高阶统计量
- 格式:ppt
- 大小:401.50 KB
- 文档页数:30
随机过程高阶统计量方法一、概述高阶统计量(Higher-order Statistics)是指比二阶统计量更高阶的随机变量或随机过程的统计量。
二阶统计量有:随机变量(矢量):方差、协方差(相关矩)、二阶矩。
随机过程:自相关函数、功率谱、互相关函数、互功率谱、自协方差函数等。
高阶统计量有:随机变量(矢量):高阶矩(Higher-order Moment) ,高阶累积量(Higher-order Cumulant) 从统计学的角度,对正态分布的随机变量(矢量),用一阶和二阶统计量就可以完备地表示其统计特征。
如对一个高斯分布的随机矢量,知道了其数学期望和协方差矩阵,就可以知道它的联合概率密度函数。
对一个高斯随机过程,知道了均值和自相关函数(或自协方差函数),就可以知道它的概率结构,即知道它的整个统计特征。
但是,对不服从高斯分布的随机变量(矢量)或随机过程,一阶和二阶统计量不能完备地表示其统计特征。
或者说,信息没有全部包含在一、二阶统计量中,更高阶的统计量中也包含了大量有用的信息。
高阶统计量信号处理方法,就是从非高斯信号的高阶统计量中提取信号的有用信息,特别是从一、二阶统计量中无法提取的信息的方法。
从这个角度来说,高阶统计量方法不仅是对基于相关函数或功率谱的随机信号处理方法的重要补充,而且可以为二阶统计量方法无法解决的许多信号处理问题提供手段。
可以毫不夸张地说,凡是使用功率谱或相关函数进行过分析与处理,而又未得到满意结果的任何问题,都值得重新试用高阶统计量方法。
高阶统计量的概念于1889 年提出。
高阶统计量的研究始于六十年代初,主要是数学家和统计学家们在做基础理论的研究,以及针对光学、流体动力学、地球物理、信号处理等领域特定问题的应用研究。
直到八十年代中、后期,在信号处理和系统理论领域才掀起了高阶统计量方法的研究热潮。
高阶统计量方法已在雷达、声纳、通信、海洋学、电磁学、等离子体物理、结晶学、地球物理、生物医学、故障诊断、振动分析、流体动力学等领域的信号处理问题中获得应用。
高阶统计量提取特征
高阶统计量是指对数据进行高阶运算得到的统计量,如标准偏差、偏度、峰度等。
在数据分析和机器学习中,高阶统计量可以用于提取特征,即将数据转换为一组更有意义的数值,以便于后续的分析和建模。
高阶统计量的提取可以通过多种方式实现,如通过计算数据的平均值、方差、偏度和峰度等统计量来确定其分布形态;或通过基于分位数的方法来将数据分成若干个等分组,以便于观察数据的分布情况和特征。
在机器学习中,高阶统计量的提取是一种常见的特征工程方法。
通过提取数据的高阶统计量,可以更好地描述数据的分布特征和结构,从而更好地理解和分析数据。
同时,高阶统计量也可以用于检测异常值和数据的偏度情况,有助于数据的预处理和清洗。
总之,高阶统计量提取特征是一种有效的数据分析和机器学习方法,可用于对数据进行更深入的观察和分析,提高模型的准确性和性能。
- 1 -。
高阶统计量及在阵列信号处理中的应用作者:姚泽昊贾瑛卓来源:《电子技术与软件工程》2018年第02期摘要在阵列信号处理方面,通常采用传统MUSIC方法进行信号波达方向估计。
但是在处理非高斯信号时,信号中含有高斯色噪声,采用传统方法难以进行波达方向准确估计。
结合这一问题,本文对高阶统计量及在阵列信号处理中的应用问题展开了分析,发现采用高阶统计量可以有效解决非高斯信号处理问题。
【关键词】高阶统计量阵列信号处理高斯色噪声1 高阶统计量的概念分析对于概率密度f(x)来讲,随机变量x拥有两个特征函数,同时拥有k阶矩、k阶累量。
在随机过程中{x(n)}中,随机变量则拥有r阶矩、r阶累量。
所谓的高阶谱,则是将随机过程k阶累量(k-1)维傅里叶变换当成是随机过程的k阶谱。
在k阶谱定义上,之所以采用k阶累量,主要是由于其能避免高斯有色噪声印象,采用高阶矩容易受到高斯噪声影响。
其次,在独立统计的随机过程之和计算中,总累量为两个随机过程累量之和。
采用该种方法进行加性信号处理,可以轻松完成累量计算。
