深圳大学 光学实验主要仪器、光路调整与技巧
- 格式:doc
- 大小:111.00 KB
- 文档页数:8
实验1光学实验主要仪器、光路调整与技巧引言不论光学系统如何复杂,精密,它们都是由一些通用性很强的光学元器件组成,因此掌握一些常用的光学元器件的结构和性能,特点和使用方法,对安排试验光路系统时正确的选择光学元器件,正确的使用光学元器件有重要的作用实验目的掌握光学专业基本元件的功能;调整光路,主要包括共轴调节、调平行光和针孔滤波。
基本原理(一)、光学实验仪器概述:主要含:激光光源,光学元件,观察屏或信息记录介质1. 激光光源;激光器即Laser(Light Amplification by stimulated emission of radiation),原意是利用受激辐射实现光的放大.然而实际上的激光器,一般不是放大器,而是振荡器,即利用受激辐射实现光的振荡,或产生相干光。
.960年,梅曼制成了世界上第一台红宝石激光器.现在被广泛用于各个行业激光的特性:(1)高度的相干性(2)光束按高斯分布激光器的分类:(1)气体激光器——He-Ne激光器,Ar离子激光器(2)液体激光器——染料激光器(3)固体激光器———半导体激光器,红宝石激光器本套实验方案的选择的激光器是气体型He-Ne内腔式激光器,波长为632.8nm的红光,功率2mW。
个别实验中还会用到白光点光源。
2、用于光学实验的元件一般包括:防震平台、分束镜、扩束镜、准直镜、反射镜、成像透镜、傅立叶变换透镜、多自由度微调器、可变光栏、观察屏等部件。
如果是全息实验还需要快门、干版架、自动曝光和显定影定时器、记录干版等。
(本实验方案中,扩束镜采用针孔空间滤波器,准直镜、成像透镜、傅立叶变换透镜均采用双凸透镜)⑴防震平台光学实验需要一个稳定的工作平台。
特别是对于全息图制作实验,由于是参考波和物光波干涉条纹的记录,如果在曝光过程中因为振动导致两光波有变化,就要影响干涉条纹的调制度。
通常要求该光波的振动变化小于十分之一波长。
影响稳定性的因素有震动、空气流和热变化等。
光谱仪器的光路调整方法技巧首先,光源的选择是光路调整的第一步。
常用的光源有白炽灯、氘灯、氙灯、汞灯等。
在选择光源时,要根据实验需要选择合适的光源。
例如,如果需要测量紫外-可见光谱,可选择氘灯或氙灯作为光源。
白炽灯可用于红外光谱的测量。
对于入射光的调整,需要确保光线能够垂直入射到样品表面。
可以通过调整光源的位置、使用透镜或反射镜来实现。
首先,将光源与样品之间的距离调整到合适的位置,一般要求光源与样品的距离尽量相等,以保证入射光线的均匀性。
然后,使用透镜或反射镜将光线聚焦在样品表面,同时调整透镜或反射镜的位置和角度,使入射光线能够垂直射到样品表面。
调整过程中可以观察到反射光线的位置和强度来判断入射光线的调整程度。
样品的放置是光路调整的另一个重要环节。
在放置样品时,应注意样品与光源、光路之间的距离,以及样品的位置和角度。
对于固体样品,可以使用样品架进行固定,调整样品角度以确保入射光线的均匀性。
对于液体样品,可以使用比色皿或玻璃池等容器,将样品倒入容器中,并将容器放置在光路上。
在放置样品之前,要确保样品表面的平整度,避免出现表面凹凸不平的情况,以免影响光谱测量的准确性。
最后,需要对检测器进行调整。
检测器的调整包括增益调整和背景噪声的减少。
对于增益调整,可以根据样品的浓度和光谱的强度来确定合适的增益值。
在调整增益的过程中,要注意不要过分增大增益,以避免过量的放大信号造成噪声干扰。
对于背景噪声的减少,可以通过减小光源的强度或使用滤光片来降低噪声的水平。
此外,还可以通过调整光源与检测器之间的距离和角度来改变光谱的强度和信噪比。
