深圳大学_大学物理实验c_杨氏模量的测量
- 格式:doc
- 大小:271.38 KB
- 文档页数:7
物理实验中的杨氏模量测量技巧引言:在物理学的实验中,杨氏模量是一个十分重要的物理量,它描述了物质受力变形行为的特性。
杨氏模量的测量在工程学、材料学以及地质学等领域都有着广泛的应用。
本文将介绍一些物理实验中常用的杨氏模量测量技巧,帮助读者更好地理解和应用这一概念。
一、弹簧的杨氏模量测量弹簧是杨氏模量测量中常用的一种实验装置。
通过在弹簧上施加各种力,可以导致弹簧的变形,从而计算出杨氏模量。
通常,我们可以测量弹簧的伸长量与所施加的力之间的关系,然后根据胡克定律推导出杨氏模量的表达式。
这种方法简便易行,适用于实验室中对小型弹簧进行测量。
二、悬挂线的杨氏模量测量悬挂线是另一种常用的杨氏模量测量装置。
通过在一条细而长的悬挂线上挂载不同质量的物体,可以导致悬挂线发生弯曲。
通过测量悬挂线在受力后的变形程度,我们可以计算出杨氏模量。
这种方法适用于细长而柔软的材料,如金属丝或者绳子。
需要注意的是,测量时应尽量减小环境中的干扰,并保证悬挂线受力均匀。
三、梁的杨氏模量测量梁是一种常见的实验装置,用于测量杨氏模量。
通常,我们可以使用两个支架夹住一根长而薄的梁,并在梁上施加不同的力。
通过测量梁的弯曲程度,我们可以计算出杨氏模量。
该方法适用于坚硬的材料,如金属或者木材。
在实验中,要注意保持梁的平衡,减小外界因素对测量结果的影响。
四、共振频率法测量杨氏模量除了上述传统的测量方法,还有一种现代化的测量方法被称为共振频率法。
该方法利用共振现象进行测量。
在实验中,我们可以悬挂一个薄片或者棒状物体,然后将之敲击。
通过调整敲击频率,使其与悬挂物体的共振频率一致,可以得到杨氏模量的测量值。
这种方法适用于材料的质量较轻、形状较复杂或者尺寸较小的情况。
五、小结在物理实验中,杨氏模量是一个重要指标,用于描述物质的受力变形行为特性。
使用合适的测量方法,我们可以准确快速地测量杨氏模量。
本文介绍了几种常见的测量方法,包括弹簧的测量、悬挂线的测量、梁的测量以及共振频率法。
杨氏模量的测定一、拉伸法测定金属丝的杨氏模量力作用于物体所引起的效果之一是使受力物体发生形变,物体的形变可分为弹性形变和塑性形变。
固体材料的弹性形变又可分为纵向、切变、扭转、弯曲,对于纵向弹性形变可以引入杨氏模量来描述材料抵抗形变的能力。
杨氏模量是表征固体材料性质的一个重要的物理量,是工程设计上选用材料时常需涉及的重要参数之一,一般只与材料的性质和温度有关,与其几何形状无关。
实验测定杨氏模量的方法很多,如拉伸法、弯曲法和振动法(前两种方法可称为静态法,后一种可称为动态法)。
本实验是用静态拉伸法测定金属丝的杨氏模量。
本实验提供了一种测量微小长度的方法,即光杠杆法。
光杠杆法可以实现非接触式的放大测量,且直观、简便、精度高,所以常被采用。
【实验目的】1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。
2. 掌握各种长度测量工具的选择和使用3. 学习用逐差法和作图法处理实验数据 【实验仪器】MYC-1型金属丝杨氏模量测定仪(一套),钢卷尺,米尺,螺旋测微计,重垂等 【实验原理】 一、杨氏弹性模量设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。
实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即S F =LLY ∆ (1) 则Y =LL SF ∆ (2) 比例系数Y 即为杨氏弹性模量。
在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。
一些常用材料的Y 值见表1。
Y 的国际单位制单位为帕斯卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。
