列等式:x1=√1+112+122=32=1+11×2;x2=√1+122+132=76=1+12×3;x3=√1+132+142=1312=1+13×4;…根据以上规律,计算x1+x2+x3+⋯+x2020−2021=______ .18.如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM=3,点P为线段BD上的一个动点,则MP+12PB的最小值是______ .三、计算题(本大题共1小题,共8.0分)19.计算:(4−√3)0−3tan60°−(−12)−1+√12.四、解答题(本大题共7小题,共70.0分) 20. 解方程组:{3x −2y +20=02x +15y −3=0.21. 吸食毒品极易上瘾,不但对人的健康危害极大,而且严重影响家庭和社会的稳定.为了解同学们对禁毒知识的掌握情况,从我市某校1000名学生中随机抽取部分学生进行问卷调查,调查评价结果分为:“了解较少”,“基本了解”,“了解较多”,“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有______ 人,其中“了解较多”的占______ %; (2)请补全条形统计图;(3)估计此校“非常了解”和“了解较多”的学生共有______ 人;(4)“了解较少”的四名学生中,有3名学生A 1,A 2,A 3是初一学生,1名学生B为初二学生,为了提高学生对禁毒知识的认识,对这4人进行了培训,然后从中随机抽取2人对禁毒知识的掌握情况进行检测.请用画树状图或列表的方法,求恰好抽到初一、初二学生各1名的概率.22. “眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从A 处测得该建筑物顶端C 的俯角为24°,继续向该建筑物方向水平飞行20米到达B 处,测得顶端C 的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:sin24°≈25,cos24°≈910,tan24°≈920)23. 为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?x+6与x轴交于点A,与y轴交于点B.直线MN//AB,且与△AOB 24.如图,直线y=34的外接圆⊙P相切,与双曲线y=−30在第二象限内的图象交于C、D两点.x(1)求点A,B的坐标和⊙P的半径;(2)求直线MN所对应的函数表达式;(3)求△BCN的面积.25.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=2√5,边长为2的正方形DEFG的对角线交点与点C重合,连接AD,BE.(1)求证:△ACD≌△BCE;(2)当点D在△ABC内部,且∠ADC=90°时,设AC与DG相交于点M,求AM的长;(3)将正方形DEFG绕点C旋转一周,当点A、D、E三点在同一直线上时,请直接写出AD的长.26.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+4(a≠0)经过点A(−2,0)和点B(4,0).(1)求这条抛物线所对应的函数表达式;(2)点P为该抛物线上一点(不与点C重合),直线CP将△ABC的面积分成2:1两部分,求点P的坐标;(3)点M从点C出发,以每秒1个单位的速度沿y轴移动,运动时间为t秒,当∠OCA=∠OCB−∠OMA时,求t的值.答案和解析1.【答案】C【知识点】相反数【解析】解:相反数指的是两个数符号不同但绝对值相同,所以6的相反数为−6.故选:C.根据相反数的概念得出结果即可.本题主要考查相反数的概念,注意区分相反数和倒数的概念是解题的关键.2.【答案】B【知识点】科学记数法-绝对值较大的数【解析】解:200万=2000000=2×106,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正整数;当原数的绝对值小于1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【知识点】同底数幂的除法、同底数幂的乘法、幂的乘方与积的乘方、完全平方公式【解析】解:a5⋅a3=a8,故A项不符合题意;a5÷a3=a2,故B项不符合题意;(−a2b3)4=a8b12,故C项符合题意;(a+b)2=a2+2ab+b2,故D项不符合题意;故选:C.根据同底数幂乘法底数不变指数相加,同底数幂相除底数不变指数相减的运算法则及完全平方公式的展开正确求解即可.本题主要考查同底数幂乘法底数不变指数相加,同底数幂相除底数不变指数相减的运算法则及完全平方公式的展开,熟练掌握运算法则和公式的运用是解题关键.4.【答案】A【知识点】平行线的性质【解析】解:如图,延长AB交矩形纸片于D,∴∠3=∠1=48°,∴∠2=180°−90°−48°=42°.故选:A.利用平行线的性质得出∠3=∠1,再利用直角三角形的性质得出∠2即可求解.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5.【答案】D【知识点】多边形内角与外角【解析】解:这个八边形的内角和为:(8−2)×180°=1080°;这个八边形的每个内角的度数为:1080°÷8=135°;这个八边形的每个外角的度数为:360°÷8=45°;∴这个八边形每个内角与每个外角的度数之比为:135:45=3:1.故选:D.此题要结合多边形的内角与外角的关系来寻求等量关系,构建方程求出每个外角.多边形外角和是固定的360°.此题考查多边形的内角与外角的关系.解题的关键是记住多边形一个内角与外角互补和外角和的特征.6.【答案】B【知识点】分式的混合运算【解析】解:原式=a−1+1a−1⋅(a+1)(a−1)a2=a+1a,故选:B.分式的混合运算,先算小括号里面的,然后算括号外面的.本题考查分式的混合运算,掌握运算顺序和计算法则准确计算是解题关键.7.【答案】B【知识点】中位数、众数【解析】解:将数据重新排列为80,86,90,90,94,所以这组数据的中位数是90,众数为90,故选:B.先将数据重新排列,再根据中位数和众数的定义求解可得.本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.【答案】C【知识点】由三视图判断几何体【解析】解:观察图形可知:)2+1.62=2(米),圆锥母线长为:√(2.42所以该整流罩的侧面积为:π×2.4×4+π×(2.4÷2)×2=12π(平方米).答:该整流罩的侧面积是12π平方米.故选:C.根据几何体的三视图得这个几何体是上面圆锥下面是圆柱,再根据圆锥的侧面是扇形和圆柱的侧面是长方形即可求解.本题考查了由三视图判断几何体,几何体的表面积,解决本题的关键是根据几何体的三视图得几何体,再根据几何体求其侧面积.9.【答案】A【知识点】一元二次方程的根与系数的关系*【解析】解:∵一元二次方程x2−3x+1=0的两根为x1,x2,∴x12−3x1=−1,x1+x2=3,∴x12−5x1−2x2=x12−3x1−2(x1+x2)=−1−2×3=−7.故选:A.根据根与系数的关系及一元二次方程的解,可得出x12−3x1=−1,x1+x2=3,将其代入变形后的代数式中即可求出结论.本题考查了一元二次方程的解及根与系数的关系,利用根与系数的关系及一元二次方程的解,找出x12−3x1=−1,x1+x2=3是解题的关键.10.【答案】C【知识点】圆周角定理、圆心角、弧、弦的关系【解析】解:∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∵BC⏜=3AC⏜,∴∠CAB=3∠ABC,∴∠ABC=22.5°,∠CAB=67.5°,∵CD⊥AB,∴∠ACE=22.5°,∵点H是AG的中点,∠ACB=90°,∴AH=CH=HG,∴∠CAH=∠ACE=22.5°,∵∠CAF=∠CBF,∴∠CBF=22.5°,故选:C.由圆周角定理可求∠ACB=90°,由角的数量关系可求∠ABC=22.5°,∠CAB=67.5°,由直角三角形的性质可求∠CAH=∠ACE=22.5°,即可求解.本题考查了圆周角定理,圆心角、弧、弦的关系,直角三角形的性质,求出∠CAB的度数是本题的关键.11.【答案】A【知识点】二次函数图象上点的坐标特征、二次函数图象与几何变换【解析】解:由抛物线y=x2−4x+5=(x−2)²+1知,抛物线顶点坐标是(2,1).由抛物线y=x2−4x+5知,C(0,5).∴抛物线y=x2−4x+5的顶点坐标是(−2,9).∴该抛物线关于点C成中心对称的抛物线的表达式为:y=−(x+2)²+9=−x²−4x+ 5.故选:A.由抛物线解析式求得抛物线的顶点坐标与点C的坐标,然后结合中心对称的性质,求得新抛物线顶点坐标,易得抛物线解析式.本题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,表示出新抛物线的顶点坐标是解题的关键.12.【答案】D【知识点】矩形的性质、全等三角形的判定与性质、等边三角形的判定与性质、轨迹【解析】解:①∵∠DAC=60°,OD=OA,∴△OAD为等边三角形,∴∠DOA=∠DAO=∠ODA=60°,AD=OD,∵△DFE为等边三角形,∴∠EDF=∠EFD=∠DEF=60°,DF=DE,∵∠BDE+∠FDO=∠ADF+∠FDO=60°,∴∠BDE=∠ADF,∵∠ADF+∠AFD+∠DAF=180°,∴∠ADF+∠AFD=180°−∠DAF=120°,∵∠EFC+∠AFD+∠DFE=180°,∴∠EFC+∠AFD=180°−∠DFE=120°,∴∠ADF=∠EFC,∴∠BDE=∠EFC,故结论①正确;②如图,连接OE,在△DAF和△DOE中,{AD=OD∠ADF=∠ODE DF=DE,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°−∠AOD=120°,∴∠COE=∠COD−∠DOE=120°−60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,{OD=OC∠DOE=∠COE OE=OE,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故结论②正确;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故结论③正确;④如图,延长OE至E′,使OE′=OD,连接DE′,∵△DAF≌△DOE,∠DOE=60°,∴点F在线段AO上从点A至点O运动时,点E从点O沿线段OE′运动到E′,∵OE′=OD=AD=AB⋅tan∠ABD=6⋅tan30°=2√3,∴点E运动的路程是2√3,故结论④正确;故选:D.①根据∠DAC=60°,OD=OA,得出△OAD为等边三角形,再由△DFE为等边三角形,得∠EDF=∠EFD=∠DEF=60°,即可得出结论①正确;②如图,连接OE,利用SAS证明△DAF≌△DOE,再证明△ODE≌△OCE,即可得出结论②正确;③通过等量代换即可得出结论③正确;④如图,延长OE至E′,使OE′=OD,连接DE′,通过△DAF≌△DOE,∠DOE=60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE′运动到E′,从而得出结论④正确;本题主要考查了矩形性质,等边三角形判定和性质,全等三角形判定和性质,等腰三角形的判定和性质,点的运动轨迹等,熟练掌握全等三角形判定和性质、等边三角形判定和性质等相关知识是解题关键.13.【答案】xy(x+1)(x−1)【知识点】提公因式法与公式法的综合运用【解析】【分析】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取xy,再利用平方差公式分解即可.【解答】解:原式=xy(x2−1)=xy(x+1)(x−1),故答案为:xy(x+1)(x−1)14.【答案】a<−32【知识点】一次函数图象与系数的关系【解析】解:∵一次函数y=(2a+3)x+2的值随x值的增大而减少,∴2a+3<0,解得a<−3.2.