第七章 气体在固体表面上的吸附
- 格式:ppt
- 大小:2.88 MB
- 文档页数:104
气体与固体吸附吸附是指气体、液体或溶液中的分子在固体表面上附着的现象。
在气体与固体吸附中,气体分子会与固体表面发生相互作用,同时也会受到吸附物质与固体表面的作用力的影响。
了解气体与固体吸附的机制和性质,对于许多工业和科学应用都非常重要。
气体与固体吸附的种类主要分为两种:物理吸附和化学吸附。
物理吸附是指气体分子在固体表面上通过范德华力与固体相吸引而附着。
化学吸附则是气体分子与固体表面上的化学键结合,形成新的化学物质。
物理吸附和化学吸附之间的区别在于吸附能力和稳定性不同。
物理吸附往往发生在低温下,吸附能力不强且容易逆反应,而化学吸附则具有较高的吸附能力和较强的稳定性。
气体与固体吸附的机制有两种:亲和吸附和排斥吸附。
亲和吸附是指气体分子与固体表面之间存在吸引力,因此气体分子会附着在固体表面上。
排斥吸附则是指气体分子与固体表面之间存在排斥力,因此气体分子会在固体表面上发生反弹。
这两种机制的发生主要取决于气体分子与固体表面的性质以及气体分子的能量。
亲和吸附通常发生在气体分子与固体表面之间的相互作用力较强的情况下,而排斥吸附则发生在相互作用力相对较弱的情况下。
气体与固体吸附在许多领域具有重要的应用价值。
例如,在环境保护中,我们可以利用吸附技术清除空气和水中的污染物。
通过选择合适的吸附剂,例如活性炭或分子筛等,可以有效地吸附有害气体和溶解于水中的有机物质。
此外,气体吸附也是制备高纯度气体的重要步骤。
在工业生产中,通过将气体通过吸附床,可以去除气体中的杂质,得到纯净的气体。
此外,气体吸附在催化剂制备、气体分离和储存等领域也有广泛的应用。
固体吸附剂的选择对于气体与固体吸附的效果具有重要影响。
吸附剂应具有较大的比表面积、良好的吸附性能和很强的稳定性。
常用的吸附剂有活性炭、硅胶、氧化铝等。
活性炭是吸附性能最好的吸附剂之一,具有较大的比表面积和很强的吸附能力,可以吸附多种气体污染物。
硅胶具有较大的孔隙体积和较强的吸附能力,主要用于水分和有机溶剂的吸附。
气体吸附原理气体吸附是指气体分子在固体表面上吸附的现象,它是物理吸附和化学吸附的统称。
气体吸附原理是指气体分子在固体表面上吸附的基本规律和机理。
气体吸附是固体表面和气体分子之间相互作用的结果,它受到多种因素的影响,包括固体表面性质、气体分子性质、温度和压力等因素。
首先,固体表面的性质对气体吸附起着至关重要的作用。
固体表面的化学成分、结构和形貌都会影响气体分子在其上的吸附行为。
一般来说,具有大表面积和较多孔隙结构的固体对气体的吸附能力较强。
此外,固体表面的亲、疏水性也会影响气体分子在其上的吸附情况。
亲水性表面上的气体吸附能力一般要强于疏水性表面。
其次,气体分子的性质也对吸附过程起着重要作用。
气体分子的大小、极性和化学性质都会影响其在固体表面上的吸附行为。
一般来说,较小的气体分子在固体表面上的扩散能力较强,因此其吸附能力也会相对较强。
而极性分子在极性固体表面上的吸附能力要强于非极性分子。
此外,化学性质相近的气体分子在固体表面上的吸附行为也会相似。
此外,温度和压力对气体吸附也有重要影响。
一般来说,随着温度的升高,气体分子在固体表面上的吸附能力会减弱,因为温度升高会增加气体分子的热运动,使其逃离固体表面。
而在一定温度下,随着压力的增加,气体分子在固体表面上的吸附量会增加,直到达到一定平衡吸附量。
综上所述,气体吸附原理是一个复杂的过程,受到多种因素的影响。
了解气体吸附原理有助于我们更好地控制气体在固体表面上的吸附行为,从而应用于各种领域,如气体分离、催化剂、吸附制冷等。
同时,对气体吸附原理的深入研究也有助于开发新型的吸附材料,提高其吸附性能,为环境保护和能源利用等方面提供更多的可能性。
因此,气体吸附原理的研究具有重要的理论和应用价值。
