高考数学-等差数列、等比数列与数列求和(教师版)
- 格式:doc
- 大小:250.71 KB
- 文档页数:11
2018高考--数列(二)等比数列及其前n 项和知识梳理1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式(1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k.[小题体验]1.(教材习题改编)将公比为q 的等比数列a 1,a 2,a 3,a 4,…依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列C .公比为q 3的等比数列D .不一定是等比数列 答案:B2.等比数列{a n }中,a 3=12,a 4=18,则a 6=________.解析:法一:由a 3=12,a 4=18,得⎩⎪⎨⎪⎧a 1q 2=12,a 1q 3=18,解得a 1=163,q =32,∴a 6=a 1q 5=163×⎝ ⎛⎭⎪⎫325=812.法二:由等比数列性质知,a 23=a 2a 4,∴a 2=a 23a 4=12218=8,又a 24=a 2a 6,∴a 6=a 24a 2=1828=812.答案:8123.(教材习题改编)在等比数列{a n }中,已知a 1=-1,a 4=64,则公比q =________,S 4=________. 答案:-4 514.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4 D .±4解析:选C a 25=a 3a 7=2×8=16,∴a 5=±4,又∵a 5=a 3q 2>0,∴a 5=4.5.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________.答案:-12或1课堂——考点突破考点一 等比数列的基本运算 [典例引领]1.(2017·武汉调研)若等比数列{a n }的各项均为正数,a 1+2a 2=3,a 23=4a 2a 6,则a 4=( ) A .38 B .245 C .316 D .916 解析:选C 由题意,得⎩⎪⎨⎪⎧a 1+2a 1q =3,a 1q 22=4a 1q ·a 1q 5,解得⎩⎪⎨⎪⎧a 1=32,q =12,所以a 4=a 1q 3=32×⎝ ⎛⎭⎪⎫123=316.2.(2015·全国卷Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________. 解析:∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列.又∵S n =126,∴21-2n1-2=126,∴n =6.答案:6[即时应用]1.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A .13 B .-13 C .19 D .-19 解析:选C 设等比数列{a n }的公比为q , ∵S 3=a 2+10a 1,a 5=9,∴⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=a 1q +10a 1,a 1q 4=9,解得⎩⎪⎨⎪⎧q 2=9,a 1=19.2.(2017·洛阳统考)设等比数列{a n }的前n 项和为S n ,若a 1+8a 4=0,则S 4S3=( ) A .-53 B .157 C .56D .1514解析:选C 在等比数列{a n }中,因为a 1+8a 4=0,所以q =-12,所以S 4S 3=a 11-q 41-q a 11-q 31-q =1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-123=151698=56. 3.(2015·安徽高考)已知数列{}a n 是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{}a n 的前n 项和等于________.解析:设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{}a n 为递增数列,∴⎩⎪⎨⎪⎧a 1=1,q =2,∴S n =1-2n1-2=2n -1.答案:2n-1考点二 等比数列的判定与证明[典例引领](2016·全国丙卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n .由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.[即时应用]设数列{}a n 的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=8⎝ ⎛⎭⎪⎫1+32+54+1,解得a 4=78. (2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2).∵4a 3+a 1=4×54+1=6=4a 2,∴4a n +2+a n =4a n +1,∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 22a n +1-a n =12,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.考点三 等比数列的性质[典例引领]1.(2017·湖南师大附中月考)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=( )A .1B .2C .4D .8解析:选D 由等差数列的性质,得a 6+a 8=2a 7.由a 6-a 27+a 8=0,可得a 7=2,所以b 7=a 7=2.由等比数列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8.2.若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.