故答案为:a<−32先根据一次函数的性质得出关于a的不等式2a+3<0,再解不等式即可求出a的取值范围.本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键.15.【答案】78【知识点】角平分线的性质、尺规作图与一般作图、勾股定理、线段垂直平分线的概念及其性质、等腰三角形的性质【解析】解:如图所示:连接EC,由作图方法可得:MN垂直平分AC,则AE=EC,∵AB=AC=5,BC=6,AD平分∠BAC交BC于点D,∴BD=DC=3,AD⊥BC,在Rt△ABD中,AD=√AB2−BD2=√52−32=4,设DE=x,则AE=EC=4−x,在Rt△EDC中,DE2+DC2=EC2,即x2+32=(4−x)2,,解得:x=78故DE的长为7.8故答案为:78.直接利用基本作图方法结合线段垂直平分线的性质、等腰三角形的性质、勾股定理分别得出DC,AD的长,即可得出DE的长.此题主要考查了基本作图、线段垂直平分线的性质、等腰三角形的性质、勾股定理等知识,正确得出AE=EC是解题关键.16.【答案】−3≤m<2【知识点】一元一次不等式的整数解【解析】解:解不等式x+m<1得:x<1−m,根据题意得:3<1−m≤4,即−3≤m<2,故答案是:−3≤m<2.首先解关于x的不等式,求得不等式的解集,然后根据不等式只有3个正整数解,即可得到一个关于m的不等式组求得m的范围.本题考查了一元一次不等式的整数解.正确解不等式,求出正整数是解答本题的关键.解不等式应根据不等式的基本性质.17.【答案】−12021【知识点】数式规律问题【解析】解:∵x1=√1+112+122=32=1+11×2;x2=√1+122+132=76=1+12×3;x3=√1+132+142=1312=1+13×4;…∴x1+x2+x3+⋯+x2020−2021=1+11×2+1+12×3+1+13×4+⋯+1+12020×2021−2021=2020+1−12+12−13+13−14+⋯12020−12021−2021=−12021,故答案为:−12021.根据已知等式,归纳总结得到拆项规律,根据规律展开,最后合并,即可求出答案.本题考查了分式的加减法,解此题的关键是能根据已知条件得出规律.18.【答案】7√32【知识点】菱形的性质、等边三角形的判定与性质【解析】解:如图,过点P作PE⊥BC于E,∵四边形ABCD是菱形,AB=AC=10,∴AB=BC=AC=10,∠ABD=∠CBD,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠CBD=30°,∵PE⊥BC,∴PE=12PB,∴MP+12PB=PM+PE,∴当点M,点P,点E共线且ME⊥BC时,PM+PE有最小值为ME,∵AM=3,∴MC=7,∵sin∠ACB=MEMC =√32,∴ME=7√32,∴MP+12PB的最小值为7√32,故答案为7√32.过点P作PE⊥BC于E,由菱形的性质可得AB=BC=AC=10,∠ABD=∠CBD,可证△ABC是等边三角形,可求∠CBD=30°,由直角三角形的性质可得PE=12PB,则MP+12PB=PM+PE,即当点M,点P,点E共线且ME⊥BC时,PM+PE有最小值为ME,由锐角三角函数可求解.本题考查了菱形的性质,等边三角形的判定和性质,将MP+12PB转化为PM+PE是解题的关键.19.【答案】解:原式=1−3×√3−(−2)+2√3=1−3√3+2+2√3=3−√3.【知识点】特殊角的三角函数值、负整数指数幂、零指数幂、实数的运算【解析】结合零指数幂,特殊角的三角函数值,负整数指数幂的运算和二次根式的化简可以求出结果.本题主要是想考查学生对零指数幂,特殊角的三角函数值,负整数指数幂的运算和二次根式的化简的掌握情况.解题的时候需要注意的是负整数指数幂要记得取其正整数指数幂的倒数,而不是相反数,也就是公式a −n =1a n 要使用正确.20.【答案】解:方程组整理得:{3x −2y =−20 ①2x +15y =3 ②,①×15+②×2得:49x =−294, 解得:x =−6,把x =−6代入②得:y =1, 则方程组的解为{x =−6y =1.【知识点】解一元二次方程-配方法、灵活选择解法解二元一次方程(组) 【解析】方程组整理后,利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.【答案】50 30 780【知识点】扇形统计图、用样本估计总体、条形统计图、用列举法求概率(列表法与树状图法)【解析】解:(1)本次抽取调查的学生共有4÷8%=50(人), “了解较多”的所占的百分比是:1550×100%=30%. 故答案为:50,30;(2)“基本了解”的人数为50−(24+15+4)=7(人), 补全图形如下:(3)1000×24+1550=780(人),答:估计此校“非常了解”和“了解较多”的学生共有780人.故答案为:780;(4)列表如下:A1A2A3BA1(A2,A1)(A3,A1)(B,A1) A2(A1,A2)(A3,A2)(B,A2) A3(A1,A3)(A2,A3)(B,A3) B(A1,B)(A2,B)(A3,B)共有12种可能的结果,恰好抽到初一、初二学生各1名的有6种,则恰好抽到初一、初二学生各1名的概率为612=12.(1)先由了解较少的人数及其所占百分比求出总人数,用“了解较多”的人数除以总人数即可得出所占的百分比;(2)用总人数减去其它人数,求出基本了解的人数,从而补全统计图;(3)用总人数乘以“非常了解”和“了解较多”的学生所占的百分比即可;(4)列表得出所有等可能结果,从中找到符合条件的结果,再根据概率公式求解即可.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.22.【答案】解:过C作CF⊥AD于F,如图所示:则AF=CE,由题意得:AB=20米,∠AEC=90°,∠CAE=24°,∠CBE=45°,∴△BCE是等腰直角三角形,∴BE=CE,设BE=CE=x米,则AF=x米,在Rt△ACE中,tan∠CAE=CEAE =tan24°≈920,∴AE=209x米,∵AE−BE=AB,∴209x−x=20,解得:x≈16.4,∴AF≈16.4(米),∴DF=AD−AF=60−16.4=43.6(米),即这栋建筑物的高度为43.6米.【知识点】解直角三角形的应用【解析】过C作CF⊥AD于F,则AF=CE,证△BCE是等腰直角三角形,得BE=CE,设BE=CE=x米,则AF=x米,再由锐角三角函数定义得AE=209x米,然后由AE−BE=AB得209x−x=20,解方程,即可解决问题.本题考查了解直角三角形的应用—仰角俯角问题以及等腰直角三角形的判定与性质,解决本题的关键是掌握锐角三角函数定义和俯角定义.23.【答案】解:(1)设足球的单价是x元,则篮球的单价是(2x−30)元,依题意得:1200x =2×9002x−30,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴2x−30=90.答:足球的单价是60元,篮球的单价是90元.(2)设学校可以购买m个篮球,则可以购买(200−m)个足球,依题意得:90m+60(200−m)≤15500,解得:m≤3503.又∵m为正整数,∴m可以取的最大值为116.答:学校最多可以购买116个篮球.【知识点】分式方程的应用、一元一次不等式的应用【解析】(1)设足球的单价是x元,则篮球的单价是(2x−30)元,根据数量=总价÷单价,结合用1200元购买足球的数量是用900元购买篮球数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设学校可以购买m个篮球,则可以购买(200−m)个足球,利用总价=单价×数量,结合购买足球和篮球的总费用不超过15500元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【答案】解:(1)对于y=34x+6,令y=34x+6=0,解得x=−8,令x=0,则y=6,故点A、B的坐标分别为(−8,0)、(0,6),∵∠AOB为直角,则AB是圆P的直径,由点A、B的坐标得:AB=√62+82=10,故圆的半径=12AB=5;(2)过点N作HN⊥AN于点H,设直线MN与圆P切于点G,连接PG,则HN=PG=5,则sin∠NBH=sin∠ABO=AOAB =810=45,在Rt△NHB中,NB=NHsin∠NBH=545=254,即直线AB向上平移254个单位得到MN,故MN的表达式为y=34x+6+254=34x+494;(3)联立MN的表达式和反比例函数表达式并整理得:3x2+49x+120=0,解得:x=−3或−403,故点C的坐标为(−3,10),由点C、N的坐标得:CN=√(−3)2+(10−6)2=5,则△BCN的面积=12CN⋅NH=12×5×5=252.【知识点】反比例函数综合【解析】(1)对于y=34x+6,令y=34x+6=0,解得x=−8,令x=0,则y=6,由点A、B的坐标得:AB=√62+82=10,即可求解;(2)在Rt△NHB中,NB=NHsin∠NBH =545=254,即直线AB向上平移254个单位得到MN,即可求解;(3)联立MN的表达式和反比例函数表达式并整理得:3x2+49x+120=0,得到点C 的坐标为(−3,10),故C N=√(−3)2+(10−6)2=5,进而求解.本题是反比例函数综合题,主要考查了一次函数的性质、圆的切线的性质、解直角三角形、面积的计算等,有一定的综合性,难度适中.25.【答案】解:(1)如图1,∵四边形DEFG是正方形,∴∠DCE=90°,CD=CE;∵∠ACB=90°,∴∠ACD=∠BCE=90°−∠BCD,在△ACD和△BCE中,{AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).(2)如图1,过点M作MH⊥AD于点H,则∠AHM=∠DHM=90°.∵∠DCG=90°,CD=CG,∴∠CDG=∠CGD=45°,∴∠ADC=90°,∴∠MDH=90°−45°=45°,∴MH=DH⋅tan45°=DH;sin45°=2×√22=√2,AC=2√5,∵CD=DG⋅√(2√5)2−(√2)2=3√2,∴AD=∴MHAH =CDAD=tan∠CAD=√23√2=13,∴AH=3MH=3DH,∴3DH+DH=3√2;∴MH=DH=3√24,∵MHAM =CDAC=sin∠CAD=√22√5=1√10,∴AM=√10MH=√10×3√24=3√52.(3)如图3,A、D、E三点在同一直线上,且点D在点A和点E之间.∵CD=CE=CF,∠DCE=∠ECF=90°,∴∠CDE=∠CED=∠CEF=∠CFE=45°;由△ACD≌△BCE,得∠BEC=∠ADC=135°,∴∠BEC+∠CEF=180°,∴点B、E、F在同一条直线上,∴∠AEB=90°,∵AE2+BE2=AB2,且DE=2,AD=BE,∴(AD+2)2+AD2=(2√5)2+(2√5)2,解得AD=√19−1或AD=−√19−1(不符合题意,舍去);如图4,A、D、E三点在同一直线上,且点D在AE的延长线上.∵∠BCF=∠ACE=90°−∠ACF,BC=AC,CF=CE,∴△BCF≌△ACE(SAS),∴∠BFC=∠AEC,∵∠CFE=∠CED=45°,∴∠BFC+∠CFE=∠AEC+∠CED=180°,∴点B、F、E在同一条直线上;∵AC=BC,∠ACD=∠BCE=90°+∠ACE,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE;∵AE2+BE2=AB2,∴(AD−2)2+AD2=(2√5)2+(2√5)2,解得AD=√19+1或AD=√19−1(不符合题意,舍去).综上所述,AD的长为√19−1或√19+1.【知识点】四边形综合【解析】(1)由等腰直角三角形的性质和正方形两条对角线互相垂直平分且相等的性质,可证明△ACD≌△BCE;(2)过点M作MH⊥AD于点H,当∠ADC=90°时,则∠ADM=45°,由正方形的边长和AC 的长,可计算出AD 的长,利用△AMH 和△DMH 边之间的特殊关系列方程,可求出AM 的长;(3)A 、D 、E 三点在同一直线上又分两种情况,即点D 在A 、E 两点之间或在射线AE 上,需要先证明点B 、E 、F 也在同一条直线上,然后在△ABE 中用勾股定理列方程即可求出AD 的长.