在光路调整的过程中,需要仔细观察光谱仪器的指示灯、显示屏等指示性部件,以判断仪器的工作状态和光谱数据的准确性。
同时,还可以借助辅助工具如光电探测器、分光计等进行定量的调整和测量。
总之,光谱仪器的光路调整是确保仪器正常工作和获得准确光谱数据的重要环节。
只有充分理解和掌握光路调整的方法和技巧,才能保证光谱测量的准确性和可靠性。
光学干涉实验中的调节技巧与数据处理光学干涉实验是一种常见的实验方法,用于研究光波的干涉现象。
在进行光学干涉实验时,调节技巧与数据处理是非常重要的环节,它们直接影响实验的准确性和可靠性。
本文将就光学干涉实验中的调节技巧与数据处理进行探讨。
一、调节技巧1. 光路调节光路调节是光学干涉实验中最基本的操作之一。
正确调节光路可以使得干涉图像清晰可见,进而得到准确的实验结果。
在进行光路调节时,可以采用以下步骤:首先,确保光源的稳定性和亮度。
光源的亮度越高,干涉图案越清晰,因此选择高亮度的光源可以提高实验的效果。
其次,调节透镜系统。
透镜的位置和方向对干涉图案有重要影响,需要通过微调螺丝来调节透镜的位置和方向,使得干涉图案清晰可见。
最后,调节干涉条纹。
通过调节反射镜的位置和角度,使得干涉条纹清晰可见。
要注意避免反射镜的振动和移动,以免影响实验结果。
2. 调节干涉仪干涉仪是光学干涉实验中的核心设备,它影响着实验的准确性和可重复性。
在调节干涉仪时,可以采用以下技巧:首先,调节反射镜的平面度。
反射镜的平行度对干涉仪的调节有重要影响,因此需要确保反射镜是平行的,可以通过调节反射镜支架上的螺丝来实现。
其次,调节干涉仪的光路长度。
干涉仪的光路长度决定了干涉条纹的间距和形状,需要通过调节反射镜的位置和角度来实现。
在调节光路长度时,可以使用平行光检验法来判断调节是否正确。
最后,调节干涉仪的分束器。
分束器对干涉图案有重要影响,需要确保分束器的位置和角度正确。
可以通过调节分束器支架上的螺丝来实现。
二、数据处理在进行光学干涉实验时,正确处理实验数据是调节技巧的重要补充。
只有准确地处理实验数据,才能得到准确的实验结果和结论。
以下是一些常用的数据处理方法:1. 干涉图案分析通过对干涉图案的分析,可以得到实验数据中所需的干涉条纹的参数。
例如,可以测量干涉条纹的周期、间距、形状等。
在进行干涉图案分析时,可以使用图像处理软件来实现自动分析,提高结果的准确性和可靠性。
光学实验中的光路搭建与调整方法1.实验设备准备首先要准备好所需的光学实验设备,包括光源、透镜、棱镜、光屏、接受器等。
2.光源的选择与位置调节在光路搭建中,光源的选择非常重要。
常用的光源有白炽灯、氙灯、钠灯等。
根据实验要求选择合适的光源,并将其固定在一个稳定的支架上。
同时要注意调节光源的位置,使得光线可以顺利通过光学元件。
3.透镜的使用与调整透镜是光学实验中常见的光学元件,用来调节光线的传播方向和聚焦效果。
在使用透镜时,首先要确定透镜的凸面和凹面。
然后根据实验需要选择透镜的类型和焦距,并将透镜固定在一个稳定的架子上。
在调整光路时,可以借助透镜调节光线的传播方向和聚焦效果,使得光线能够准确地通过透镜。
4.棱镜的使用与调整棱镜常用于光的分光和折射实验中。
在搭建光路时,需要将棱镜放在一个稳定的位置,并保证光线垂直入射和平行出射。
棱镜的角度调整会影响光的折射和偏折效果,因此在实验中需要通过调整棱镜的位置和角度来满足实验要求。
5.光屏和接受器的安装与定位光屏常用于接受和记录光的干涉和衍射图像,在光路搭建过程中需要将光屏放置在合适的位置,使得光线能够准确地投射到光屏上。
同时,还需要调整接受器的位置和方向,以使得光线能够正确地进入接受器。
