化学吸附与表面吸附态..
- 格式:ppt
- 大小:124.50 KB
- 文档页数:31
1.这种吸附包括对电解质吸附和非电解质吸附:对电解质吸附将使固体表面带电或电双层中组分发生变化,也可能是溶液中的某些离子被吸附到固体表面,而固体表面的离子则进入溶液之中,产生离子交换作用。
对非电解质吸附,一般表现为单分子层吸附,吸附层以外就是本体相溶液。
2.溶液有溶质和溶剂,都可能被固体吸附,但被吸附的程度不同。
正吸附:吸附层内溶质的浓度比本体相大。
负吸附:吸附层内溶质的浓度比本体相小。
显然,溶质被正吸附时,溶剂必被负吸附,反之亦然。
在稀溶液中,可以将溶剂的吸附影响忽略不计,可以简单的如气体吸附一样处理溶质的吸附,但在浓度较大时,则必须同时考虑二者的吸附.3.固体表面的粗糙度及污染程度对吸附有很大的影响,液体表面张力的影响也很重要。
图2-4给出了表面张力和接触角的关系(点击放大),图中:θ为接触角,图2-4 表面张力与接触角的关系当θ<90o时,为润湿。
θ越小,润湿性越大,液体在表面的展开能力越强。
当θ=0o时,为完全润湿。
液体在表面完全铺展开来当θ>90o时,为不润湿。
θ越大,润湿性越小,液体越不易铺展开,易收缩为球状。
当θ=180o时,完全不润湿,为球状。
θ角的大小。
与界面张力有关:γs=γL cosθ+γsL 其中:γs为固体表面张力;γL为液体表面张力;γsL为固体和液体界面张力。
该方程叫做Yong方程式。
它表明接触角的大小与三相界面之间的定量关系。
因此,凡是能引起任一界面张力变化的因素都能影响固体表面的润湿性。
从上式可以看到:当γs>γsL时,则cosθ>0为正值,θ<90°,此时为润湿;而且γs与γsL相差越大,θ角越小,润湿性越好。
当γs<γsL时,则cosθ<0为负值,θ>90°,此时不润湿;而且γs越大和γsL越小时,θ角越大,不润湿程度越严重。
应当指出的是,上面的平衡式仅适用于固、液、气三相的稳定接触的情况。
吸附技术知识点总结一、概述吸附技术是一种物理或化学过程,通过在固体表面或孔隙中吸附气体、液体或溶质来分离或提纯物质的方法。
吸附技术具有高效、节能、环保、易操作、低成本等优点,在化工、环保、能源、医药等领域得到了广泛应用。
吸附技术可分为气体吸附和液体吸附两种类型,其中气体吸附主要用于气体分离和净化,液体吸附主要用于溶剂回收和废水处理。
二、吸附过程的基本原理吸附过程是指物质在固体表面或孔隙中附着的过程,其基本原理可归结为几种主要机制:1. 物理吸附:也称范德华吸附,是指气体或液体分子在固体表面附着的一种物理现象。
其特点是吸附力弱,吸附物质易脱附。
物理吸附是一种可逆过程,通常在低温和高真空条件下发生。
2. 化学吸附:指气体或液体分子在固体表面形成化学键而附着的过程。
其特点是吸附力强,吸附物质难脱附。
化学吸附是一种不可逆过程,通常发生在较高温度和压力条件下。
3. 吸附热力学:吸附过程的热力学基础是吉布斯自由能的变化,吸附热力学理论可用于描述物质在固体表面或孔隙中的吸附行为,包括吸附等温线、吸附等压线等。
4. 吸附动力学:吸附过程的动力学基础是质量传递、传质速率、平衡时间等,用于描述物质在固体表面或孔隙中的吸附速率和平衡时间等动态过程。
三、气体吸附技术气体吸附技术是指利用固体吸附剂吸附气体分子的方法,常用于气体分离和净化领域。