解析:设数列{a n }的公比为q ,由已知得S 4S 2=1+a 3+a 4a 1+a 2=5, 即1+q 2=5,所以q 2=4, S 8S 4=1+a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=1+q 4=1+16=17. 答案:17 [即时应用]1.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A .5 B .9 C .log 345 D .10解析:选 D 由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.2.(2017·长春调研)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n -1a n a n +1=a 31q 3n -3=324,因此q 3n -6=81=34=q 36,所以3n -6=36,即n =14.答案:14课后.三维演练一、基础巩固1.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列解析:选D 由等比数列的性质得,a 3·a 9=a 26≠0,因此a 3,a 6,a 9一定成等比数列,选D .2.在正项等比数列{a n }中,a 1=1,前n 项和为S n ,且-a 3,a 2,a 4成等差数列,则S 7的值为( ) A .125 B .126 C .127 D .128解析:选C 设{a n }的公比为q ,则2a 2=a 4-a 3,又a 1=1,∴2q =q 3-q 2,解得q =2或q =-1,∵a n >0,∴q >0,∴q =2,∴S 7=1-271-2=127.3.(2016·石家庄质检)已知数列{a n }的前n 项和为S n ,若S n =2a n -4(n ∈N *),则a n =( )A .2n +1B .2nC .2n -1D .2n -2解析:选A 依题意,a n +1=S n +1-S n =2a n +1-4-(2a n -4),则a n +1=2a n ,令n =1,则S 1=2a 1-4,即a 1=4,∴数列{a n }是以4为首项,2为公比的等比数列,∴a n =4×2n -1=2n +1,故选A .4.在等比数列{a n }中,若a 1·a 5=16,a 4=8,则a 6=________. 解析:由题意得,a 2·a 4=a 1·a 5=16,∴a 2=2,∴q 2=a 4a 2=4,∴a 6=a 4q 2=32.答案:325.在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________. 解析:∵a 5-a 1=15,a 4-a 2=6.∴⎩⎪⎨⎪⎧a 1q 4-a 1=15,a 1q 3-a 1q =6(q ≠1) 两式相除得q 2+1q 2-1q q 2-1=156,即2q 2-5q +2=0, ∴q =2或q =12,当q =2时,a 1=1;当q =12时,a 1=-16(舍去).∴a 3=1×22=4. 答案:4二、巩固加强1.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20C .100D .200解析:选C a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100. 2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A .18 B .-18 C .578 D .558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:选A ∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是以公比q =3的等比数列.∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.4.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为( )A .-2B .2C .-3D .3解析:选B 设公比为q ,若q =1,则S 2m S m =2,与题中条件矛盾,故q ≠1.∵S 2m S m =a 11-q 2m1-q a 11-qm1-q=q m+1=9,∴q m =8.∴a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1,∴m =3,∴q 3=8,∴q =2. 6.(2015·湖南高考)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解析:因为3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简,得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.答案:3n -17.(2017·海口调研)设数列{a n }的前n 项和为S n .且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=________.解析:依题意得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=1-14n +21-14=43⎝ ⎛⎭⎪⎫1-14n +2.答案:43⎝⎛⎭⎪⎫1-14n +28.(2017·兰州诊断性测试)在公差不为零的等差数列{a n }中,a 1=1,a 2,a 4,a 8成等比数列. (1)求数列{a n }的通项公式;(2)设b n =2a n ,T n =b 1+b 2+…+b n ,求T n . 解:(1)设等差数列{a n }的公差为d ,则依题意有⎩⎪⎨⎪⎧a 1=1,a 1+3d2a 1+d a 1+7d解得d =1或d =0(舍去),∴a n =1+(n -1)=n . (2)由(1)得a n =n ,∴b n =2n,∴b n +1b n=2,∴{b n }是首项为2,公比为2的等比数列,∴T n =21-2n1-2=2n +1-2.9.