_混合策略纳什均衡(张克勇XXXX)
- 格式:pptx
- 大小:346.50 KB
- 文档页数:50
混合策略纳什均衡名词解释
嘿,朋友们!今天咱来聊聊混合策略纳什均衡!这可不是什么晦涩难懂的概念哦。
想象一下,在一个竞争的场景里,就像一场激烈的游戏,大家都在绞尽脑汁地想着怎么出招。
混合策略纳什均衡呢,就是在这种情况下,各方参与者都没办法通过单独改变自己的策略来获得更好的结果。
它就好像是一场微妙的平衡舞蹈!每个人都要在不同的选择之间跳跃,找到那个最合适的组合。
不是单纯地选择一个固定的策略,而是有时候这样,有时候那样,让对手捉摸不透。
好比是下棋,你不能总是走同样的几步,得灵活多变,根据对手的反应随时调整。
而且啊,这个均衡可不是那么容易达到的哦,需要各方参与者不断地试探、博弈。
它不是那种一眼就能看穿的简单玩意儿,而是隐藏在复杂的互动之中。
就像在迷雾中寻找方向,需要耐心和智慧。
在现实生活中,混合策略纳什均衡也无处不在呢!商业竞争中,企业要考虑怎么定价、怎么推广,不就是在寻找这种微妙的平衡吗?政治博弈中,各方势力也在不断调整策略,试图达到对自己最有利的状态。
甚至在我们的日常生活中,比如和朋友玩游戏,或者在一些选择中纠结,都能看到混合策略纳什均衡的影子。
它让我们明白,有时候没有绝对的最佳策略,只有在不断变化中找到的相对平衡。
混合策略纳什均衡就是这么神奇,这么有趣!它让我们看到了竞争和互动的复杂性,也让我们更加懂得如何在各种情况下做出明智的选择。
所以啊,别小瞧了这个概念,它可是有着大用处呢!。
博弈论混合策略纳什均衡名词解释博弈论混合策略纳什均衡是指在博弈论中,当参与者不能确定选
择某一个策略时,采取混合策略的情况下达到的均衡状态。
具体来说,混合策略是指在一个博弈中,参与者以一定的概率选
择不同的纯策略。
而纳什均衡是指在一个博弈中,参与者无法通过单
独改变自己的选择来获得更好的结果,即不存在任何参与者可以通过
改变自己的策略来让其他参与者不再选择当前策略。
混合策略纳什均衡是指游戏中所有参与者以一定的概率选择不同
的纯策略,并且这种概率分配对于所有参与者都是最优的。
也就是说,在混合策略纳什均衡下,参与者没有更好的选择可供其采取,而其他
参与者也没有更好的概率分配可供其选择。
拓展:
在博弈论中,还有许多其他类型的均衡概念,例如纯策略纳什均衡、帕累托均衡、部分均衡等等。
纯策略纳什均衡是指游戏中参与者
以确定性的纯策略进行选择,使得没有参与者可以通过改变其策略来
获得更好的结果。
帕累托均衡是指在一个博弈中,不存在可以改善任
何一个参与者的情况。
部分均衡是指只有某些参与者达到均衡状态,而其他参与者未达到均衡状态。
博弈论是研究决策制定者在相互影响下进行决策的数学工具。
通过分析不同的博弈策略和可能的结果,博弈论可以帮助我们理解冲突和合作的情况,并提供一些决策建议。
混合策略纳什均衡计算方法(一)混合策略纳什均衡计算方法什么是混合策略纳什均衡混合策略纳什均衡是博弈论中的一个概念,指的是每个玩家都选择一定的概率来执行每一个可行的行动。
这样,游戏的结果不再是唯一的,而是有一定的概率分布。
如何计算混合策略纳什均衡计算混合策略纳什均衡需要用到线性规划的方法,具体步骤如下:1.确定每个玩家的策略空间,即每个玩家可选的所有策略。
2.建立概率分布矩阵,即每个玩家选择每个策略的概率。
3.利用概率分布矩阵和游戏的收益矩阵计算出每个玩家的期望收益。
4.建立线性规划模型来最大化每个玩家的期望收益。
5.求解线性规划模型得到混合策略纳什均衡。
混合策略纳什均衡的应用混合策略纳什均衡在实际应用中有广泛的应用。
比如在围棋、国际象棋等棋类游戏中,人类选手常常会使用混合策略来应对对手的不确定性。
同时,在市场竞争、拍卖、投资等领域,混合策略也可以用来帮助决策者做出最优的决策。
总结混合策略纳什均衡是博弈论中的重要概念,在实际应用中具有广泛的应用前景。
计算混合策略纳什均衡需要用到线性规划的方法,但具体计算步骤并不复杂。
我们可以通过深入理解和应用混合策略纳什均衡,来帮助我们更好地应对不确定性和竞争。
混合策略纳什均衡的优势混合策略纳什均衡作为一种考虑不确定性的策略,相较于确定性策略有以下优势:1.能够应对对手的随机性,减小被对手利用的风险;2.能够在一定程度上改变游戏的结果分布,增加自己的收益,同时降低失败的风险。
混合策略纳什均衡的局限性尽管混合策略纳什均衡具有很多优点,但是也存在以下局限性:1.混合策略需要玩家具有一定的判断力和计算能力,否则可能难以计算出最优解;2.没有一个确定的策略来保证获胜,更多地要依靠概率和运气;3.当游戏中有多个混合策略纳什均衡时,玩家可能难以选择最优的策略。
结语混合策略纳什均衡是一个重要的博弈论概念,应用范围广泛。
尽管混合策略存在一些局限性,但是这并不妨碍我们充分应用这一理论来帮助我们在不确定性和竞争中取得更好的结果。