本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S42d S π= 则(2)式可变为Ld FLY ∆=24π (3)可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。
第1篇一、实验背景杨氏模量(Young's Modulus)是材料力学中的一个重要物理量,它表征了材料在受力时抵抗形变的能力。
在工程实践中,杨氏模量是衡量材料刚度的重要指标之一,对材料的选择和结构设计具有重要意义。
本实验旨在通过实验方法测定金属材料的杨氏模量,并掌握相关实验原理和操作步骤。
二、实验原理1. 杨氏模量的定义杨氏模量(E)是指材料在弹性变形范围内,单位面积上所承受的应力与相应的应变之比。
其数学表达式为:E = σ / ε其中,σ为应力,ε为应变。
应力(σ)是指单位面积上的力,其数学表达式为:σ = F / A其中,F为作用在材料上的力,A为受力面积。
应变(ε)是指材料形变与原始长度的比值,其数学表达式为:ε = ΔL / L其中,ΔL为材料形变的长度,L为原始长度。
2. 胡克定律在弹性变形范围内,杨氏模量与应力、应变之间存在线性关系,即胡克定律:σ = Eε该定律表明,在弹性变形范围内,材料的应力与应变成正比。
3. 实验原理本实验采用拉伸法测定金属材料的杨氏模量。
具体实验步骤如下:(1)将金属样品固定在实验装置上,使其一端受到拉伸力F的作用。
(2)测量金属样品的原始长度L0和受力后的长度L。
(3)计算金属样品的形变长度ΔL = L - L0。
(4)根据胡克定律,计算应力σ = F / A,其中A为金属样品的横截面积。
(5)计算应变ε = ΔL / L0。
(6)根据杨氏模量的定义,计算杨氏模量E = σ / ε。
三、实验仪器1. 拉伸试验机:用于施加拉伸力F。
2. 样品夹具:用于固定金属样品。
3. 量具:用于测量金属样品的原始长度L0、受力后的长度L和形变长度ΔL。
4. 计算器:用于计算应力、应变和杨氏模量。
四、实验步骤1. 将金属样品固定在实验装置上,确保其牢固。
2. 调整拉伸试验机,使其施加一定的拉伸力F。
3. 测量金属样品的原始长度L0。
4. 拉伸金属样品,使其受力后的长度L。
实验三 动态法测量金属杨氏模量杨氏模量是描述固体材料弹性形变的一个重要的物理量,它是反映材料形变与内应力关系的物理量,也是反映工程材料的一个重要物理参数。
测定杨氏模量的方法很多,通常采用静态法、动态法、 波速测量法等。
我们学过的拉伸法属于静态法,这种方法在拉伸时由于载荷大,加载速度慢,含有驰豫过程,所以不能真实地反映材料内部结构的变化,而且不能对脆性材料进行测量。
另一种通常采用的方法是动态共振法,它的适用范围大(不同的材料,不同的温度),试验结果稳定、误差小。
所以更具有实用性,也是国家标准GB/T2105-91所推荐使用的测量方法。
一、实验目的1.学习用动态悬挂法测定金属材料的杨氏模量。
2.培养学生综合运用物理实验仪器的能力。
3.进一步了解信号发生器和示波器的使用方法。
二、实验仪器动态杨氏模量试样加热炉、信号发生器(含频率计、信号放大器)、数显温控仪、示波器、游标卡尺、千分尺、天平、待测试样等。
三、实验原理悬挂法是将试样(圆棒或矩形棒)用两根悬线悬挂起来并激发它作横振动。
在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏模量。
如果在实验中测出试样在不同温度下的固有频率,就可以计算出试样在不同温度下的杨氏模量。
根据杆的横振动方程式02244=∂∂+∂∂tyEJS xy ρ (1)式中ρ为杆的密度,S 为杆的截面积,⎰=sdS y J 2称为惯量矩(取决于截面的形状),E即为杨氏模量。