此题重点考查正方形的性质、等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次根式的化简等知识与方法,解第(3)题时要分类讨论,以免丢解.26.【答案】解:(1)设抛物线的表达式为y =a(x −x 1)(x −x 2),则y =a(x +2)(x −4)=ax 2−2ax −8a , 即−8a =4,解得a =−12,故抛物线的表达式为y =−12x 2+x +4①;(2)由点A 、B 的坐标知,OB =2OA ,故CO 将△ABC 的面积分成2:1两部分,此时,点P 不在抛物线上; 如图1,当BH =13AB =2时,CH 将△ABC 将△ABC 的面积分成2:1两部分, 即点H 的坐标为(2,0),则CH 和抛物线的交点即为点P ,由点C 、H 的坐标得,直线CH 的表达式为y =−2x +4②, 联立①②并解得{x =6y =−8(不合题意的值已舍去), 故点P 的坐标为(6,−8);(3)在点OB 上取点E(2,0),则∠ACO =∠OCE ,∵∠OCA=∠OCB−∠OMA,故∠AMO=∠ECB,过点E作EH⊥BC于点H,在△BCE中,由OB=OC知,∠OBC=45°,则EH=√22EB=√22(4−2)=√2=BH,由点B、C的坐标知,BC=4√2,则CH=BC=BH=4√2−√2=3√2,则tan∠ECB=EHCH =√23√2=13=tan∠AMO,则tan∠AMO=AOOM =2OM=13,则OM=6,故C M=OM−OC=6−4=2,则t=2÷1=2.【知识点】二次函数综合【解析】(1)用待定系数法即可求解;(2)如图1,当BH=13AB=2时,CH将△ABC将△ABC的面积分成2:1两部分,即点H的坐标为(2,0),则CH和抛物线的交点即为点P,进而求解;(3)在点OB上取点E(2,0),则∠ACO=∠OCE,利用解直角三角形的方法,求出OM的长度,进而求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2021年四川省眉山市青神县中考数学一诊试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每个小题给出的四个选项中,只有一项是正确的,请把答题卡上相应题目的正确选项涂黑.1.的倒数是()A.﹣2B.2C.D.2.下列等式成立的是()A.2+=2B.(a2b3)2=a4b6C.(2a2+a)÷a=2a D.5x2y﹣2x2y=33.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10﹣3B.0.2×10﹣4C.2×10﹣3D.2×10﹣44.如图,下列几何体的左视图不是矩形的是()A.B.C.D.5.下列事件:①对顶角相等,②矩形的对角线相等,③同位角相等,④平行四边形是中心对称图形,其中不是必然事件的是()A.①B.②③C.③D.④6.如图,正五边形ABCDE内接于⊙O,点P是劣弧上一点(点P不与点C重合),则∠CPD=()A.45°B.36°C.35°D.30°7.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1D.28.如果等腰三角形的一个角是80°,那么它的底角是()A.80°或50°B.50°或20°C.80°或20°D.50°9.若+|2a﹣b+1|=0,则(b﹣a)2021=()A.﹣1B.1C.52021D.﹣5202110.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°11.如图,矩形ABCD对角线AC、BD相交于点O,点P是AD边上的一个动点,过点P 分别作PE⊥AC于点E,PF⊥BD于点F,若AB=3,BC=4,则PE+PF的值为()A.10B.9.6C.4.8D.2.412.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD 与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1B.2C.3D.4二、填空题:本大题共6个小题,每小题4分,共24分.请将正确答案直接填在答题卡相应的位置上.13.分解因式:m3n2﹣m=.14.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=.15.若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a ﹣1|+=.16.解分式方程时产生增根,则a的值是.17.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为.(结果保留π)18.如图,菱形OABC在第一象限内,∠AOC=60°,反比例函数y=(x>0)的图象经过点A,交BC边于点D,若△AOD的面积为2,则k的值为.三、解答题:本大题共8个小题,共78分.请把解答过程写在答题卡相应的位置上.19.计算:﹣2sin30°﹣|1﹣|+()﹣2﹣(π﹣2020)0.20.解不等式组,把其解集在数轴上表示出来,并写出它的整数解.21.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(﹣3,1),B(﹣1,1),C(0,3).(1)画出△ABC关于y轴对称的△A1B1C1;(2)在第四象限画出△ABC以点O为位似中心的位似图形△A2B2C2,△ABC与△A2B2C2的位似比为1:2;(3)求以B1、B2、A1、A2四个点为顶点构成的四边形的面积.22.2020年5月5日,为我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运载火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.已知C,D两处相距460米,求火箭从A到B处的平均速度(结果精确到1米/秒,参考数据:≈1.732,≈1.414).23.某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65 75 75 80 60 50 75 90 85 65乙班90 55 80 70 55 70 95 80 65 70(2)整理描述数据按如下分数段整理、描述这两组样本数据:50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100成绩x人数班级甲班13321乙班21m2n 在表中:m=,n=.(3)分析数据①两组样本数据的平均数、中位数、众数如表所示:班级平均数中位数众数甲班72x75乙班7370y在表中:x=,y=.②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.24.某商场同时购进甲、乙两种商品共200件,其进价和售价如下表,设其中甲种商品购进x件.商品名称甲乙进价(元/件)80100售价(元/件)160240(1)若该商场购进这200件商品恰好用去17900元,求购进甲、乙两种商品各多少件?(2)若设该商场售完这200件商品的总利润为y元.①求y与x的函数关系式;②该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?25.综合与实践问题情境:如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.猜想证明:(1)试判断四边形BE'FE的形状,并说明理由;(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;解决问题:(3)如图①,若AB=15,CF=3,请直接写出DE的长.26.如图,抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线y=x﹣2经过B、C两点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线BC及x轴分别交于点D、M.PN⊥BC,垂足为N.设M(m,0).①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;②当点P在直线BC下方的抛物线上运动时,是否存在一点P,使△PNC与△AOC相似.若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题:本大题共12个小题,每小题4分,共48分.在每个小题给出的四个选项中,只有一项是正确的,请把答题卡上相应题目的正确选项涂黑.1.的倒数是()A.﹣2B.2C.D.【分析】根据乘积为1的两个数互为倒数,可得答案.解:的倒数是﹣2,故选:A.2.下列等式成立的是()A.2+=2B.(a2b3)2=a4b6C.(2a2+a)÷a=2a D.5x2y﹣2x2y=3【分析】直接利用整式的除法运算法则以及积的乘方运算法则、合并同类项法则、二次根式的加减运算法则分别化简得出答案.解:A、2+,无法计算,故此选项错误;B、(a2b3)2=a4b6,正确;C、(2a2+a)÷a=2a+1,故此选项错误;D、故5x2y﹣2x2y=3x2y,此选项错误;故选:B.3.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10﹣3B.0.2×10﹣4C.2×10﹣3D.2×10﹣4【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将数0.0002用科学记数法表示为2×10﹣4,故选:D.4.如图,下列几何体的左视图不是矩形的是()A.B.C.D.【分析】根据左视图是从物体左面看所得到的图形,分别得出四个几何体的左视图,即可解答.解:A、圆柱的左视图是矩形,故本选项不符合题意;B、三棱锥的左视图是三角形,故本选项符合题意;C、三棱柱的左视图是矩形,故本选项不符合题意;D、正方体的左视图是正方形,故本选项不符合题意.故选:B.5.下列事件:①对顶角相等,②矩形的对角线相等,③同位角相等,④平行四边形是中心对称图形,其中不是必然事件的是()A.①B.②③C.③D.④【分析】必然事件就是一定发生的事件,依据定义即可判断.解:①对顶角相等是必然事件;②矩形的对角线相等是必然事件;③同位角相等是随机事件;④平行四边形是中心对称图形是必然事件.其中不是必然事件的是:③;故选:C.6.如图,正五边形ABCDE内接于⊙O,点P是劣弧上一点(点P不与点C重合),则∠CPD=()A.45°B.36°C.35°D.30°【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题.解:如图,连接OC,OD,∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.7.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1D.2【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.8.如果等腰三角形的一个角是80°,那么它的底角是()A.80°或50°B.50°或20°C.80°或20°D.50°【分析】根据题意,分已知角是底角与不是底角两种情况讨论,结合三角形内角和等于180°,分析可得答案.解:根据题意,一个等腰三角形的一个角等于80°,①当这个角是底角时,即该等腰三角形的底角的度数是80°,②当这个角80°是顶角,设等腰三角形的底角是x°,则2x+80°=180°,解可得,x=50°,即该等腰三角形的底角的度数是50°;故选:A.9.若+|2a﹣b+1|=0,则(b﹣a)2021=()A.﹣1B.1C.52021D.﹣52021【分析】根据算术平方根的非负性、绝对值的非负性,由≥0,|2a﹣b+1|≥0,得a+b+5=0,2a﹣b+1=0,那么a=﹣2,b=﹣3,从而解决此题.