目录[隐藏]1 什么是混合策略纳什均衡2 解混合策略纳什均衡的方法3 混合策略纳什均衡的经典博弈——猜谜博弈[1]4 混合策略纳什均衡博弈与其他均衡的关系[1]5 参考文献[编辑][编辑][编辑]混合策略纳什均衡混合策略纳什均衡(Mixed Strategy Nash Equilibrium )什么是混合策略纳什均衡混合策略纳什均衡:在n 个参与人的博弈G={S 1 ,... S n ; u 1,...u n }中,混合策略组合构成一个纳什均衡,如果对于所有的i =1,2...,n 下式成立:也就是说,如果一个策略组合使任何一个参与人的策略都是相对于其他参与人的策略的最佳策略,这个策略就构成一个纳什均衡,不管这个策略是混合策略还是纯策略。
混合策略纳什均衡是面对其他博弈者选择的不确定性的一个理性对策,其主要特征是作为混合策略一部分的每一个纯策略有相同的期望值,否则,一个博弈者会选择那个期望值最高的策略而排除所有其他策略,这意味着原初的状态不是一个均衡。
解混合策略纳什均衡的方法1、最大化支付法:即最大化各个参与人的效用函数。
2、支付相等法:根据前面分析的猜硬币博弈中参与人的策略的思路,每个参与人的混合策略都使其余参与人的任何纯策略的期望支付相等,因此,解混合策略纳什均衡可以令参与人的各个纯策略支付相等,构成方程组求解。
混合策略纳什均衡的经典博弈——猜谜博弈[1]两个局中人A 、B 手里各拿一枚硬币,每人可以选择正面向上或反面向上,然后同时亮出,如果两枚硬币正反面相同,B 付给A1元钱,如果两枚硬币正反面不相同,A 付给B1元钱。
在这种情况下,局中人A 、B 如何选择呢?下图给出这个博弈的双变量收益矩阵。
这是一个两人零和博弈,在每一个结局中一方所得即为另一方所失,即两个局中人的收益之和恰好等于零。
在双变量收益矩阵中采用画线的方法,在这个博弈中找不到纯策略纳什均衡。
那么,猜谜博弈是否存在混合策略纳什均衡呢?1950年纳什证明了任何有限博弈都至少存在一个纳什均衡(包括纯策略纳什均衡和混合策略纳什均衡)。
混合策略纳什均衡计算方法
混合策略纳什均衡是博弈论中的一种解决方法,它指的是在博弈中每个玩家都使用多种策略的概率分布,使得任何一个玩家单独改变自己的策略都不会导致自己的收益增加。
计算混合策略纳什均衡需要使用到线性规划的方法。
具体来说,可以通过列出每个玩家的收益矩阵和概率分布向量的线性规划问题,然后求解这些线性规划问题的最优解从而得到混合策略纳什均衡。
在求解线性规划时,通常使用单纯形法或内点法等算法。
这些算法的基本思想是从某个初始解开始,逐步移动到更优的解,直到不能找到更优解为止。
需要注意的是,在实际应用中,混合策略纳什均衡的计算可能比较复杂,特别是当博弈参与者数量较多或者策略空间较大时。
此外,即使得到了混合策略纳什均衡,也不一定能保证博弈的稳定性,因此需要对结果进行进一步的分析和评估。
总之,混合策略纳什均衡是博弈论中的一种重要解决方法,对于理解和分析博弈问题具有重要的意义。
第四章 混合策略纳什均衡攻而必取者,攻其所不守也;守而必固者,守其所必攻也。
故善攻者,敌不知其所守;善守者,敌不知其所攻;不乎神乎,至于无声,故能为敌之司命。
——孙子故事模型假设你在地面逃亡,而你的敌人正在空中对你实施打击。
你可以选择躲到坚固的掩体下面,也可以选择躲到一间民房里。
你首先可能想到躲到坚固掩体下面是更好的,因为更坚固的地方会更安全。
但是,你可能马上意识到,你的敌人很可能也会猜测到你将躲到最坚固的地方,所以他们也就会集中火力轰炸那些坚固的掩体——最安全的地方反而变成了最危险的地方;于是你决定还是到民房,但是你的敌人也会想到这一点而进攻民房……最后,你想不出究竟该躲在哪里,你的敌人也不知道你究竟会躲在哪里,于是大家都在碰运气。
这样的局势并非假想,现实中的确存在诸多类似的情形,我们称之为混合对策情形。
§4-1 策略混合动机1、懦夫博弈中的策略混合回想一下上一章图3-5的懦夫博弈。
当时我们得到了两个纯策略纳什均衡:(向前,转向)和(转向,向前)。
为了更方便,我们将这个博弈的赢利在这里再画一遍(见图4-1)。
司机乙 转向 向前司机甲(你)转向向前图4-1 懦夫博弈但问题可以想得更复杂些。
假如你是司机甲,你究竟会转向还是继续向前?这很可能取决于你对司机乙的判断:司机乙选择转向还是选择向前决定着你的选择。
但是你无法肯定司机乙是否会转向,因为他的行为取决于他对你的揣摩。
所以,最终你也许只能猜测司机乙有多少可能转向、有多少可能向前。
假如,你认为司机乙转向的可能性为50%,向前的可能性也为50%,那么你应该选择转向还是向前?这取决于你采取不同策略的预期赢利,它们可以计算如下:◆你选择转向的预期赢利:1×50%+(-2)×50%= - 0.5◆你选择向前的预期赢利:2 × 50%+(-4)×50% =-1你将发现,当司机乙转向、向前的可能性各为50%的时候,你选择转向是最合适的,因为转向的预期贏利(—0.5)比向前的预期赢利( -1)要大一些。