求解该方程,对圆形棒得(见附录)2436067.1fdm l E =式中:l 为棒长;d 为棒的直径;m 为棒的质量;f 为试样共振频率。
对于矩形棒得:23394644.0fbhm l E =式中: b 和h 分别为矩形棒的宽度和厚度;m 为棒的质量;f 为试样共振频率。
在国际单位制中杨氏模量E 的单位为2-∙mN 。
本实验的基本问题是测量在一定温度下试样的固有频率f 。
实验中采用如图1所示装置。
杨氏模量的测定一、拉伸法测定金属丝的杨氏模量力作用于物体所引起的效果之一是使受力物体发生形变,物体的形变可分为弹性形变和塑性形变。
固体材料的弹性形变又可分为纵向、切变、扭转、弯曲,对于纵向弹性形变可以引入杨氏模量来描述材料抵抗形变的能力。
杨氏模量是表征固体材料性质的一个重要的物理量,是工程设计上选用材料时常需涉及的重要参数之一,一般只与材料的性质和温度有关,与其几何形状无关。
实验测定杨氏模量的方法很多,如拉伸法、弯曲法和振动法(前两种方法可称为静态法,后一种可称为动态法)。
本实验是用静态拉伸法测定金属丝的杨氏模量。
本实验提供了一种测量微小长度的方法,即光杠杆法。
光杠杆法可以实现非接触式的放大测量,且直观、简便、精度高,所以常被采用。
【实验目的】1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。
2. 掌握各种长度测量工具的选择和使用3. 学习用逐差法和作图法处理实验数据 【实验仪器】MYC-1型金属丝杨氏模量测定仪(一套),钢卷尺,米尺,螺旋测微计,重垂等 【实验原理】 一、杨氏弹性模量设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。
实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即S F =LLY ∆ (1) 则Y =LL SF ∆ (2) 比例系数Y 即为杨氏弹性模量。
在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。
一些常用材料的Y 值见表1。
Y 的国际单位制单位为帕斯卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。
本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S42d S π= 则(2)式可变为Ld FLY ∆=24π (3)可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。
篇一:大物仿真实验报告---金属杨氏模量的测定大物仿真实验报告金属杨氏模量的测定化工12一、实验目的1、掌握用光杠杆测量长度微小变化量的原理和方法2、学会使用逐差法处理数据二、实验原理人们在研究材料的弹性性质时,希望有这样一些物理量,它们与试样的尺寸、形状和外加的力无关。
于是提出了应力 / (即力与力所作用的面积之比)和应变Δ / (即长度或尺寸的变化与原来的长度或尺寸之比)之比的概念。
在胡克定律成立的范围内,应力和应变之比是一个常数,即(1)被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅与材料的结构、化学成分及其加工制造方法有关。
某种材料发生一定应变所需要的力大,该材料的杨氏模量也就大。
杨氏模量的大小标志了材料的刚性。
通过式(1),在样品截面积上的作用应力为,测量引起的相对伸长量Δ / ,即可计算出材料的杨氏模量。
因一般伸长量Δ很小,故常采用光学放大法,将其放大,如用光杠杆测量Δ。
光杠杆是一个带有可旋转的平面镜的支架,平面镜的镜面与三个足尖决定的平面垂直,其后足即杠杆的支脚与被测物接触,见图1。
当杠杆支脚随被测物上升或下降微小距离Δ时,镜面法线转过一个θ角,而入射到望远镜的光线转过2θ角,如图2所示。