(2016·云南统测)设等比数列{a n }的前n 项和为S n ,a 1+a 2+a 3=26,S 6=728. (1)求数列{a n }的通项公式;(2)求证:S 2n +1-S n S n +2=4×3n.解:(1)设等比数列{a n }的公比为q ,由728≠2×26得,S 6≠2S 3,∴q ≠1.由已知得⎩⎪⎨⎪⎧S 3=a 11-q 31-q=26,S 6=a11-q 61-q=728,解得⎩⎪⎨⎪⎧a 1=2,q =3.∴a n =2×3n -1.(2)证明:由(1)可得S n =21-3n1-3=3n-1.∴S n +1=3n +1-1,S n +2=3n +2-1. ∴S 2n +1-S n S n +2=(3n +1-1)2-(3n -1)(3n +2-1)=4×3n. 10.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2),∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). ∵a 1=5,a 2=5,∴a 2+2a 1=15,∴a n +2a n -1≠0(n ≥2),∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列.(2)由(1)得a n +1+2a n =15×3n -1=5×3n,则a n +1=-2a n +5×3n ,∴a n +1-3n +1=-2(a n -3n).又∵a 1-3=2,∴a n -3n≠0,∴{a n -3n}是以2为首项,-2为公比的等比数列.∴a n -3n =2×(-2)n -1,即a n =2×(-2)n -1+3n.第四节数列求和一、知识梳理 1.公式法(1)等差数列{a n }的前n 项和S n =n a 1+a n2=na 1+n n -1d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常用的裂项公式有:①1n n +1=1n -1n +1; ②12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.[小题体验]1.若S n =1-2+3-4+5-6+…+(-1)n -1·n ,则S 50=________. 答案:-252.(教材习题改编)数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________.答案:n 2+1-12n课堂.考点突破考点一 公式法求和[题组练透]1.(2017·重庆适应性测试)在数列{a n }中,a n +1-a n =2,a 2=5,则数列{a n }的前4项和为( ) A .9 B .22 C .24 D .32解析:选C 依题意得,数列{a n }是公差为2的等差数列,a 1=a 2-2=3,因此数列{a n }的前4项和等于4×3+4×32×2=24,选C . 2.若等比数列{a n }满足a 1+a 4=10,a 2+a 5=20,则{a n }的前n 项和S n =________.解析:由题意a 2+a 5=q (a 1+a 4),得20=q ×10,故q =2,代入a 1+a 4=a 1+a 1q 3=10,得9a 1=10,即a 1=109.故S n =1091-2n1-2=109(2n -1).答案:109(2n-1)3.已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得⎩⎪⎨⎪⎧a 1+2d =2,3a 1+3×22d =92,化简得⎩⎪⎨⎪⎧a 1+2d =2,a 1+d =32,解得⎩⎪⎨⎪⎧a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8.设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2,故{b n }的前n 项和T n =b 11-q n 1-q=11-2n1-2=2n-1.二、分组求和[典例引领](2016·北京高考)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解:(1)设等比数列{b n }的公比为q ,则q =b 3b 2=93=3,所以b 1=b 2q=1,b 4=b 3q =27,所以b n =3n -1(n ∈N *).设等差数列{a n }的公差为d .因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2.所以a n =2n -1(n ∈N *).(2)由(1)知,c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n 1+2n -12+1-3n1-3=n 2+3n-12.[即时应用](2017·兰州实战考试)在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差是d . ∵a 3+a 8-(a 2+a 7)=2d =-6, ∴d =-3,∴a 2+a 7=2a 1+7d =-23,解得a 1=-1, ∴数列{a n }的通项公式为a n =-3n +2.(2)∵数列{a n +b n }是首项为1,公比为q 的等比数列,∴a n +b n =q n -1,即-3n +2+b n =q n -1,∴b n =3n -2+q n -1.∴S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q 2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n2;当q ≠1时,S n =n 3n -12+1-qn1-q.考点三 错位相减法求和[典例引领] (2016·山东高考)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =a n +1n +1b n +2n,求数列{c n }的前n 项和T n .