1. 吸附剂的选择:气体吸附剂通常为多孔性固体,如活性炭、分子筛、铝土矿、氧化铝、硅胶等。
根据吸附剂的孔径、比表面积、孔隙分布等特性选择适合的吸附剂。
2. 吸附分离:气体吸附分离常用于分离气体混合物,如氧气/氮气、二氧化碳/甲烷等。
通常利用吸附剂在一定温度、压力下对气体混合物进行吸附分离,根据各气体在吸附剂上的吸附力差异实现气体分离。
3. 吸附净化:气体吸附净化常用于去除气体中的有害成分,如有机物、硫化物、氮氧化物等。
通常利用吸附剂对气体中的有害成分进行吸附,实现气体净化和净化剂再生。
第⼆章:表⾯吸附与表⾯反应第⼆章:表⾯吸附与表⾯反应吸附和脱附是催化反应中不可缺少的两步?是催化剂对反应施加作⽤的基本步骤,可以说,没有反应物吸附就不可能存在催化剂发⽣催化作⽤的问题。
?吸附理论是催化作⽤理论的基础理论§1、吸附现象1、吸附产⽣的原因2、基本术语图2-1:⽓体在致密⽆孔固体表⾯上的吸附(物理吸附模型)吸附:⽓体或液体在固体表⾯上,或⽓体在液体表⾯上的富集过程,这种现象也称之为吸附现象。
?脱附:吸附的逆过程固体表⾯层:与吸附物产⽣相互作⽤的表⾯层,⼀般只有⼏个原⼦层厚度。
?吸附量:?吸附物:流体中能被吸附的物质,也称吸附质。
?吸附态:吸附质在表⾯吸附后的状态。
?吸附剂:能起吸附作⽤的物质。
?吸附中⼼:吸附是发⽣在吸附剂表⾯上的局部位置表⾯吸附络合物:指得是吸附中⼼与吸附质共同构成的结合体。
3、吸附热效应吸附物在吸附剂上的吸附所产⽣的热效应。
?表⾯吸附常常是放热的,这是吸附的必然结果,因为,吸附物在吸附剂上的吸附过程都是⾃发过程,即:⾃由能ΔG吸<0⽽ΔG吸=ΔH吸—TΔS吸即ΔH吸—TΔS吸<0所以ΔH吸<TΔS吸换句话说,若ΔS吸为负值,则ΔH吸也必为负值。
此时,吸附为放热过程。
吸附物在吸附剂表⾯上形成了⼀个更为有序的体系,吸附物分⼦的⾃由度数必然减少,所以ΔS吸<0是这种吸附的必然结果,即ΔH吸<0。
?对物理吸附来说,被吸附的分⼦⼀定不发⽣解离,物理吸附⼀定是放热的。
对化学吸附来说,被吸附的分⼦会有两种情况:解离与不解离。
不解离的化学吸附,有ΔS吸<0,吸附过程⼀定是放热的解离化学吸附,可能有ΔS吸<0或ΔS吸>0,这样,吸附过程就可能为吸热的,也可能是放热的。
如:在适当的温度下,H2在Fe上的吸附:H2+Fe(受S污染)──→H2分⼦被解离为两个氢原⼦,且可在Fe表⾯上作⼆维⾃由运动。
被吸附的氢原⼦的⾃由度= 2(⼆维运动)+ 2(振动)= 4两个氢原⼦的⾃由度= 4×2 = 8氢分⼦= 3(三维运动)+ 3(振动+转动)= 6 所以:ΔS吸>0出现H2在Fe上的化学吸附为吸热。
化学吸附与表面酸性测定多相催化过程是通过基元步骤的循环将反应物分子转化为反应产物。
催化循环包括扩散,化学吸附,表面反应,脱附和反向扩散五个步骤。
由此可见,化学吸附是多相催化过程中的一个重要环节。
而且,反应物分子在催化剂表面上的吸附,决定着反应物分子被活化的程度以及催化过程的性质,例如活性和选择性。
因此研究反应物分子或探针分子在催化剂表面上的吸附,对于阐明反应物分子与催化剂表面相互作用的性质!催化作用的原理以及催化反应的机理具有十分重要的意义。
化学吸附是一种界面现象,它与催化、腐蚀、粘结等有密切的关系,对它的研究具有重要的科学和实用价值。