当θ很小时,(2)式中为支脚尖到刀口的垂直距离(也叫光杠杆的臂长)。
根据光的反射定律,反射角和入射角相等,故当镜面转动θ角时,反射光线转动2θ角,由图可知(3)式中D为镜面到标尺的距离,b为从望远镜中观察到的标尺移动的距离。
从(2)和(3)两式得到(4)(5)合并(1)和(4)两式得2=6)式中2D/ 叫做光杠杆的放大倍数。
只要测量出、D、和d(一系列的与b之后,就可以由式(6)确定金属丝的杨氏模量。
)及三、实验仪器杨氏模量仪、光杠杆和标尺望远镜、砝码、钢直尺、钢卷尺、螺旋测微计、游标卡尺、白炽灯四、实验过程与步骤1.调节仪器(1)调节放置光杠杆的平台与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。
实验1 拉伸法测量杨氏模量杨氏弹性模量(以下简称杨氏模量)是表征固体材料性质的重要的力学参量,它反映材料弹性形变的难易程度,在机械设计及材料性能研究中有着广泛的应用。
其测量方法有静态拉伸法、悬臂梁法、简支梁法、共振法、脉冲波传输法,后两种方法测量精度较高;本实验采用静态拉伸法测量金属丝的杨氏模量,因涉及多个长度量的测量,需要研究不同测量对象如何选择不同的测量仪器。
【实验目的】1. 学习用静态拉伸法测量金属丝的杨氏模量。
2. 掌握钢卷尺、螺旋测微计和读数显微镜的使用。
3. 学习用逐差法和作图法处理数据。
4.掌握不确定度的评定方法。
【仪器用具】杨氏模量测量仪(包括砝码、待测金属丝)、螺旋测微计、钢卷尺、读数显微镜【实验原理】1. 杨氏模量的定义本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用后的伸长或缩短。
按照胡克定律:在弹性限度内,弹性体的应力S F 与应变LLδ成正比。
设有一根原长为l ,横截面积为S 的金属丝(或金属棒),在外力F 的作用下伸长了L δ,则根据胡克定律有)(LLE SF δ= (1-1) 式中的比例系数E 称为杨氏模量,单位为Pa (或N ·m –2)。
实验证明,杨氏模量E 与外力F 、金属丝的长度L 、横截面积S 的大小无关,它只与制成金属丝的材料有关。
若金属丝的直径为d ,则241d S π=,代入(1-1)式中可得 Ld FLE δπ24= (1-2)(1-2)式表明,在长度、直径和所加外力相同的情况下,杨氏模量大的金属丝伸长量较小,杨氏模量小的金属丝伸长量较大。
因此,杨氏模量反映了材料抵抗外力引起的拉伸(或压缩)形变的能力。
实验中,测量出L d L F δ、、、值就可以计算出金属丝的杨氏模量E 。
2. 静态拉伸法的测量方法测量金属丝的杨氏模量的方法就是将金属丝悬挂于支架上,上端固定,下端加砝码对金属丝F ,测出金属丝的伸长量L δ,即可求出E 。
大学物理实验报告-杨氏模量的测量实验目的:
1.学习使用杨氏模量仪器进行测量;
2.掌握测量杨氏模量的方法;
3.通过实验了解杨氏模量的概念及其在材料力学中的重要性。
实验原理:杨氏模量(Young's modulus)是描述材料变形的性质,定义为单位截面上的应力与应变之比。
在实验中,我们将使用弹性系数测量仪器来测量杨氏模量。
实验仪器和材料:
1.弹性系数测量仪器
2.金属样品(如铜、铁等)
实验步骤:
1.将弹性系数测量仪器安装到实验台上,并调整好仪器的位置和角度。
2.选择一块金属样品,并将其固定在仪器上。
3.通过调整仪器的拉力,使样品产生小的弯曲变形。
4.测量材料长度、宽度和厚度,并记录下来。
5.通过仪器上的测力计测量应力值,并记录下来。
6.通过测量材料的变形量,计算出应变值。
7.根据应力和应变的关系,计算出杨氏模量。
实验结果:根据实验数据计算出的杨氏模量为XXX。
实验讨论:
1.实验中的误差来源是什么?如何减小误差?
2.实验中使用的金属样品是否满足线弹性假设?
3.如何选择合适的拉力?
4.杨氏模量的值是否与金属的组织结构有关?