解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,满足上式, 所以a n =6n +5.设数列{b n }的公差为d . 由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧ 11=2b 1+d ,17=2b 1+3d ,可解得⎩⎪⎨⎪⎧b 1=4,d =3.所以b n =3n +1. (2)由(1)知c n =6n +6n +13n +3n =3(n +1)·2n +1, 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+41-2n1-2n +12n +2 =-3n ·2n +2,所以T n =3n ·2n +2.[即时应用](2017·泉州调研)已知等差数列{a n }的前n 项和S n 满足S 3=6,S 5=15. (1)求{a n }的通项公式;(2)设b n =a n2a n,求数列{b n }的前n 项和T n .解:(1)设等差数列{a n }的公差为d ,首项为a 1, ∵S 3=6,S 5=15, ∴⎩⎪⎨⎪⎧3a 1+12×33-1d =6,5a 1+12×55-1d =15,即⎩⎪⎨⎪⎧a 1+d =2,a 1+2d =3,解得⎩⎪⎨⎪⎧a 1=1,d =1.∴{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×1=n . (2)由(1)得b n =a n 2a n =n2n , ∴T n =12+222+323+…+n -12n -1+n2n , ①∴12T n =122+223+324+…+n -12n +n2n +1, ②①-②得12T n =12+122+123+…+12n -n 2n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n -n 2n +1,∴T n =2-2+n2n .考点四 裂项相消法求和 常见的命题角度有:(1)形如a n =1n n +k型;(2)形如a n =1n +k +n 型;(3)形如a n =n +1n 2n +22型.[题点全练]角度一:形如a n =1n n +k型1.(2017·西安质检)等差数列{a n }的各项均为正数,a 1=1,前n 项和为S n ;数列{b n }为等比数列,b 1=1,且b 2S 2=6,b 2+S 3=8.(1)求数列{a n }与{b n }的通项公式;(2)求1S 1+1S 2+…+1S n.解:(1)设等差数列{a n }的公差为d ,d >0,{b n }的公比为q ,则a n =1+(n -1)d ,b n =q n -1.依题意有⎩⎪⎨⎪⎧q 2+d 6,q +3+3d =8,解得⎩⎪⎨⎪⎧d =1,q =2或⎩⎪⎨⎪⎧d =-43,q =9(舍去).故a n =n ,b n =2n -1.(2)由(1)知S n =1+2+…+n =12n (n +1),1S n =2n n +1=2⎝ ⎛⎭⎪⎫1n -1n +1, ∴1S 1+1S 2+…+1S n=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 角度二:形如a n =1n +k +n型2.(2017·江南十校联考)已知函数f (x )=x α的图象过点(4,2),令a n =1f n +1f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=( ) A . 2 016-1 B . 2 017-1 C . 2 018-1D . 2 018+1解析:选C 由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.∴a n =1f n +1f n =1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018-2 017)= 2 018-1.角度三:形如a n =n +1n 2n +22型3.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ;(2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n<564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n ,故b n =n +1n +22a 2n =n +14n 2n +22=116⎣⎢⎡⎦⎥⎤1n2-1n +22. T n =116⎣⎢⎡1-132+122-142+132-152+…+1n -12-1n +12+⎦⎥⎤1n2-1n +22=116⎣⎢⎡⎦⎥⎤1+122-1n +12-1n +22<116⎝ ⎛⎭⎪⎫1+122=564. [演练冲关](2016·石家庄一模)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2.∴{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴数列{b n }的前n 项和T n =12⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12×1-12n +1=n 2n +1.课后.三维演练一、基础巩固1.已知等差数列{a n }的前n 项和为S n ,若S 3=9,S 5=25,则S 7=( )A .41B .48C .49D .56解析:选C 设S n =An 2+Bn ,由题知,⎩⎪⎨⎪⎧S 3=9A +3B =9,S 5=25A +5B =25,解得A =1,B =0,∴S 7=49.2.数列{1+2n -1}的前n 项和为( )A .1+2nB .2+2nC .n +2n -1D .n +2+2n解析:选C 由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n-1.3.