解:∵≥0,|2a﹣b+1|≥0,∴当+|2a﹣b+1|=0,则=0,|2a﹣b+1|=0.∴a+b+5=0,2a﹣b+1=0.∴a=﹣2,b=﹣3.∴(b﹣a)2021=(﹣3+2)2021=(﹣1)2021=﹣1.故选:A.10.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°【分析】延长ED,交AC于F,根据等腰三角形的性质得出∠A=∠ACB=28°,根据平行线的性质得出∠CFD=∠A=28°,由三角形外角的性质即可求得∠ACD的度数.解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.11.如图,矩形ABCD对角线AC、BD相交于点O,点P是AD边上的一个动点,过点P 分别作PE⊥AC于点E,PF⊥BD于点F,若AB=3,BC=4,则PE+PF的值为()A.10B.9.6C.4.8D.2.4【分析】首先连接OP.由矩形ABCD的两边AB=3,BC=4,可求得OA=OD=,然后由S△AOD=S△AOP+S△DOP求得答案.解:连接OP,∵矩形ABCD的两边AB=3,BC=4,∴S矩形ABCD=AB•BC=12,OA=OC,OB=OD,AC=BD,AC==5,∴S△AOD=S矩形ABCD=3,OA=OD=,∴S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=OA(PE+PF)=××(PE+PF)=3,∴PE+PF==2.4.故选:D.12.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD 与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1B.2C.3D.4【分析】①图中有3个等腰直角三角形,故结论错误;②根据ASA证明即可,结论正确;③利用面积法证明即可,结论正确;④利用三角形的中线的性质即可证明,结论正确;解:∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴图中共有3个等腰直角三角形,故①错误,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正确,∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,∴BC•AD=CE2,故③正确,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故选:C.二、填空题:本大题共6个小题,每小题4分,共24分.请将正确答案直接填在答题卡相应的位置上.13.分解因式:m3n2﹣m=m(mn+1)(mn﹣1).【分析】直接提取公因式m,再利用平方差公式分解因式得出答案.解:原式=m(m2n2﹣1)=m(mn+1)(mn﹣1).故答案为:m(mn+1)(mn﹣1).14.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=﹣1.【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+x1x2,然后利用整体代入的方法计算;解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.15.若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a ﹣1|+=1.【分析】由一次函数y=ax+1﹣a中y随x的增大而增大,可以推出a>0,又由于它的图象与y轴交于正半轴可以得到a<1,最后即可确定a的取值范围,于是可以求出题目代数式的结果.解:∵一次函数y=ax+1﹣a中,y随x的增大而增大,∴a>0,∵它的图象与y轴交于正半轴,∴1﹣a>0,即a<1,故0<a<1;∴原式=1﹣a+a=1.故答案为:1.16.解分式方程时产生增根,则a的值是1.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入化为整式方程的方程算出a的值.解:方程两边都乘以x﹣2,得1+3(x﹣2)=x﹣a.化简,得x=.x=2是分式方程的增根,a=1故答案为:1.17.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为4﹣π.(结果保留π)【分析】根据勾股定理求出AC,得到OA、OC的长,根据正方形的面积公式、扇形面积公式计算,得到答案.解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC==2,∴OA=OC=,∴图中的阴影部分的面积=22﹣×2=4﹣π,故答案为:4﹣π.18.如图,菱形OABC在第一象限内,∠AOC=60°,反比例函数y=(x>0)的图象经过点A,交BC边于点D,若△AOD的面积为2,则k的值为2.【分析】连接AC、过点A作AE⊥OC于E,由菱形的性质可得AO∥CB,OA=OC,可证△AOC是等边三角形,可得S△AOE=S△AOC==,即可求解.解:如图,连接AC、过点A作AE⊥OC于E,∵四边形ABCO是菱形,∴AO∥CB,OA=OC,且∠AOC=60°,∴△AOC是等边三角形,且AE⊥OC,∴S△AOE=S△AOC,∵OA∥BC,∴S△OAD=S△OAC=2,∴S△AOE==,∴k=2,故答案为:2.三、解答题:本大题共8个小题,共78分.请把解答过程写在答题卡相应的位置上.19.计算:﹣2sin30°﹣|1﹣|+()﹣2﹣(π﹣2020)0.【分析】先化简二次根式、代入三角函数值、去绝对值符号、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得.解:原式=2﹣2×﹣(﹣1)+4﹣1=2﹣1﹣+1+4﹣1=+3.20.解不等式组,把其解集在数轴上表示出来,并写出它的整数解.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解:,解不等式①得:x>1,解不等式②得:x≤4,所以不等式组的解集为:1<x≤4.在数轴上表示为:.不等式组的整数解有2,3,4.21.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(﹣3,1),B(﹣1,1),C(0,3).(1)画出△ABC关于y轴对称的△A1B1C1;(2)在第四象限画出△ABC以点O为位似中心的位似图形△A2B2C2,△ABC与△A2B2C2的位似比为1:2;(3)求以B1、B2、A1、A2四个点为顶点构成的四边形的面积.【分析】(1)根据轴对称性质即可画出△ABC关于y轴对称的△A1B1C1;(2)根据位似图形的性质即可画出△ABC以点O为位似中心的位似图形△A2B2C2,△ABC与△A2B2C2的位似比为1:2;(3)根据网格即可求以B1、B2、A1、A2四个点为顶点构成的四边形的面积.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)以B1、B2、A1、A2四个点为顶点构成的四边形的面积为:(2+4)×3=9.22.2020年5月5日,为我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运载火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.已知C,D两处相距460米,求火箭从A到B处的平均速度(结果精确到1米/秒,参考数据:≈1.732,≈1.414).【分析】设火箭从A到B处的平均速度为x米/秒,根据题意可得AB=3x,在Rt△ADO 中,∠ADO=30°,AD=4000,可得AO=2000,DO=2000,在Rt△BOC中,∠BCO =45°,可得BO=OC,即可得2000+3x=2000﹣460,进而解得x的值.解:设火箭从A到B处的平均速度为x米/秒,根据题意可知:AB=3x,在Rt△ADO中,∠ADO=30°,AD=4000,∴AO=2000,∴DO=2000,∵CD=460,∴OC=OD﹣CD=2000﹣460,在Rt△BOC中,∠BCO=45°,∴BO=OC,∵OB=OA+AB=2000+3x,∴2000+3x=2000﹣460,解得x≈335(米/秒).答:火箭从A到B处的平均速度为335米/秒.23.某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65 75 75 80 60 50 75 90 85 65乙班90 55 80 70 55 70 95 80 65 70(2)整理描述数据按如下分数段整理、描述这两组样本数据:50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100成绩x人数班级甲班13321乙班21m2n 在表中:m=3,n=2.(3)分析数据①两组样本数据的平均数、中位数、众数如表所示:班级平均数中位数众数甲班72x75乙班7370y在表中:x=75,y=70.②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有20人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.【分析】(2)由收集的数据即可得;(3)①根据众数和中位数的定义求解可得;②用总人数乘以乙班样本中优秀人数所占比例可得;③列表得出所有等可能结果,利用概率公式求解可得.解:(2)由收集的数据得知m=3、n=2,故答案为:3、2;(3)①甲班成绩为:50、60、65、65、75、75、75、80、85、90,∴甲班成绩的中位数x==75,乙班成绩70分出现次数最多,所以的众数y=70,故答案为:75、70;②估计乙班50名学生中身体素质为优秀的学生有50×=20人;③列表如下:男女男男、男女、男男男、男女、男女男、女女、女由表可知,共有6种等可能结果,其中抽到的2名同学是1男1女的有3种结果,所以抽到的2名同学是1男1女的概率为=.24.某商场同时购进甲、乙两种商品共200件,其进价和售价如下表,设其中甲种商品购进x件.商品名称甲乙进价(元/件)80100售价(元/件)160240(1)若该商场购进这200件商品恰好用去17900元,求购进甲、乙两种商品各多少件?(2)若设该商场售完这200件商品的总利润为y元.①求y与x的函数关系式;②该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?【分析】(1)由已知构造方程即可;(2)根据题意可以列出函数关系式,确定自变量取值范围,再应用一次函数性质讨论最值.解:(1)设购进甲商品x件,乙商品(200﹣x)件,根据题意得:80x+100(200﹣x)=17900,解得:x=105,则200﹣x=95,答:购进甲商品105件,乙商品95件;(2)①根据题意,y=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,∴y与x的函数关系式为y=﹣60x+28000,②∵最多投入18000元购买两种商品,∴80x+100(200﹣x)≤18000,解得:x≥100,∴至少要购进100件甲商品,由①y=﹣60x+28000,∵k=﹣60<0,∴y随x的增大而减小,∴当x=100时,y最大=22000,∴若售完这些商品,则商场可获得的最大利润是22000元.25.综合与实践问题情境:如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.猜想证明:(1)试判断四边形BE'FE的形状,并说明理由;(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;解决问题:(3)如图①,若AB=15,CF=3,请直接写出DE的长.