6.光路调整与优化在进行光学实验时,光路的调整是一个逐步优化的过程。
通过观察光的传播路径和影像,不断调整光源等光学元件的位置和角度,使得光线能够准确地通过所需的光学元件,并得到所要求的实验结果。
总结起来,光学实验中的光路搭建与调整方法需要有系统性、耐心和细致性。
在搭建光路时,要根据实验目的和要求进行器材的选择和位置的调整,同时要注意光线的传播方向和偏折效果,以保证光线能够顺利通过光学元件。
在实验过程中,需要不断地调整光路,优化光的传播路径,以获得准确而稳定的实验结果。
光学实验仪器的调节与应用一、光学实验仪器的基本概念与分类1.光学实验仪器概述:光学实验仪器是进行光学实验所必需的装置和工具,主要包括光源、光学元件、实验台、显微镜等。
2.光学仪器分类:a.按功能分类:观察仪器、测量仪器、图像处理仪器等;b.按光学系统分类:透镜组、反射镜组、光的传播路径等。
二、光学实验仪器的调节方法1.粗调节与微调节:a.粗调节:通过旋转镜头或调节螺丝,使光学元件发生大范围的位置移动,快速找到合适的位置;b.微调节:在粗调节的基础上,通过细腻的调整,使光学元件达到精确的位置,以获得清晰的像。
2.光学元件的调节顺序:a.先调整光源,保证光线充足;b.调整光学元件(如透镜、反射镜等),使光线传播路径正确;c.调整观察仪器(如显微镜、望远镜等),使像清晰。
三、光学实验仪器的应用1.凸透镜成像规律实验:研究凸透镜对光线的作用,掌握凸透镜成像的规律。
2.光的折射实验:研究光在不同介质中传播时的折射现象,了解折射定律。
3.光的干涉实验:研究光的波动性,掌握干涉现象及其产生条件。
4.光的衍射实验:研究光的波动性,掌握衍射现象及其产生条件。
5.显微镜的使用:观察微小物体,了解显微镜的构造、原理及使用方法。
6.望远镜的使用:观察远距离物体,了解望远镜的构造、原理及使用方法。
四、光学实验仪器的维护与保养1.保持光学仪器清洁:定期清洁光学镜头、反射镜等,避免划痕和污垢影响观察效果。
2.避免剧烈振动:光学仪器对振动较敏感,使用过程中应避免剧烈振动,以免损坏仪器。
3.妥善存放:实验结束后,应将光学仪器归位,避免受潮、受尘。
4.定期检查:定期检查光学仪器的各项功能,确保仪器正常运行。
五、光学实验的安全注意事项1.遵守实验室规定:遵循实验室的安全操作规程,确保实验安全。
2.正确使用仪器:按照仪器的使用说明书进行操作,避免不当使用导致事故。
3.防止光源伤害:操作过程中,注意保护眼睛,避免直视强光源。
4.注意用电安全:使用光学仪器时,确保电源线完好,避免电器短路、火灾等事故。
课程名称:应用光学
实验项目名称:基本光路调整实验
图3.1 自准直法原理图
平行光束的检测:
如图1.2所示,为了获得宽准直光束,细激光束经过显微镜物镜扩束,随后经过空间滤波器滤波,再经过准直透镜准直,最后遇到一块透明的平行平晶(平行度较好的平板玻璃),该平行平晶的面法线与光轴有一定夹角,使准直光线经过平行平晶的反射在导轨外用白屏观察到。
由于相干性,平行平晶前后两个表面反射的光会由于半波损失或者在平行平晶中多经过的光程差导致两个光有光程差从而形成干涉条纹。
平行平晶与导轨夹角较小时,干涉条纹近似呈同心圆环;夹角较大时,条纹变成弯曲状或近似的直线状。
平行平晶越厚、光束的发散角(或会聚角)越大,则条纹越密;减小光束发散角(会聚角),条纹变稀少。
光束接近准直时,条纹几乎消失。
显然,条纹疏密的程度取决于平晶的平行度及光束的准直度。
图3.2 平行平晶法光路图
图5.1 实验现象一图5.2 实验现象二
图5.3 实验现象三图5.4 实验现象四。