实验结论:通过本次实验,我们成功地测量出了杨氏模量,并了解了杨氏模量的概念和测量方法。
杨氏模量是描述材料变形性质的重要参数,对于材料力学的研究和工程应用具有重要意义。
实验三 CCD 杨氏模量测定[目的]1. 了解拉伸法测量金属丝杨氏模量的原理;2. 学习读数显微镜、CCD 摄像机、调焦镜头的调节方法; 3. 掌握拉伸法测量金属丝杨氏模量的方法。
[仪器和用具]CCD 杨氏模量测量仪(WYM —1型)主体结构,显微镜组,CCD 摄像机,调焦镜头,监视器,螺旋测微计,钢卷尺,金属丝等。
[实验原理]设金属丝的原长为l ,横截面积为S ,在受到沿长度方向的外力F 作用下伸长了δ,则根据胡克定律有:在弹性限度内,金属丝的应力S F 与应变lδ成正比。
写作lE SF δ= (3—1)上式中的比例系数E ,称为杨氏弹性模量。
它的国际单位为牛顿/米2,记为2m N -⋅。
设金属丝直径为d ,则241d S π=,将此式代入(3—1)式可得出δπ24d l F E = (3—2)上式表明,对于长度l 、直径d 和所加外力F 相同的情况下,杨氏模量大的金属丝的伸长量δ较小,而杨氏模量小的伸长量δ较大。
可见,杨氏弹性模量反映出材料抵抗外力产生拉伸(或压缩)形变的能力。
根据(3—2)式可知,测出等号右边的各个量,便可算出杨氏模量,其中外力F 、长度l 和直径d 均可用常用的方法和仪器测得,而对于微小的伸长量δ,通过显微镜和CCD 成像系统来记录变化情况,并经过监视器显示出来。
安装仪器(只放砝码盘,未放砝码)后,调节测微目镜从显微镜中能清楚地看到十字叉丝,读取与显微镜中标尺横线重合的读数0A ,在砝码盘上增加砝码m 之后,金属丝伸长为δ,金属丝的伸长量的表达式0A A m -=δ (3—3)将mg F =和上式代入式(3—2),可得出伸长法测金属丝的杨氏模量E 的公式为24A A d mglE m -=π (3—4)又设mA A K m 0-=(3—5) 则K 为砝码改变一个单位时,显微镜中分划板标尺的读数的变化量。
将式(3—5)代入式(3—4),可得Kd lg E 24π=(3—6)[实验内容与步骤]1.调节WYM —1型CCD 杨氏模量测量仪底角螺钉,使测量仪的底座平台水平,使支架、金属丝铅直。
钢丝的氏模量【预习重点】(1)氏模量的定义。
(2)利用光杠杆测量微小长度变化的原理和方法。
(3)用逐差法和作图法处理实验数据的方法。
【仪器】氏模量仪(包括砝码组、光杠杆及望远镜-标尺装置)、螺旋测微器、钢卷尺。
【原理】1)氏模量物体受力产生的形变,去掉外力后能立刻恢复原状的称为弹性形变;因受力过大或受力时间过长,去掉外力后不能恢复原状的称为塑性形变。
物体受单方向的拉力或压力,产生纵向的伸长和缩短是最简单也是最基本的形变。
设一物体长为L,横截面积为S,沿长度方向施力F后,物体伸长(或缩短)了δL。
F/S是单位面积上的作用力,称为应力,δL/L是相对变形量,称为应变。
在弹性形变围,按照胡克(HookeRobert1635—1703)定律,物体部的应力正比于应变,其比值(5—1)称为氏模量。
实验证明,E与试样的长度L、横截面积S以及施加的外力F的大小无关,而只取决于试样的材料。
从微观结构考虑,氏模量是一个表征原子间结合力大小的物理参量。
2)用静态拉伸法测金属丝的氏模量氏模量测量有静态法和动态法之分。
动态法是基于振动的方法,静态法是对试样直接加力,测量形变。
动态法测量速度快,精度高,适用围广,是国家标准规定的方法。
静态法原理直观,设备简单。
用静态拉伸法测金属丝的氏模量,是使用如图5—1所示氏模量仪。
在三角底座上装两根支柱,支柱上端有横梁,中部紧固一个平台,构成一个刚度极好的支架。
整个支架受力后变形极小,可以忽略。
待测样品是一根粗细均匀的钢丝。
钢丝上端用卡头A夹紧并固定在上横梁上,钢丝下端也用一个圆柱形卡头B夹紧并穿过平台C的中心孔,使钢丝自由悬挂。
通过调节三角底座螺丝,使整个支架铅直。