多年来,人们采用多种现代谱学技术并与常规的表征手段相结合,从分子水平考察化学吸附层的表面结构,吸附态以及分子与表面作用的能量关系,获得了广泛深入的研究结果,形成表面科学这一重要的学术领域,化学吸附也就成为重要的组成部分。
本章将从化学吸附的的基本原理出发,阐述化学吸附在多相催化研究中的应用,并用几个实例说明研究化学吸附应采用哪些方法、注意哪些环节,如何获得确切的化学吸附的信息,然后着重介绍从化学吸附角度研究表面酸性的方法。
化学吸附早年,人们用重量法和容量法研议究化学吸附。
随着科学技术的进步,各种现代谱学技术已成为研究化学吸附的主要手段。
催化研究工作者通过常规的方法和各种谱学技术研究化学吸附,用以阐明催化作用原理和催化反应机理。
1 化学吸附与多相催化的关联在化学吸附与多相催化关联的长期研究中,归纳出两个经验规则[1]。
(1)一个固体物质产生催化活性的必要条件,是至少有一种反应物在其表面上进行化学吸附。
换句话说,一种固体物质只有当其对反应物分子(至少是一种)具有化学吸附能力时,才有可能催化其反应。
(2)为了获得良好的催化活性,固体表面对反应物分子的吸附要适当。
多相催化需要的是较弱并且快速的化学吸附。
这个规则也可表述为:如果一个反应能被若干固体物催化,则单位表面上的反应速率,在相同覆盖度时与反应物的吸附强度成反比。
表面化学中的物理吸附与化学吸附表面化学是一门研究在物质表面和界面发生的化学反应和物理现象的学科。
其中,表面吸附是表面化学中最基础和重要的一个研究领域。
表面吸附分为物理吸附和化学吸附两种类型,它们是通过微观层面对电子和分子间相互作用的探讨,来研究物质表面和界面的吸附行为。
I. 物理吸附物理吸附又称为物理吸附或范德华力吸附。
物理吸附通常发生在低温和高压条件下,吸附物与吸附表面分子间的相互作用主要依靠弱范德华力作用。
当压力降低,温度上升或是吸附表面上其他物质的存在,物理吸附被打破,吸附物质会自发地脱离表面。
物理吸附过程中,吸附物质与表面之间的距离相对较大,因此吸附层不太稳定,极容易被其他物质所竞争。
但物理吸附的特殊性也同时带来了其独特的应用价值。
比如,在催化剂领域,物理吸附材料可以直接用于精细纯化和脱色,除去杂质分子。
此外,物理吸附材料还可以用于压缩储气罐、气体分离、分子筛等领域。
II. 化学吸附化学吸附又称为化学吸附或共价键吸附。
化学吸附的过程中,吸附物质与表面分子以化学键结合,形成新的化合物。
化学吸附是一种很稳定的吸附形式,所以化学吸附会使吸附物质非常难以离开表面。
化学吸附与物理吸附不同,它对吸附物质的大小,形状和产生反应的表面分子都有很高的选择性。
化学吸附的速率相对比较慢,所以需要较长的时间来实现吸附平衡,常常需要在高温和低压条件下才能实现。
值得注意的是,化学吸附不同于表面化学反应,表面化学反应中产生的反应产物不会保留在吸附表面上,而是会脱离唯一的表面能否使用。
III. 物理吸附和化学吸附的区别物理吸附和化学吸附是基本上不同的吸附形态。
它们的本质区别在于:吸附物质与表面分子之间的交互作用不同。
物理吸附是通过范德华力进行相互作用的,而化学吸附则是通过化学键组成的。
物理吸附的吸附层较薄,吸附对分子大小和形状的限制小。
化学吸附层较厚,吸附对分子大小和形状都有一定的选择性。
由于物理吸附材料具有较大的选择性、高吸附速度和可逆性,并且是一种比较稳定的吸附形式,因此在催化剂、捕捕捉有害气体方面得到广泛应用。