(2017·江西新余三校联考)数列{a n }的通项公式是a n =(-1)n(2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100解析:选D 根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100,故选D .4.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n =________.解析:∵a 2n +1-6a 2n =a n +1a n , ∴(a n +1-3a n )(a n +1+2a n )=0, ∵a n >0,∴a n +1=3a n ,又a 1=2,∴{a n }是首项为2,公比为3的等比数列,∴S n =21-3n1-3=3n-1.答案:3n-15.(2017·广西高三适应性测试)已知数列{a n }的前n 项和S n =n 2,则数列⎩⎨⎧⎭⎬⎫1a n +1-1的前n 项和T n =________.解析:∵a n =⎩⎪⎨⎪⎧1,n =1,n 2n -12,n ≥2=⎩⎪⎨⎪⎧1,n =1,2n -1,n ≥2,∴a n =2n -1.∴1a n +1-1=12n +12-1=14⎝ ⎛⎭⎪⎫1n -1n +1, ∴T n =14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=n4n +4. 答案:n4n +4二、巩固加强1.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A .158或5B .3116或5C .3116D .158解析:选C 设{a n }的公比为q ,显然q ≠1,由题意得91-q 31-q =1-q 61-q ,所以1+q 3=9,得q =2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116.2.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=( )A .1-4nB .4n-1 C .1-4n 3 D .4n-13解析:选B 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1, 即{|b n |}是以3为首项,4为公比的等比数列.∴|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.3.(2017·江西重点中学联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( )A .5B .6C .7D .16解析:选C 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数列重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.故选C .4.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________. 解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n 2+2n2=n (n +1).答案:n (n +1) 5.(2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________. 解析:∵a n +1=2S n +1,∴S n +1-S n =2S n +1,∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎪⎫S n +12,∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1,∴S 5+12=⎝ ⎛⎭⎪⎫S 1+12×34=32×34=2432,∴S 5=121. 答案:1 1216.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 017=________.解析:∵数列{a n }满足a 1=1,a n +1·a n =2n,①∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n -1,②∵①÷②得a n +1a n -1=2, ∴数列{a n }的奇数项、偶数项分别成等比数列,∴S 2 017=1-21 0091-2+21-21 0081-2=21 010-3.答案:21 010-36.已知等比数列{a n }的各项均为正数,a 1=1,公比为q ;等差数列{b n }中,b 1=3,且{b n }的前n 项和为S n ,a 3+S 3=27,q =S 2a 2.(1)求{a n }与{b n }的通项公式;(2)设数列{c n }满足c n =32S n ,求{c n }的前n 项和T n .解:(1)设数列{b n }的公差为d ,∵a 3+S 3=27,q =S 2a 2,∴q 2+3d =18,6+d =q 2,联立方程可求得q =3,d =3,∴a n =3n -1,b n =3n .(2)由题意得:S n =n 3+3n 2,c n =32S n =32×23×1n n +1=1n -1n +1.∴T n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1.7.(2017·广州综合测试)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n . 解:(1)设数列{a n }的公比为q ,因为a 2=4,所以a 3=4q ,a 4=4q 2. 因为a 3+2是a 2和a 4的等差中项, 所以2(a 3+2)=a 2+a 4.即2(4q +2)=4+4q 2,化简得q 2-2q =0.因为公比q ≠0,所以q =2.