下卡头在平台C的中心孔,其周围缝隙均匀而不与孔边摩擦。
圆柱形卡头下方的挂钩上挂一个砝码盘,当盘上逐次加上一定质量的砝码后,钢丝就被拉伸。
下卡头的上端面相对平台C的下降量,即是钢丝的伸长量δL。
钢丝的总长度就是从上卡头的下端面至下卡头的上端面之间的长度。
杨氏弹性模量的测定实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏弹性模量。
2、掌握用光杠杆放大法测量微小长度变化的原理和方法。
3、学会使用游标卡尺、螺旋测微器等长度测量仪器。
4、学习数据处理和误差分析的方法。
二、实验原理杨氏弹性模量是描述材料在弹性限度内抵抗形变能力的物理量。
对于一根长度为 L、横截面积为 S 的金属丝,在受到沿长度方向的拉力 F 作用时,伸长量为ΔL。
根据胡克定律,在弹性限度内,应力(F/S)与应变(ΔL/L)成正比,比例系数即为杨氏弹性模量E,其表达式为:\E =\frac{FL}{S\Delta L}\由于伸长量ΔL 很小,难以直接测量,本实验采用光杠杆放大法来测量。
光杠杆原理:光杠杆是一个带有三个尖足的平面镜,前两尖足放在一个固定的平台上,后尖足放在金属丝的测量端。
当金属丝发生微小伸长时,光杠杆的后尖足会随之移动,从而带动平面镜转动一个微小角度θ。
通过望远镜和标尺可以测量出平面镜转动前后反射光线在标尺上的读数差 n。
根据几何关系,有:\(\Delta L =\frac{nD}{2d}\)其中,D 为望远镜到光杠杆平面镜的距离,d 为光杠杆后足到两前足连线的垂直距离。
将上式代入杨氏弹性模量的表达式,可得:\E =\frac{8FLD}{S\pi d^2 n}\三、实验仪器杨氏模量测定仪、光杠杆、望远镜、标尺、螺旋测微器、游标卡尺、砝码、待测金属丝等。
四、实验步骤1、调整杨氏模量测定仪调节底座螺丝,使立柱铅直。
调节光杠杆平面镜,使其与平台垂直。
调节望远镜,使其与光杠杆平面镜等高,并能清晰看到标尺的像。
2、测量金属丝的长度 L使用米尺测量金属丝的有效长度,重复测量三次,取平均值。
3、测量金属丝的直径 d用螺旋测微器在金属丝的不同部位测量直径,共测量六次,取平均值。
4、测量光杠杆常数 d用游标卡尺测量光杠杆后足到两前足连线的垂直距离,重复测量三次,取平均值。
5、测量望远镜到平面镜的距离 D用米尺测量望远镜到平面镜的距离,重复测量三次,取平均值。
杨氏模量实验步骤
杨氏模量实验,那可真是个超级有趣的挑战啊!咱就直接开始说说步骤吧。
先得准备好那些实验器材,就像战士要准备好自己的武器一样。
各种测量工具啦,试件啦,一个都不能少。
然后把试件小心翼翼地安装在实验台上,这可得轻拿轻放,就好像对待宝贝一样。
接下来就是施加力啦!想象一下,就像给试件来个小小的挑战,看看它能有多坚强。
慢慢增加力的大小,同时仔细观察各种数据的变化,这就好比侦探在寻找线索一样。
在测量长度变化的时候,可得瞪大眼睛,精确到小数点后好多位呢!这可不是闹着玩的,一点点误差都可能影响结果哦。
计算的时候更是要认真再认真,每一个数字都不能马虎。
这就像走在钢丝上,必须步步小心。
杨氏模量实验不就是一场和材料的较量吗?我们要通过各种手段去了解它的特性,去揭开它的秘密。
这难道不令人兴奋吗?
整个过程就像是一次冒险,每一步都充满了未知和挑战。
但当我们最终得到那个准确的杨氏模量值时,那种成就感简直无与伦比!这就是科学的魅力啊,让我们不断探索,不断发现,不断进步。
这就是杨氏模量实验,一个让我们又爱又恨,但又忍不住去挑战的实验!。
实验用CCD测量杨氏弹性模量一、(1)学会用CCD杨氏模量测量仪测量长度的微小变化量。
(2)学会测定金属丝杨氏弹性模量的一种方法。
(3)学习用逐差法处理数据。
二、杨氏弹性模量测量仪支架、磁座底座、砝码、千分尺、CCD摄像机和显示器等。
三、任何物体在外力作用下都会发生形变,当形变不超过某一限度时,撤走外力之后,形变能随之消失,这种形变称为弹性形变。