光谱仪器的光路调整方法技巧现代科学技术的发展离不开各种精密的仪器和设备的支持。
在科学实验和工业生产中,光谱仪器是一个常见且重要的设备。
光谱仪器通过测量物质与光的相互作用来获取物质的光谱信息,从而揭示物质的性质和结构。
然而,光谱仪器的光路调整往往是其使用过程中较为繁琐和复杂的部分之一。
下面,我们将讨论一些光谱仪器的光路调整方法技巧。
首先,在进行光谱仪器的光路调整之前,我们需要了解光路调整的目标和原理。
光路调整的目标是保证光线在光谱仪器中的传输路径上穿过各种光学元件,并最终聚焦在检测器上。
这需要确保光线经过各个光学元件时的传输效率最大化,即尽可能地减少损失和散射。
光路调整的原理是根据光的传播规律,通过合理调整光学元件的位置和角度,使得光线在光谱仪器中的传输路径尽量接近预期的设计要求。
因此,光路调整的技巧主要包括透镜的移动和旋转、光栅的调整、衍射光束的发散和聚焦等。
其次,光路调整中常用的技巧之一是通过调整透镜的位置和角度来控制光线的传输方向和焦距。
透镜是光谱仪器中常见的光学元件之一,在光路调整中起着至关重要的作用。
一种常见的调整方法是使用薄膜夹持器或调焦架来调整透镜的位置。
通过透镜的移动,可以调整光线的传输方向,使其与其他光学元件的轴线保持一致。
此外,透镜的角度也可以通过调整透镜与仪器中固定参考物体之间的距离来实现。
通过调整透镜的角度,可以控制光线的发散或聚焦效果,从而达到光谱仪器光路调整的目标。
另一方面,光栅是光谱仪器中常用的光学元件之一,也是光路调整中需要重点关注的部分。
光栅的调整主要涉及到光栅的旋转和倾斜。
在调整光栅时,我们需要确保光栅的表面尽量平行于光束的入射方向,以提高光栅的衍射效率。
此外,通过调整光栅的旋转角度,可以改变光谱仪器的波长范围和分辨率。
因此,光路调整中需要对光栅进行细致的调整和控制,以保证光的传输效率和光谱的准确性。
此外,在光路调整中还需要注意光谱仪器的环境条件和背景噪声的影响。
实验一光学实验主要仪器、光路调整与技巧1.引言不论光学系统如何复杂,精密,它们都是由一些通用性很强的光学元器件组成的,因此,掌握一些常用的光学元器件的结构,光学性能、特点和使用方法,对于安排实验光路系统时,正确的选择和使用光学元器件具有重要的作用。
2.实验目的1)掌握光学专业基本元件的功能;2)掌握基本光路调试技术,主要包括共轴调节和调平行光。
3.实验原理3.1光学实验仪器概述:光学实验仪器主要包括:光源,光学元件,接收器等。
3.1.1常用光源光源是光学实验中不可缺少的组成部分,对于不同的观测目的,常需选用合适的光源,如在干涉测量技术中一般应使用单色光源,而在白光干涉时又需用能谱连续的光源(白炽灯);在一些实验中,对光源尺寸大小还有点、线、面等方面的要求。
光学实验中常用的光源可分为以下几类:1)热辐射光源热辐射光源是利用电能将钨丝加热,使它在真空或惰性气体中达到发光的光源。
白炽灯属于热辐射光源,它的发光光谱是连续的,分布在红外光、可见光到紫外光范围内,其中红外成分居多,紫外成分很少,光谱成分和光强与钨丝温度有关。
热辐射光源包括以下几种:普通灯泡,汽车灯泡,卤钨灯。
2)热电极弧光放电型光源这类光源的电路基本上与普通荧光灯相同,必须通过镇流器接入220V点源,它是使电流通过气体而发光的光源。
实验中最常用的单色光源主要包括以下两种:纳光灯(主要谱线:589.3nm、589.6nm),汞灯(主要谱线:623.4nm、579.0nm、577.0nm、546.1nm、491.6nm、435.8nm、407.9nm、404.7nm)3)激光光源激光(Light Amplification by Stimulated Emission of Radiation,缩写:LASER),是指通过辐射的受激辐射而实现光放大,即受激辐射的光放大。