气体被固体吸附的过程其焓变一、引言气体被固体吸附的过程是一种重要的物理现象,也是许多工业过程中必不可少的环节。
在这个过程中,气体分子会被吸附到固体表面上,从而减少气相中的浓度。
本文将介绍气体被固体吸附的机理以及其焓变。
二、气体被固体吸附的机理1. 吸附类型气体被固体吸附可以分为两种类型:物理吸附和化学吸附。
物理吸附是指气体分子与固体表面之间仅存在范德华力,因此只需要提高温度或者减小压力就可以解除吸附。
化学吸附则是指气体分子与固体表面形成了化学键,因此需要通过化学反应才能解除吸附。
2. 吸附机理物理吸附主要有两种机制:几何限制和范德华力。
几何限制是指由于孔道直径较小,只有较小的分子能够进入孔道内部而被吸附;范德华力则是指由于气相中分子之间存在范德华力,因此分子会被固体表面的分子所吸引而停留在表面上。
化学吸附则是指气体分子与固体表面形成了化学键,通常是通过电荷转移或者共价键形成。
这种吸附需要考虑气体分子的电子云和固体表面的电子云之间的相互作用。
三、焓变的计算1. 定义焓变是指在吸附过程中系统内部能量的变化。
由于气体被固体吸附是一个放热过程,因此焓变为负值。
2. 计算方法焓变可以通过以下公式计算:ΔH = Hfinal - Hinitial其中,Hfinal为系统在最终状态下的内部能量,Hinitial为系统在初始状态下的内部能量。
由于气体被固体吸附是一个放热过程,因此Hfinal比Hinitial要小,因此ΔH为负值。
3. 实例分析以氢气被活性炭吸附为例进行实例分析。
假设初始时活性炭表面没有任何氢气分子存在,在一定温度下将一定压力下的氢气与活性炭接触后,等待达到平衡状态。
最终实验结果表明,活性炭吸附了一定量的氢气分子。
根据实验数据可以计算出吸附量和温度等参数,从而计算出焓变。
四、总结气体被固体吸附是一个重要的物理现象,在许多工业过程中都有广泛应用。
本文介绍了气体被固体吸附的机理以及焓变的计算方法,并以氢气被活性炭吸附为例进行了实例分析。
第七章 表面现象1. 表面现象在自然界普遍存在,但有些自然现象与表面现象并不密切相关,例如(A) 气体在固体上的吸附(B) 微小固体在溶剂中溶解(C) 微小液滴自动呈球形(D) 不同浓度的蔗糖水溶液混合答案:D2. 液体的内压力和表面张力的联系与区别在于(A) 产生的原因相同而作用点不同(B) 产生的原因相同而作用的方向不同(C) 作用点相同而方向不同(D) 点相同而产生的原因不同答案:B3. 液体的附加压力和表面张力的联系与区别在于(A) 产生的原因和方向相同而大小不同(B) 作用点相同而方向和大小不同(C) 作用点相同而产生的原因不同(D) 产生的原因相同而方向不同答案:D4. 对于理想的水平液面,其值为零的表面物理量是(A) 表面能(B) 比表面吉布斯函数(C) 表面张力(D) 附加压力答案:D 。
r p σ2=∆对于平面,r →∞。
5. 表面张力是物质的表面性质,其值与很多因素有关,但是它与下列因素无关(A) 温度(B) 压力(C) 组成(D) 表面积答案:D6. 对弯曲液面上的蒸气压的描述正确的是(A) 大于平面液体的蒸气压(B) 小于平面液体的蒸气压(C) 大于或小于平面液体的蒸气压(D) 都不对答案:C7. 常见的一些亚稳现象都与表面现象有关,下面的说法正确的是(A) 过饱和蒸气是由于小液滴的蒸气压小于大液滴的蒸气压所致(B) 过热液体形成的原因是新相种子──小气泡的附加压力太小(C) 饱和溶液陈化,晶粒长大是因为小晶粒溶解度比大晶粒的小(D) 人工降雨时在大气中撒入化学物质的主要目的是促进凝结中心形成答案:D8. 物理吸附和化学吸附有许多不同之处,下面的说法中不正确的是(A) 物理吸附是分子间力起作用,化学吸附是化学键力起作用(B) 物理吸附有选择性,化学吸附无选择性(C) 物理吸附速率快,化学吸附速率慢(D) 物理吸附一般是单分子层或多分子层,化学吸附一般是单分子层答案:B。
正确的说法是物理吸附无选择性,化学吸附有选择性。