【分析】(1)由旋转的性质可得∠AEB=∠CE'B=90°,BE=BE',∠EBE'=90°,由正方形的判定可证四边形BE'FE是正方形;(2)过点D作DH⊥AE于H,由等腰三角形的性质可得AH=AE,DH⊥AE,由“AAS”可得△ADH≌△BAE,可得AH=BE=AE,由旋转的性质可得AE=CE',可得结论;(3)利用勾股定理可求BE=BE'=9,再利用勾股定理可求DE的长.解:(1)四边形BE'FE是正方形,理由如下:∵将Rt△ABE绕点B按顺时针方向旋转90°,∴∠AEB=∠CE'B=90°,BE=BE',∠EBE'=90°,又∵∠BEF=90°,∴四边形BE'FE是矩形,又∵BE=BE',∴四边形BE'FE是正方形;(2)CF=E'F;理由如下:如图②,过点D作DH⊥AE于H,∵DA=DE,DH⊥AE,∴AH=AE,∴∠ADH+∠DAH=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAH+∠EAB=90°,∴∠ADH=∠EAB,又∵AD=AB,∠AHD=∠AEB=90°,∴△ADH≌△BAE(AAS),∴AH=BE=AE,∵将Rt△ABE绕点B按顺时针方向旋转90°,∴AE=CE',∵四边形BE'FE是正方形,∴BE=E'F,∴E'F=CE',∴CF=E'F;(3)如图①,过点D作DH⊥AE于H,∵四边形BE'FE是正方形,∴BE'=E'F=BE,∵AB=BC=15,CF=3,BC2=E'B2+E'C2,∴225=E'B2+(E'B+3)2,∴E'B=9=BE,∴CE'=CF+E'F=12,由(2)可知:BE=AH=9,DH=AE=CE'=12,∴HE=3,∴DE===3.26.如图,抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线y=x﹣2经过B、C两点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线BC及x轴分别交于点D、M.PN⊥BC,垂足为N.设M(m,0).①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;②当点P在直线BC下方的抛物线上运动时,是否存在一点P,使△PNC与△AOC相似.若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)先求出点B,C坐标,再代入抛物线解析式中,即可得出结论;(2)①先表示出点M,D,P坐标,再分三种情况利用中点坐标公式建立方程求解即可得出结论;②先判断出△AOC∽△COB,得出∠OAC=∠OCB,∠ACO=∠OBC,Ⅰ、当△PNC∽△AOC,得出∠PCN=∠ACO,进而得出CP∥OB,即可得出结论;Ⅱ、当△PNC∽△COA时,得出∠PCN=∠CAO,进而得出PC=PD,即可得出结论.解:(1)针对于直线y=x﹣2,令x=0,则y=﹣2,∴C(0,﹣2),令y=0,则0=x﹣2,∴x=4,∴B(4,0),将点B,C坐标代入抛物线y=x2+bx+c中,得,∴,∴抛物线的解析式为y=x2﹣x﹣2;(2)①∵PM⊥x轴,M(m,0),∴P(m,m2﹣m﹣2),D(m,m﹣2),∵P、D、M三点中恰有一点是其它两点所连线段的中点,∴Ⅰ、当点D是PM的中点时,(0+m2﹣m﹣2)=m﹣2,∴m=1或m=4(此时点D,M,P三点重合,舍去),Ⅱ、当点P是DM的中点时,(0+m﹣2)=m2﹣m﹣2,∴m=﹣或m=4(此时点D,M,P三点重合,舍去),Ⅲ、当点M是DP的中点时,(m2﹣m﹣2+m﹣2)=0,∴m=﹣2或m=4(此时点D,M,P三点重合,舍去),即满足条件的m的值为﹣或1或﹣2;②存在,由(1)知,抛物线的解析式为y=x2﹣x﹣2,令y=0,则0=x2﹣x﹣2,∴x=﹣1或x=4,∴点A(﹣1,0),∴OA=1,∵B(4,0),C(0,﹣2),∴OB=4,OC=2,∴,∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠OAC=∠OCB,∠ACO=∠OBC,∵△PNC与△AOC相似,∴Ⅰ、当△PNC∽△AOC,∴∠PCN=∠ACO,∴∠PCN=∠OBC,∴CP∥OB,∴点P的纵坐标为﹣2,∴m2﹣m﹣2=﹣2,∴m=0(舍)或m=3,∴P(3,﹣2);Ⅱ、当△PNC∽△COA时,∴∠PCN=∠CAO,∴∠OCB=∠PCD,∵PD∥OC,∴∠OCB=∠CDP,∴∠PCD=∠PDC,∴PC=PD,由①知,P(m,m2﹣m﹣2),D(m,m﹣2),∵C(0,﹣2),∴PD=2m﹣m2,PC==,∴2m﹣m2=,∴m=或m=0(舍),∴P(,﹣).即满足条件的点P的坐标为(3,﹣2)或(,﹣).。
专题03 整式及运算一、单选题1.(2021年福建中考)下列运算正确的是( )A .22a a -=B .()2211a a -=-C .632a a a ÷=D .326(2)4a a = 【答案】D【分析】根据不同的运算法则或公式逐项加以计算,即可选出正确答案.【详解】解:A :()221a a a a -=-=,故 A 错误;B :()22121a a a -=-+,故 B 错误;C :63633a a a a -÷==,故C 错误;D :()()2232332622?44a a a a ⨯===.故选:D【点睛】本题考查了整式的加减法法则、乘法公式、同底数幂的除法法则、积的乘方、幂的乘方等知识点,熟知上述各种不同的运算法则或公式,是解题的关键.2.(2021年广东中考)已知93,274m n ==,则233m n +=( )A .1B .6C .7D .12【答案】D【分析】利用同底数幂乘法逆用转换求解即可.【详解】解:∵93,274m n ==,∵232323333(3)(3)927=34=12m n m n m n m n +=⨯=⨯=⨯⨯,∵故选:D .【点睛】本题主要考查同底数幂乘法的逆用,熟练掌握其运算法则即表现形式是解题关键.3.(2021年浙江丽水中考)计算:()24a a -⋅的结果是( ) A .8aB .6aC .8aD .6a -【答案】B【分析】 根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可.【详解】解:原式24246a a a a +=⋅==.故选B .【点睛】此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键.4.(2021年四川资阳中考)下列计算正确的是( )A .2242a a a +=B .23a a a ⋅=C .22(3)6a a =D .623+=a a a 【答案】B【分析】根据合并同类项,同底数幂的乘法,积的乘方法则进行计算作出判断.【详解】解:A . 2222a a a +=,故此选项不符合题意;B . 23a a a ⋅=,正确,故此选项符合题意;C . 22(3)9a a =,故此选项不符合题意;D . 62,a a 不是同类项,不能合并计算,故此选项不符合题意;故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,积的乘方计算,掌握计算法则准确计算是解题关键.5.(2021年四川自贡中考)已知23120x x --=,则代数式2395x x -++的值是( )A .31B .31-C .41D .41-【答案】B根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可.【详解】解:∵23120x x --=,∵23=12x x -,∵()223395=3+5=312+5=31x x x x -++---⨯-. 故选:B .【点睛】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出23=12x x -,是解题的关键.6.(2021年四川乐山中考)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( ) A .8n m (元) B .8n m (元) C .8m n (元) D .8m n(元) 【答案】A【分析】先求出1千克售价,再计算8千克售价即可;【详解】∵m 千克的售价为n 元,∵1千克商品售价为n m, ∵8千克商品的售价为8n m (元); 故答案选A .【点睛】本题主要考查了列代数式,准确分析列式是解题的关键.7.(2021年四川泸州中考)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或40【分析】根据一元二次方程根与系数的关系,即韦达定理,先解得2m =或1m =-,再分别代入一元二次方程中,利用完全平方公式变形解题即可.【详解】解:一元二次方程2220x mx m m ++-=21,2,a b m c m m ===-2122c m x am x ==-= 220m m --=(2)(1)0m m ∴-+=2m ∴=或1m =-当2m =时,原一元二次方程为2420x x ++=12=24b m ax x +-=-=-, 22221212122)+2((2)(2)()+4=x x x x x x +∴++,221212122=()2x x x x x x ++-221212212212)+(2)(2)=)(2(4+4x x x x x x x x -∴+++22=2+2(4)424⨯--⨯+32=当1m =-时,原一元二次方程为2220x x +=-2(2)41240∆=--⨯⨯=-<原方程无解,不符合题意,舍去,故选:C .【点睛】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.8.(2021年四川泸州中考)已知1020a =,10050b =,则1322a b ++的值是( ) A .2B .52C .3D .92【答案】C【分析】 根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可.【详解】解: ∵1020a =,10050b =,∵2310100102050100010a b a b +⋅==⨯==,∵23a b +=, ∵()()1311233332222a b a b ++=++=+=. 故选:C .【点睛】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.9.(2021年云南中考)按一定规律排列的单项式:23456,4,9,16,25a a a a a ,……,第n 个单项式是( ) A .21n n a +B .21n n a -C .1n n n a +D .()21n n a + 【答案】A【分析】根据题目中的单项式可以发现数字因数是从1开始的正整数的平方,字母的指数从1开始依次加1,然后即可写出第n 个单项式,本题得以解决.【详解】解:∵一列单项式:23456,4,9,16,25a a a a a ,...,∵第n 个单项式为21n n a +,故选:A .【点睛】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式的变化特点,求出相应的单项式.10.(2021年浙江金华中考)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25% 【答案】B【分析】设原件为x 元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x 元,∵先打九五折,再打九五折,∵调价后的价格为0.95x ×0.95=0.9025x 元,∵先提价50%,再打六折,∵调价后的价格为1.5x ×0.6=0.90x 元,∵先提价30%,再降价30%,∵调价后的价格为1.3x ×0.7=0.91x 元,∵先提价25%,再降价25%,∵调价后的价格为1.25x ×0.75=0.9375x 元,∵0.90x <0.9025x <0.91x <0.9375x故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.11.