2 高阶统计量及在阵列信号处理中的应用2.1 阵列信号波达方向估计问题在阵列信号处理方面,需要完成远场信号波达方向估计,以完成信号空间谱估计。
在对波达方向进行估计时,可以采用两大类方法,即参数化方法和基于空间谱方法。
采用参数化方法,需搜索感兴趣参数。
比如采用极大似然法,就能进行参数搜索,以至于导致计算量不断增加。
采用空间谱分析方法,需完成由空间方位构成的谱函数构造,然后通过搜索谱峰完成信号波动方向检测。
2.2 基于四阶累积量的MUSIC方法在阵列信号处理上,过去通常假设噪声或信号服从高斯分布,所以只需要利用二阶统计量就能完成信号处理。
但在实际生活中,多数信号为非高斯分布,比如存在色噪声的非理想均匀线性阵列信号。
针对该类信号,还要采用基于四阶累积量的MUSIC方法,以达到抑制色噪声的目的。
采用该方法,可以借助四阶累积量实现阵列扩展,采用的方法与传统协方差MUSIC 方法相似,但是需要利用四阶累积量噪声子空间完成空间谱函数构造。
高阶统计量方法及应用研究高阶统计量方法是近几年国内外信号处理领域内的一个前沿课题,它包含了二阶统计量没有的大量丰富信息,广泛应用于所有需要考虑非高斯性、非最小相位、有色噪声、非线性或循环平稳性的各类问题中。
凡是使用功率谱或相关函数进行分析与处理,而又未得到满意结果的任何问题都值得重新使用高阶统计量方法。
高阶统计量的发展与应用是信号处理领域近年来一个十分重要的发展,是现代信号处理的核心内容之一。
1 国内外研究应用现状及发展趋势高阶统计量方法是近几年国内外信号处理领域内的一个前沿课题。
高阶统计量广泛应用于所有需要考虑非高斯性、非最小相位、有色噪声、非线性或循环平稳性的各类问题中。
其研究内容包括高阶统计量、非参数化高阶谱分析、因果和非因果非最小相位系统的辨识、自适应估计和滤波、信号重构、信号检测、谐波恢复、多元时间序列分析、时变非高斯信号的时频分析、阵列处理、循环平稳时间序列分析以及其他专题(时延估计、盲反卷积和盲均衡、多维高斯信号)。
在信号处理领域,人们常常习惯于假设信号或噪声服从高斯分布,从而仅用二阶统计量便可提取信息,进行参数辨识以及各种处理。
但是,高斯分布只是许多分布类型中的一种,非高斯信号才是更普遍的信号。
对非高斯信号来说,二阶统计量只是其中一种信息,它不包含相位信息,因此对非最小相位系统的辨识而言,二阶统计量便显得无能为力。
在实际工作中,常常面临大量非高斯、非最小相位、非因果、非平稳信号的处理问题。
利用高阶统计量辨识解决这些问题的主要手段,高阶统计量提供了前所未有的十分丰富的信息,使我们可辨识非因果、非最小相位、非线性系统可以抑制高斯或非高斯的有色噪声可以抽取不同于高斯信号的多种信号特征可以分析与处理循环平稳信号等等。
高阶统计量是现代信号处理的核心内容之一。
人们对高阶统计量的研究已有近几十年的历史,虽然早在年代初许多领域的研究人员就开始了对高阶统计量的研究,但是真正的研究高潮却是在年代后期,经过短短几年的迅速发展,高阶统计量已在雷达、声纳、通信、海洋学、天文学、电磁学、等离子体、结晶学、地球物理、生物医学、故障诊断、振动分析、流体动力学等领域获得了广泛的应用。
天馈伺系统高阶统计量在传动系统故障诊断中的应用3卢雪林,程望东(南京电子技术研究所, 南京210013)【摘要】 对小波包分解和高阶统计量理论进行了阐述,提出一种基于高阶统计量特征和小波包分析相结合的雷达伺服传动系统故障诊断方法。
当传动系统故障发生时,振动信号一般是非平稳和非高斯分布的信号,通常包含较强的噪声。
用小波包分析对故障信号进行有针对性分解,并提取出故障特征频率带,然后运用高阶谱对故障特征信号进行分析,能够有效地实现故障诊断。