如果外力较大,当它的作用停止时,所引起的形变并不完全消失,而有剩余形变,这称为塑性形变。
发生弹性形变时,物体内部产生恢复原状的内应力。
弹性模量是反映材料形变与内应力关系的物理量,是工程技术中常用的参数之一。
1.在形变中,最简单的形变是柱状物体受外力作用时的伸长或缩短形变。
设柱状物体的长度为L ,截面积为S ,沿长度方向受外力F 作用后伸长(或缩短)量为ΔL ,单位横截面积上的垂直作用力F /S 称为正应力,物体的相对伸长量ΔL /L 称为线应变。
实验结果证明,在弹性范围内,正应力与线应变成正比,L L Y S F ∆=(3 -6 -1)这个规律称为虎克定律。
式中,比例系数Y 称为杨氏弹性模量。
在国际单位制中,它的单位为N/m 2,dyn/cm 2(达因/厘米2)。
它是表征材料抗应变能力的一个固定参量,完全由材料的性质决定,与材料的几何形状无关。
本实验是测量钼丝的杨氏弹性模量,实验方法是将钼丝悬挂于支架上,上端固定,下端加砝码,对钼丝施加力F ,测出钼丝相应的伸长量ΔL ,即可求出Y 。
钼丝长度L 用钢卷尺测量,钼丝的横截面积S =πd 2/4,直径d 用千分尺测出,力F 由砝码的质量求出。
由式(3-6-1)可得L d FL Y ∆=24π(3 -6 -2)2.测量原理在实际测量中,由于钼丝伸长量ΔL的值很小,约10-1mm数量级。
因此,这里ΔL的测量采用显微镜和CCD成像系统进行。
如图3-6-1所示,在悬垂的金属丝下端连着十字叉丝板和砝码盘,当盘中加上质量为M的砝码时,F (3 -6 -3)Mg十字叉丝随着金属丝的伸长同样下降了ΔL,而叉丝板通过显微镜的物镜(放大倍数设为1×)成像在最小分度为0.05mm的分划板上,再被目镜放大,所以能够用眼睛通过显微镜对ΔL做直接测量。
深圳大学实验报告课程名称:大学物理实验(一)
实验名称:
学院:
指导教师:
报告人:组号:
学号实验地点
实验时间:年月日
提交时间:
( a ) 光杠杆示意图 ( b ) 光杠杆示意图 图5-1
将光杠杆和镜尺系统按图5-1(b) 安装好,并按仪器调节步骤调节好全部装置之后,就会在望远镜中看到由镜面 M 反射的直尺(标尺)的像。
标尺是一般的米尺,但中间刻度为0。
其光路部分如图5-2 。
图中 1M 表示钢丝处于伸直情况下,光杠杆小镜的位置。
从望远镜的目镜中可以看见水平叉丝对准标尺的某一刻度线 0n ,当在钩码上增加砝码(第 i 块)时,因钢丝伸长致使置于钢丝下端附着在平台上的光杠杆后足 P 跟随下降到 P’,PP’ 即为钢丝的伸长 i L ∆ ,于是平面镜的法线方向转过一角度θ ,此时平面镜处于位置2M . 在固定不动的望远镜中会看到水平叉丝对准标尺上的另一刻线 i n ,i i C n n =-0. 假设开始时对光杠杆的入射和反射光线相重合,当平面镜转一角度θ,则入射到光杠杆镜面的光线方向就要偏转2θ ,故θ20=∠i On n ,因θ甚小,OO’也很小,故可认为平面镜到标尺的距离0'n O D ≈,并有
D
n n D n n i i 2,22tan 0
0-≈-≈≈θθθ (5-3)
又从ΔOPP’,得
b
L i
∆=
≈θθtan (5-4) 式中 b 为后足至前足连线的垂直距离,称为光杠杆常数。
从以上两式得:
)(2)
(00n n W D
n n b L i i i -=-=
∆ (5-5)
b
D
W 21=
,可称作光杠杆的“放大率”,上式中 b 和 D 可以直接测量,因此只要在望远镜测得标尺刻线移过的距离)(0n n i -,即可算出钢丝的相应伸长i L ∆。
将i L ∆值代入(5-2)式后得:
)
(8202
n n bd LDF
Sbn LDF E i i -==
π (5-6) 常用单位是:牛顿/米2. 式中 d 为钢丝的直径。
图5-2 光杠杆原理
三、实验仪器:
杨氏模量测量仪、光杠杆、镜尺组、钢卷尺、螺旋测微计、钢直尺、砝码
四、实验内容:
1、夹好钢丝,调整支架呈竖直状态,在钢丝的下端悬一钩码和适量砝码,(这些重量不。