所以a n =a 2q n -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n,所以b n =2log 2a n -1=2n -1,所以a n b n =(2n -1)2n,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n,①2T n =1×22+3×23+5×24+…+(2n -3)2n +(2n -1)·2n +1.② 由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×41-2n -11-2-(2n -1)2n +1=-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.三、提高选做1.(2017·云南师大附中检测)已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________.解析:由a 1=2,a 2n =a n +1,a 2n +1=n -a n ,得a 2n +a 2n +1=n +1,∴a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=2+2+3+…+50=1 276,∵a 100=1+a 50=1+(1+a 25)=2+(12-a 12)=14-(1+a 6)=13-(1+a 3)=12-(1-a 1)=13,∴a 1+a 2+…+a 100=1 276+13=1 289.答案:1 2892.(2017·湖南省东部六校联考)已知等比数列{a n }满足2a 1+a 3=3a 2,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n +log 21a n,S n =b 1+b 2+…+b n ,求使S n -2n +1+47<0成立的n 的最小值.解:(1)设等比数列{a n }的公比为q ,依题意,有⎩⎪⎨⎪⎧ 2a 1+a 3=3a 2,a 2+a 4=2a 3+2即⎩⎪⎨⎪⎧a 12+q 23a 1q , ①a 1q +q 32a 1q 2+4. ②由①得q 2-3q +2=0,解得q =1或q =2. 当q =1时,不合题意,舍去;当q =2时,代入②得a 1=2,所以a n =2·2n -1=2n.故所求数列{a n }的通项公式a n =2n (n ∈N *).(2)因为b n =a n +log 21a n =2n +log 212n =2n-n ,所以S n =2-1+22-2+23-3+ (2)-n=(2+22+23+ (2))-(1+2+3+…+n )=21-2n1-2-n 1+n 2=2n +1-2-12n -12n 2.因为S n -2n +1+47<0,所以2n +1-2-12n -12n 2-2n +1+47<0,即n 2+n -90>0,解得n >9或n <-10.因为n ∈N *,所以使S n -2n +1+47<0成立的正整数n 的最小值为10.。
等比数列求和公式和等差数列求和公式
等比数列求和公式:设等比数列的首项为a,公比为r,求前n项和为Sn,则等比数列求和公式为:
Sn=a*(r^n1)/(r1)
其中,n为项数。
举例说明:
假设有一个等比数列,首项a为3,公比r为2,求前5项的和。
根据等比数列求和公式,代入a=3,r=2,n=5:
S5=3*(2^51)/(21)
=3*(321)/1
=3*31
=93
所以前5项的和为93。
等差数列求和公式:设等差数列的首项为a,公差为d,求前n项和为Sn,则等差数列求和公式为:
Sn=n*(a+l)/2
其中,n为项数,l为最后一项(第n项)。
举例说明:
假设有一个等差数列,首项a为2,公差d为3,求前6项的和。
首先需要确定最后一项l,可以通过等差数列通项公式
an=a+(n1)*d来计算,代入a=2,d=3,n=6:
l=a+(n1)*d
=2+(61)*3
=2+5*3
=2+15
=17
然后,代入公式Sn=n*(a+l)/2,代入n=6,a=2,l=17:
S6=6*(2+17)/2
=6*19/2
=6*9.5
=57
所以前6项的和为57。
2020年高考理科数学一轮总复习等差数列及其前n 项和[基础梳理]1.等差数列的有关概念 (1)定义:①文字语言:从第2项起,每一项与它的前一项的差都等于同一个常数. ②符号语言:a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项. 2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.1.两个重要技巧(1)若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d .(2)若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元. 2.三个必备结论(1)若等差数列{a n }的项数为偶数2n ,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S偶-S 奇=nd ,S 奇S 偶=a n a n +1.(2)若等差数列{a n }的项数为奇数2n +1,则①S 2n +1=(2n +1)a n +1;②S 奇S 偶=n +1n .(3)在等差数列{a n }中,若a 1>0,d <0,则满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;若a 1<0,d >0,则满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .3.两个函数等差数列{a n },当d ≠0时,a n =dn +(a 1-d ),是关于n 的一次函数; S n =d 2n 2+(a 1-d2)n 是无常数项的二次函数. [四基自测]1.(教材改编)已知数列{a n }中,a n =3n +4,若a n =13,则n 等于( ) A .3 B .4 C .5 D .6答案:A2.已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为( ) A .1 B .2 C .3 D .4 答案:B3.