(2021年浙江温州中考)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元【答案】D【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元,∵应缴水费为17a +3(a +1.2)=20a +3.6(元),故选:D .【点睛】本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.11.(2021年甘肃武威中考)对于任意的有理数,a b ,如果满足2323a b a b ++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=( )A .2-B .1-C .2D .3 【答案】A【分析】先根据新定义,可得9m +4n =0,将整式()21]2[33m m n ++-去括号合并同类项化简得942m n +-,然后整体代入计算即可.【详解】解:∵(),m n 是“相随数对”, ∵2323m n m n ++=+, 整理得9m +4n =0,()323213642942[]2m m n m m n m n ++-=++-=+-=-.故选择A .【点睛】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.12.(2021年山东临沂中考)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C【分析】 根据物质所剩的质量与时间的规律,可得答案.【详解】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=, 再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=, ...,∵再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=, 此时132132⨯=mg , 故选C .【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.13.(2021年山东泰安中考)下列运算正确的是( )A .235235x x x +=B .()3326x x -=- C .()222x y x y +=+D .()()2322349x x x +-=- 【答案】D【分析】分别根据合并同类项法则、积的乘方运算法则、完全平方公式、平方差公式进行判断即可.解:A 、x 2和x 3不是同类项,不能合并,此选项错误;B 、()3328x x -=-,此选项错误;C 、()2222x y x xy y +=++,此选项错误;D 、()()23223(23)(23)49x x x x x +-=+-=-,此选项正确, 故选:D .【点睛】本题考查了同类项、积的乘方、完全平方公式、平方差公式,熟记公式,掌握运算法则是解答的关键. 14.(2021年安徽)计算23()x x ⋅-的结果是( )A .6xB .6x -C .5xD .5x - 【答案】D【分析】利用同底数幂的乘法法则计算即可【详解】解:52233=-()x x x x +⋅-=-故选:D【点睛】本题考查同底数幂的乘法法则,正确使用同底数幂相乘,底数不变,指数相加是关键15.(2021年陕西中考)计算:()23a b -=( )A .621a bB .62a bC .521a bD .32a b -【答案】A【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可.【详解】解:()23621a b a b -=, 故选:A .本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键. 16.(2021年湖南衡阳中考)下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .()23aD .2312a ⎛⎫ ⎪⎝⎭ 【答案】C【分析】根据同底数幂相乘、同底数幂相除、幂的乘方法则逐项计算即可.【详解】A 选项,23235a a a a +⋅==,不符合题意;B 选项,12210122=a a a a -=÷,不符合题意;C 选项,()23326=a a a ⨯=,符合题意;D 选项,22233611=1224a a a ⨯⎛⎫⋅= ⎪⎝⎭⎛⎫ ⎪⎝⎭,不符合题意. 故选:C .【点睛】本题考查同底数幂相乘、同底数幂相除、幂的乘方和积的乘方法则.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式的积的乘方,再把所得的幂相乘.17.(2021年浙江台州中考)已知(a +b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D .【答案】C【分析】利用完全平方公式计算即可.【详解】解:∵()222249a b a b ab +=++=,2225a b +=, ∵4925122ab -==,【点睛】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键.18.(2021年浙江台州中考)将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( ) A .20% B .+100%2x y ⨯ C .+3100%20x y⨯ D .+3 100%10+10x yx y ⨯【答案】D【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解.【详解】 解:混合之后糖的含量:10%30%3100%1010x y x yx y x y ++=⨯++,故选:D .【点睛】本题考查列代数式,理解题意是解题的关键.19.(2021年江苏苏州中考)已知两个不等于0的实数a 、b 满足0a b +=,则baa b +等于() A .2- B .1- C .1 D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果.【详解】解:∵22=b a b a a b ab ++, ∵()2222==a b ab b a b a a b ab ab+-++,∵两个不等于0的实数a 、b 满足0a b +=, ∵()22-2===-2a b ab b a ab a b ab ab+-+,故选:A .本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.20.(2021年上海中考)下列单项式中,23a b 的同类项是( )A .32a bB .232a bC .2a bD .3ab 【答案】B【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∵32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∵232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∵2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∵3ab 不是23a b 的同类项,不符合题意;故选B【点睛】本题考查了同类项,正确理解同类项的定义是解题的关键.21.(2021年四川广安中考)下列运算中,正确的是( )A .2510a a a ⋅=B .222()a b a b -=-C .()23636a a -=D .22232a b a b a b -+=- 【答案】D【分析】根据同底数幂的乘法,合并同类项,幂的乘方和积的乘方,完全平方公式分别判断即可.解:A 、257a a a ⋅=,故选项错误;B 、222()2a b a b ab -=+-,故选项错误;C 、()23639a a -=,故选项错误;D 、22232a b a b a b -+=-,故选项正确;故选D .【点睛】本题考查了同底数幂的乘法,合并同类项,幂的乘方和积的乘方,完全平方公式,解题的关键是掌握各自的运算法则.22.(2021年四川眉山中考)下列计算中,正确的是( )A .5315a a a ⨯=B .53a a a ÷=C .()423812a b a b -=D .()222a b a b +=+ 【答案】C【分析】逐一分析各选项中的计算结果,利用计算公式进行计算即可得到正确选项.【详解】解:A 选项中,538a a a ⨯=;B 选项中,532a a a ÷=;C 选项正确;D 选项中,()2222a b a ab b +=++;故选:C .【点睛】本题综合考查了同底数幂的乘法计算、同底数幂的除法计算、幂的乘方运算、积的乘方运算、完全平方公式等内容,解决本题的关键是牢记对应法则和公式即可.23.(2021年湖南岳阳中考)下列运算结果正确的是( )A .32a a -=B .248a a a ⋅=C .()()2224a a a +-=-D .()22a a -=- 【答案】C【分析】逐一分析各选项,利用对应法则进行计算即可判断出正确选项.【详解】解:A 选项中:32a a a -=,因此错误;B 选项中:246·a a a =,因此错误;C 选项中:()()2224a a a +-=-,因此正确; D 选项中:()22a a -=,因此错误;故选:C .【点睛】本题考查了合并同类项、同底数幂的乘法、平方差公式、乘方的运算性质等内容,解决本题的关键是牢记相关运算法则和公式即可.24.(2021年浙江台州中考)下列运算中,正确的是( )A .a 2+a =a 3B .(-ab )2=-ab 2C .a 5÷a 2=a 3D .a 5・a 2=a 10【答案】C【分析】根据合并同类项、积的乘方、同底数幂相除、同底数幂相乘的法则分别计算即可.【详解】解:A .2a 与a 不是同类项,不能合并,故该项错误;B .()222b a ab =-,故该项错误;C .523a a a ÷=,该项正确;D .527a a a ⋅=,该项错误;故选:C .【点睛】本题考查整式的运算,掌握合并同类项、积的乘方、同底数幂相除、同底数幂相乘的法则是解题的关键. 25.(2021年四川成都中考)下列计算正确的是( )A .321mn mn -=B .()22346m n m n =C .()34m m m -⋅=D .()222m n m n +=+ 【答案】B【分析】 利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【详解】解:A . 321mn mn mn -=≠,故选项A 计算不正确;B. ()()()222232346m n m n m n =⋅=,故选项B 计算正确; C . ()3344m m m m m m -⋅=-⋅=-≠,故选项C 计算不正确;D . ()222222m n m mn n m n +=++≠+,故选项D 计算不正确.故选择B .【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.26.(2021年山东临沂中考)计算3325a a 的结果是( )A .610aB .910aC .37aD .67a【答案】A【分析】直接利用单项式乘以单项式运算法则计算得出答案.【详解】解:6332510a a a =⋅,故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键.27.(2021年浙江宁波中考)计算()3a a ⋅-的结果是( )A .2aB .2a -C .4aD .4a -【答案】D【分析】 根据单项式乘以单项式和同底数幂的运算法则解答即可.【详解】解:原式4a =-.故选:D【点睛】本题考查了整式的乘法,属于基础题目,熟练掌握运算法则是关键.28.(2021年重庆中考)计算63a a ÷的结果是( )A .63aB .52aC .62aD .53a 【答案】D【分析】根据单项式除以单项式法则、同底数幂除法法则解题.【详解】解:63a a ÷=53a ,故选:D .【点睛】本题考查同底数幂相除、单项式除以单项式等知识,是重要考点,难度较易,掌握相关知识是解题关键. 29.