【关键词】 小波包分析;高阶统计量;故障诊断;传动系统中图分类号:T N82 文献标识码:AAppli ca ti on of H i gher2or der Sta tisti c to Ser vo Dr i ve Syste m Fa ult D i a gnosisLU Xue2lin,CHENG W ang2dong(Nanjing Re sear ch I nstitute of Electr onic s Technol ogy, Nanjing210013,China)【Abstra c t】 Wave l e t packe t deco mposition and high2order sta tistic we re desc ri bed,and a me thod of rada r se rv o drive syste m fault diagn osis was p ro posed in ter m s of combina ti on of wavelet packe t ana lysis and high2order statistic.W hen dri ve system is i n fault,the m ea sured vibra ti on signa ls a re non2stati onary and non2Gaussian and usua lly it contains strong noise.W av e let packet a2 na lysis can deco mpose t he vibra ti on signals,and then extract the fault cha racter istic signa l.Through analysis of fault cha r outeristic signa l with Highe r2order statisti c,fault diagnosis can be easily carried out.【Key word s】wave let packet ana lysis;highe r2order statisti c;fault diagnosis;drive s ystem0 引 言传动系统作为雷达伺服系统的一部分,是保证雷达正常工作的重要动力传动设备。
一、概述Matlab是一款经典的科学计算软件,广泛应用于信号处理、图像处理、控制系统等领域。
在信号处理中,除了常见的统计量如均值、方差等,高阶统计量也扮演着重要的角色。
本文将重点讨论Matlab中信号的高阶统计量的计算方法和应用。
二、高阶统计量概述1. 高阶统计量的定义高阶统计量是指高于一阶和二阶的统计特征,常见的高阶统计量包括三阶矩、四阶矩和偏度、峰度等。
2. 高阶统计量的意义在信号处理中,高阶统计量可以提供更丰富的信息,帮助分析信号的非线性特征和分布特性。
偏度和峰度可以用来描述信号的偏斜程度和峰值集中程度,对信号的非正态分布有重要意义。
三、Matlab中高阶统计量的计算1. 三阶矩的计算在Matlab中,可以使用`moment`函数来计算信号的三阶矩。
例如:```matlabdata = randn(100,1); 生成100个随机信号m3 = moment(data,3); 计算信号的三阶矩```2. 四阶矩的计算同样可以使用`moment`函数来计算信号的四阶矩。
例如:```matlabm4 = moment(data,4); 计算信号的四阶矩```3. 偏度和峰度的计算Matlab提供了`skewness`和`kurtosis`函数来计算信号的偏度和峰度。
例如:```matlabsk = skewness(data); 计算信号的偏度ku = kurtosis(data); 计算信号的峰度```四、高阶统计量的应用1. 非线性特征分析高阶统计量可以用来分析信号的非线性特征,例如偏度和峰度可以帮助判断信号的非正态分布特性。
2. 信号分类和识别利用高阶统计量可以提取更丰富的特征,有助于信号的分类和识别,例如在无线通信中可以利用信号的高阶统计量进行调制方式的判别。
3. 非高斯信号处理高阶统计量对非高斯信号的处理有重要意义,可以帮助对信号进行盲源分离、自适应滤波等处理。
五、结论高阶统计量在信号处理中具有重要意义,能够提供更丰富的信息,并在信号的分析、识别和处理中发挥着重要作用。