激光器作为一种新型光源,与普通光源有显著的差别。
它是利用受激辐射的原理和激光腔的滤波效应,使所发光束具有一系列新的特点。
光学仪器与实验技巧课件光学仪器与实验技巧一、仪器介绍及操作技巧在光学实验中,使用合适的仪器和掌握相关的操作技巧是保证实验准确性和实验结果可靠性的关键。
本课件将介绍一些常用的光学仪器及其操作技巧。
1. 光学显微镜光学显微镜是一种常见而又重要的实验仪器。
在操作光学显微镜时,需要注意以下几点:- 在调节倍率时,先使用低倍镜进行初步观察,再逐渐调整到高倍镜,以避免失焦或者镜头碰撞。
- 调节光源,确保光线均匀,避免产生阴影或者过亮的情况。
- 使用准直调节器进行准直调节,以确保所观察的样本清晰可见。
2. 分光计分光计是光学实验中常用的精密仪器,用于测量光的波长和折射率等参数。
在进行分光计实验时,应注意以下几点:- 仔细清洁分光计的光学元件,以确保光线透射的准确性。
- 熟悉分光计的调节操作,包括出射狭缝和入射狭缝的调节,以保证光束的稳定。
- 注意调节分光计的尺度,确保读取结果的准确性。
3. 激光仪器激光在许多实验中被广泛应用,使用激光仪器时需要注意以下几点:- 注意激光的安全使用,避免激光直接照射到眼睛或其他敏感部位。
- 确保激光束稳定,可以使用调节器进行调节。
- 使用合适的滤光片,以避免激光的干扰或者产生误差。
二、实验技巧与注意事项除了仪器的操作技巧外,实验本身的技巧和注意事项也是非常重要的。
下面介绍一些常见的实验技巧和注意事项。
1. 校准仪器在进行光学实验之前,需要确保所使用的仪器处于准确的状态。
校准仪器可以帮助我们获取准确的实验结果,并提高实验的可重复性。
2. 特殊样品的处理在某些实验中,我们可能会遇到一些特殊的样品,如透明薄片或者非常小的样品。
处理这些样品时,需要注意:- 使用合适的夹具或支架来固定样品,以保证实验的稳定性。
- 避免使用手指直接接触样品,以免留下指纹或者其他污染物。
3. 数据处理与分析实验完成后,需要进行数据处理和分析,以得出准确的结果。
以下是一些建议:- 尽量进行多次实验,取平均值以减小误差。
深圳大学实验报告
课程名称:工程光学(1)
实验名称:实验一光学实验主要仪器、光路调整与技巧学院:光电工程学院
专业:
指导教师:
报告人:学号:组别:
实验时间:2015年
实验报告提交时间:
教务处制
四、实验内容与步骤:
(1)参照图1-6,沿导轨装妥各器件(先不安装扩束显微物镜和准直平凸透镜部分),并调至共轴。
(2)首先将分划板中心通孔高度定为光轴高度,将分划板移至贴近激光器的位置,调节激光器高度,使激光束通过分划板中心圆孔。
再将分划板移至较远处,调节激光夹持器,使激光束再次通过分划板中心圆孔(近端调高低,远端调俯仰)。
重复二三次高低和俯仰调节,使激光束在合适的高度保证基本水平。
(3)在系统中加入扩束物镜和准直透镜,适当调节激光束和扩束镜,准直透镜共轴,且准直透镜在扩束镜的前焦面上。
前后移动分划板,观测分划板上的圆斑大小是否变化。
若变化,则前后移动准直透镜,直到前后移动分划板,板上的圆斑大小不发生变化,完成平行光粗调。
(4)将分划板替换为平行平晶,将毛玻璃放在在平行平晶反射光路上,前后移动准直透镜,使得毛玻璃上可以观察到干涉条纹。
(5)细微调节平移台丝杆,观察干涉条纹变化,使得条纹数逐渐减少到一条或半条条纹,完成细调。
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。