(2021年江苏连云港中考)下列运算正确的是( )A .325a b ab +=B .22523a b -=C .277a a a +=D .()22112x x x -+-= 【答案】D【分析】根据同类项与合并同类项、全完平方差公式的展开即可得出答案.【详解】解:A ,3a 与2b 不是同类项,不能合并,故选项错误,不符合题意;B ,25a 与22b 不是同类项,不能合并得到常数值,故选项错误,不符合题意;C ,合并同类项后2787a a a a +=≠,故选项错误,不符合题意;D ,完全平方公式:()22211221x x x x x =-++-=-,故选项正确,符合题意;故选:D .【点睛】本题考查了代数式的运算,同类项合并及完全平方差公式,解题的关键是:掌握相关的运算法则. 30.(2021年广西玉林中考)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21n n Y =-,代入规律求解即可.【详解】解:由图可得到: 11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∵944942121312Y Y -=--+=⨯,故答案选:B .【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.31.(2021年黑龙江绥化中考)下列运算正确的是( )A .()257a a =B .448x x x ⋅=C 3=±D =【答案】B【分析】根据幂的乘方,同底数幂的乘法,算术平方根,以及实数的运算法则逐一判断.【详解】A 、(a 5)2=a 10,故A 错,B 、x 4∵x 4=x 8,故B 正确,C 3=,故C 错,D -3-D 错, 故选:B【点睛】本题考查了算术平方根,实数的运算,同底数幂的乘法,以及幂的乘方,熟悉并灵活运用以上性质是解题的关键.32.(2021年河南中考)下列运算正确的是( )A .22()a a -=-B .2222a a -=C .23a a a ⋅=D .22(1)1a a -=-【答案】C【分析】直接利用幂的运算性质和完全平方公式分别判断得出答案.【详解】解:A 、22()a a -=,原计算错误,不符合题意;B 、2222a a a -=,原计算错误,不符合题意;C 、23a a a ⋅=,正确,符合题意;D 、22(1)21a a a -=-+,原计算错误,不符合题意;【点睛】本题主要考查了幂的运算性质和完全平方公式,正确掌握相关运算法则是解题关键.33.(2021年湖北鄂州中考)下列运算正确的是( )A .23a a a ⋅=B .541a a -=C .632a a a ÷=D .()3326a a = 【答案】A【分析】直接利用同底数幂的乘法、合并同类项、同底数幂的除法、幂的乘方直接求解即可.【详解】A 、23a a a ⋅=,选项正确,符合题意;B 、54a a a -=,选项错误,不符合题意;C 、633a a a ÷=,选项错误,不符合题意;D 、()3328a a =,选项错误,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法、合并同类项、同底数幂的除法、幂的乘方,解题的关键是:掌握相关的运算法则.34.(2021年江苏无锡中考)下列运算正确的是( )A .23a a a +=B .352()a a =C .824a a a ÷=D .235a a a ⋅=【答案】D【分析】根据合并同类项法则,幂的乘方法则,同底数幂的乘除法法则,逐一判断选项,即可.【详解】解:A. 2a a +,不是同类项,不能合并,故该选选错误,B. 236()a a =,故该选项错误,C. 826a a a ÷=,故该选项错误,D. 235a a a ⋅=,故该选项正确,【点睛】本题主要考查整式的运算,熟练掌握合并同类项法则,幂的乘方法则,同底数幂的乘除法法则,是解题的关键.35.(2021年内蒙古通辽中考)下列计算正确的是( )A .335x x x +=B .3321x x -=C .347x x x ⋅=D .()323626xy x y -=- 【答案】C【分析】根据合并同类项法则、同底数幂乘法法则、积的乘方及幂的乘方法则逐一计算即可得答案.【详解】A.3332x x x +=,故该选项计算错误,不符合题意,B.3332x x x -=,故该选项计算错误,不符合题意,C.33744x x x x +⋅==,故该选项计算正确,符合题意,D.()323323362(2)8xy x y x y ⨯-=-=-,故该选项计算错误,不符合题意,故选:C .【点睛】本题考查合并同类项、同底数幂乘法、积的乘方及幂的乘方,熟练掌握运算法则是解题关键.36.(2021年湖南中考)已知0a ≠,下列运算正确的是( )A .321a a -=B .326a a a ⋅=C .32a a a ÷=D .()3326a a = 【答案】C【分析】根据合并同类项、整式的乘法、同底数幂的除法、积的乘方逐项判断即可得.【详解】A 、32a a a -=,此项错误,不符题意;B 、2326a a a ⋅=,此项错误,不符题意;C 、32a a a ÷=,此项正确,符合题意;D 、()3328a a =,此项错误,不符题意;故选:C .【点睛】本题考查了合并同类项、整式的乘法、同底数幂的除法、积的乘方,熟练掌握各运算法则是解题关键. 37.(2021年内蒙古呼和浩特中考)下列计算正确的是( )A .224347a a a +=B 11a= C .31812()42-+÷-= D .21111a a a a --=-- 【答案】D【分析】 根据有理数、整式、分式、二次根式的运算公式运算验证即可.【详解】222347a a a +=,故A 错;当a >011a =,当a <011a=-,故B 错; 31812()262-+÷-=-,故C 错; 21111a a a a --=--,D 正确; 故选:D .【点睛】本题主要考查了有理数、整式、分式、二次根式的运算,熟记运算定理和公式是解决问题的额关键. 38.(2021年四川宜宾中考)下列运算正确的是( )A .23a a a +=B .()32622a a =C .623a a a ÷=D .325a a a ⋅=【答案】D【分析】根据同底数幂相乘底数不变指数相加、同底数幂相除底数不变指数相减、乘积的幂等于各部分幂的乘积运算法则求解即可.【详解】解:选项A :a 与2a 不是同类项,不能相加,故选项A 错误;选项B :()32628a a =,故选项B 错误;选项C :62624a a a a -÷==,故选项C 错误;选项D :33522a a a a +⋅==,故选项D 正确;故选:D .【点睛】本题考查幂的运算法则,属于基础题,熟练掌握运算法则是解决本类题的关键.39.(2021年黑龙江齐齐哈尔中考)下列计算正确的是( )A.4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y -= 【答案】A【分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【详解】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点睛】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.40.(2021年湖北中考)下列运算正确的是( )A .23a a a ⋅=B .()325a a =C .33(2)6a a =D .1234a a a ÷=【答案】A【分析】根据同底数幂的乘除法、幂的乘方、积的乘方法则逐项判断即可得.【详解】A 、23a a a ⋅=,此项正确,符合题意;B 、()326a a =,此项错误,不符题意;C 、33(2)8a a =,此项错误,不符题意;D 、1239a a a ÷=,此项错误,不符题意;故选:A .【点睛】本题考查了同底数幂的乘除法、幂的乘方、积的乘方,熟练掌握各运算法则是解题关键.41.(2021年山东威海中考)下列运算正确的是( )A .236(3)9a a -=-B .235()a a a -⋅=C .222(2)4x y x y -=-D .22445a a a += 【答案】B【分析】分别根据积的乘方和幂的乘方运算法则、同底数幂的乘法、完全平方公式以及合并同类项的运算法则对各项进行计算后再判断即可.【详解】解:A . 236(3)27a a -=-,原选项计算错误,不符合题意;B . 235()a a a -⋅=原选项计算正确 ,符合题意;C. 222(2)44x y x xy y -=-+,原选项计算错误,不符合题意;D . 22245a a a +=,原选项计算错误,不符合题意;故选:B .【点睛】此题主要考查了积的乘方和幂的乘方、同底数幂的乘法、完全平方公式以及合并同类项,熟练掌握相关运算法则是解答此题的关键.42.(2021年山东济宁中考)下列各式中,正确的是( )A .223x x x +=B .()x y x y --=--C .()325x x =D .532x x x ÷=【答案】D【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】解:A 、23x x x +=,此选项错误,不符合题意;B 、()+x y x y --=-,此选项错误,不符合题意;C 、()326x x =,此选项错误,不符合题意; D 、532x x x ÷=,此选项正确,符合题意;故选:D .【点睛】本题主要考查合并同类项法则,同底数幂除法,幂的乘方,熟练掌握运算性质是解题的关键.43.(2021年黑龙江鹤岗中考)下列运算中,计算正确的是( )A .2352m m m +=B .()32626a a -=- C .()222a b a b -=- D =【答案】D【分析】根据积的乘方、完全平方公式及二次根式的除法可直接进行排除选项.【详解】解:A 、2m 与3m 不是同类项,所以不能合并,错误,故不符合题意;B 、()32628a a -=-,错误,故不符合题意;C 、()2222a b a ab b -=-+,错误,故不符合题意;D =故选D .【点睛】本题主要考查积的乘方、完全平方公式及二次根式的除法,熟练掌握积的乘方、完全平方公式及二次根式的除法是解题的关键.44.(2021年内蒙古中考)若1x =,则代数式222x x -+的值为( )A .7B .4C .3D .3-【答案】C【分析】 先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.45.(2021年山东济宁中考)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是( )A .23B .511C .59D .12 【答案】D【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+ 当3n =时的分子为5,分母为23110+=∴这个数为51102= 故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.46.(2021年湖北十堰市)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A .2025B .2023C .2021D .2019【答案】B【分析】 根据数字的变化关系发现规律第n 行,第n 列的数据为:2n (n -1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.【详解】解:观察数字的变化,发现规律:第n 行,第n 列的数据为:2n (n -1)+1,∵第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∵第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B .【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题. 47.(2021年广西来宾中考)下列运算正确的是( )A .235a a a ⋅=B .623a a a ÷=C .()325a a =D .2232a a a -= 【答案】A【分析】分别根据同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减法则进行计算,即可求解.【详解】解:A. 235a a a ⋅=,原选项计算正确,符合题意;B. 624a a a ÷=,原选项计算错误,不合题意;C. ()326a a =,原选项计算错误,不合题意;D. 232a a -,不是同类项,无法相减,原选项计算错误,不合题意.故选:A【点睛】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减等知识,熟知相关运算公式和法则是解题关键.二、填空题48.(2021年天津中考)计算42a a a +-的结果等于_____.【答案】5a【分析】根据合并同类项的性质计算,即可得到答案.【详解】()424215a a a a a +-=+-=故答案为:5a .【点睛】本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.49.(2021年广东中考)若1136x x +=且01x <<,则221x x -=_____. 【答案】6536-【分析】 根据1136x x +=,利用完全平方公式可得2125()36x x -=,根据x 的取值范围可得1x x-的值,利用平方差公式即可得答案.【详解】 ∵1136x x +=, ∵2211125()()436x x x x x x -=+-⋅=, ∵01x <<, ∵1x x<, ∵1x x-=56-, ∵221x x -=11()()x x x x +-=135()66⨯-=6536-,故答案为:6536-【点睛】 本题考查了完全平方公式及平方差公式,准确运用公式是解题的关键.50.(2021年江苏扬州中考)计算:2220212020-=__________.【答案】4041【分析】利用平方差公式进行简便运算即可.【详解】解:2220212020-=()()2021202020212020+⨯-=40411⨯=4041故答案为:4041.【点睛】本题考查了平方差公式的应用,解题时注意运算顺序.51.(2021年浙江嘉兴中考)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________.【答案】()221n n --. 【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:∵22110=-,22321=-,22532=-,…∵第n 个等式为:()22211n n n -=-- 故答案是:()221n n --. 【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键. 52.(2021年四川遂宁中考)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得. 【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∵第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时, ()12102n n +=,解得:20n =或21-(不合题意,舍去),∵第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .53.(2021年湖南岳阳中考)已知1x x +=,则代数式1x x +=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值. 【详解】10x x+== 故答案为:0.【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.54.(2021年江苏苏州中考)若21m n +=,则2366m mn n ++的值为______.【答案】3【分析】根据21m n +=,将式子2366m mn n ++进行变形,然后代入求出值即可.【详解】∵ 21m n +=,∵2366m mn n ++=3m (m +2n )+6n =3m +6n =3(m +2n )=3.故答案为:3.【点睛】本题考查了代数式的求值,解题的关键是利用已知代数式求值.55.(2021年江苏扬州中考)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.。
四川省眉山市2021年初中学业暨高中阶段教育学校招生考试
数 学 试 卷
注意事项:
1.本试卷分为A 卷和B 卷.A 卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷共12个小题,共36分,第1页至第2页;第Ⅱ卷共11个小题,共54分,第3页至第5页;B 卷共3个小题,共30分,第6页至第8页.全卷满分120分,考试时间120分钟.
2.答第Ⅰ卷前,考生务必将姓名、准考证号、考试科目用铅笔涂写在答题卡上相应的位置,并请将密封线内的内容填写清楚.第Ⅰ卷不能答在试卷上,第Ⅱ和B 卷答在试卷上.
3.不允许使用计算器进行运算,凡无精确度要求的题目,结果均保留准确值,解答题应写出演算过程、
A 卷(共90分)
第Ⅰ卷(选择题 共36分)
一、选择题:本大题共12个小题,每个小题3分,共36分.在每个小题给出的四个选项中只有一项是正确
的,请把正确选项的字母用铅笔填涂在答题卡上相应的位置. 1.5-的倒数是 A .5 B .
15 C .5- D .1
5
-
2的结果是
A .3
B .3-
C .3±
D . 9 3.下列运算中正确的是
A .2325a a a +=
B .22(2)(2)4a b a b a b +-=-
C .23622a a a ⋅=
D .222(2)4a b a b +=+
4.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,圆心距O 1O 2=2cm ,这两圆的位置关系是 A .外切 B .相交 C .内切 D .内含 5.把代数式269mx mx m -+分解因式,下列结果中正确的是
A .2(3)m x +
B .(3)(3)m x x +-
C .2(4)m x -
D .2(3)m x - 6.下列命题中,真命题是
A .对角线互相垂直且相等的四边形是正方形
B .等腰梯形既是轴对称图形又是中心对称图形
C .圆的切线垂直于经过切点的半径
D .垂直于同一直线的两条直线互相垂直
A .
B .
C .
D .
C B
A
7.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为 A .90° B .60° C .45° D .30° 8.下列说法不正确的是 A .某种彩票中奖的概率是
1
1000
,买1000张该种彩票一定会中奖 B .了解一批电视机的使用寿命适合用抽样调查
C .若甲组数据的标准差S 甲=0.31,乙组数据的标准差S 乙=0.25,则乙组数据比甲组数据稳定
D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 9.下列四个图中,是三棱锥的表面展开图的是
10.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为
A .7-
B .3-
C .7
D .3
11.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中
洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为
12.如图,已知双曲线(0)k
y k x
=
<经过直角三角形OAB 斜 边OA 的中点D ,且与直角边AB 相交于点C .若点A 的 坐标为(6-,4),则△AOC 的面积为
A .12
B .9
C .6
D .
4
B .
C .
D .
60°
30°
D C
B
A
……
图③
图②图①C
B
A O
第Ⅱ卷(非选择题 共54分)
二、填空题:本大题共6个小题,每个小题3分,共18分.将正确
答案直接填在题中横线上.
13.某班一个小组七名同学在为地震灾区“爱心捐助”活动中,捐款
数额分别为10,30,40,50,15,20,50(单位:元).这组数 据的中位数是__________(元). 14.一元二次方程2260x -=的解为___________________.
15.如图,∠A 是⊙O 的圆周角,∠A =40°,则∠OBC 的度数为_______.
16.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图
中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.
17.已知圆锥的底面半径为4cm ,高为3cm ,则这个圆锥的侧面积为__________cm 2. 18.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,
AD =4,AB
=BC 的长为 __________.
三、本大题共2个小题,每个小题6分,共12分.
19.计算:1
021()2)(2)3
----
D
C
B
A
O
E
20.解方程:21
11x x x x
++=
+
四、本大题共3个小题,每个小题8分,共24分.
21.如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .
(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.
22.有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.
(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;
(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公
平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.
23.如图,在一次数学课外实践活动中,要求测教学楼的高度AB.小刚在D处用高1.5m的测角仪CD,测得教学楼顶端A的仰角为30°,然后向教学楼前进40m到达E,又测得教学楼顶端A的仰角为60°.求这幢教学楼的高度AB.
B卷(共30分)
一、本大题共2个小题,每小题9分,共18分.
24.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?
(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?
F
E
C B
A
B'
C'25.如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线
交BB ' 于点F .
(1)证明:△ACE ∽△FBE ;
(2)设∠ABC =α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说
明理由.
二、本大题共1个小题,共12分.
26.如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两
点的坐标分别为(3-,0)、(0,4),抛物线223y x bx c =
++经过B 点,且顶点在直线5
2
x =上. (1)求抛物线对应的函数关系式;
(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是否
在该抛物线上,并说明理由;
(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点
M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.。