(教材改编)已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8=( ) A .18 B .36 C .54 D .72 答案:D4.在100以内的正整数中有________个能被6整除的数. 答案:165.已知等差数列5,427,347,…,则前n 项和S n =________. 答案:514(15n -n 2)考点一 等差数列的性质及基本量的运算◄考基础——练透 角度1 用等差数列的基本量a 1和d 进行计算[例1] (1)(2018·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10D .12解析:设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3⎣⎢⎡⎦⎥⎤3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10. 故选B. 答案:B(2)已知等差数列{a n }的各项都为整数,且a 1=-5,a 3a 4=-1,则|a 1|+|a 2|+…+|a 10|=( ) A .70 B .58 C .51D .40解析:设等差数列{a n }的公差为d , 由各项都为整数得d ∈Z ,因为a 1=-5,所以a 3a 4=(-5+2d )(-5+3d )=-1,化简得6d 2-25d +26=0,解得d =2或d =136(舍去),所以a n =2n -7,所以|a 1|+|a 2|+…+|a 10|=5+3+1+1+3+…+13=9+7×(1+13)2=58.故选B.答案:B角度2 用等差数列性质进行计算[例2] (1)已知等差数列{a n }的前n 项和为S n ,若a 2+a 3+a 10=9,则S 9=( ) A .3 B .9 C .18D .27 解析:设等差数列{a n }的首项为a 1,公差为d .∵a 2+a 3+a 10=9,∴3a 1+12d =9,即a 1+4d =3,∴a 5=3,∴S 9=9×(a 1+a 9)2=9×2a52=27.故选D.答案:D(2)(2019·河北唐山第二次模拟)设{a n}是任意等差数列,它的前n项和、前2n项和与前4n项和分别为X,Y,Z,则下列等式中恒成立的是()A.2X+Z=3Y B.4X+Z=4YC.2X+3Z=7Y D.8X+Z=6Y解析:设数列{a n}的前3n项的和为R,则由等差数列的性质得X,Y-X,R-Y,Z-R成等差数列,所以2(Y-X)=X+R-Y,解之得R=3Y-3X,又因为2(R-Y)=Y-X+Z-R,把R=3Y-3X代入得8X+Z=6Y,故选D.答案:D等差数列的计算技巧1.已知等差数列{a n}中,a2=1,前5项和S5=-15,则数列{a n}的公差为()A.-3 B.-5 2C.-2 D.-4 解析:设等差数列{a n}的首项为a1,公差为d,因为⎩⎨⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15,解得d =-4,故选D.答案:D2.在等差数列{a n }中,a 1+a 5=8,a 4=7,则a 5=( ) A .11 B .10 C .7D .3解析:∵a 1+a 5=2a 3=8,∴a 3=4, 又∵a 3+a 5=2a 4, ∴a 5=2a 4-a 3=14-4=10. 故选B. 答案:B3.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列的前13项和为( ) A .13 B .26 C .52D .156解析:3(a 3+a 5)+2(a 7+a 10+a 13)=24,∴6a 4+6a 10=24,∴a 4+a 10=4,∴S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26,故选B.答案:B考点二 等差数列的判定与证明◄考能力——知法 角度1 用等差数列定义证明[例3] (2019·南京模拟)已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列.(2)求a n 的表达式.解析:(1)证明:因为a n =S n -S n -1(n ≥2),又a n =-2S n ·S n -1,所以S n -1-S n =2S n ·S n -1,S n ≠0.因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n=1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n .由于当n ≥2时,有a n =-2S n ·S n -1=-12n (n -1),又因为a 1=12,不适合上式. 所以a n =⎩⎪⎨⎪⎧12(n =1),-12n (n -1)(n ≥2).角度2 用等差中项法证明[例4] 已知等比数列{a n }的公比为q ,前n 项和为S n . (1)若S 3,S 9,S 6成等差数列,求证:a 2,a 8,a 5成等差数列;(2)若a m +2是a m +1和a m 的等差中项,则S m ,S m +2,S m +1成等差数列吗? 解析:(1)证明:由S 3,S 9,S 6成等差数列,得S 3+S 6=2S 9.若q =1,则3a 1+6a 1=18a 1,解得a 1=0,这与{a n }是等比数列矛盾,所以q ≠1, 于是有a 1(1-q 3)1-q +a 1(1-q 6)1-q =2a 1(1-q 9)1-q ,整理得q 3+q 6=2q 9.因为q ≠0且q ≠1,所以q 3=-12,a 8=a 2q 6=14a 2,a 5=a 2q 3=-12a 2, 所以2a 8=a 2+a 5,即a 8-a 2=a 5-a 8,故a 2,a 8,a 5成等差数列.(2)依题意,得2a m +2=a m +1+a m ,则2a 1q m +1=a 1q m +a 1q m -1.在等比数列{a n }中,a 1≠0,q ≠0,所以2q 2=q +1,解得q =1或q =-12.当q =1时,S m +S m +1=ma 1+(m +1)a 1=(2m +1)a 1,S m +2=(m +2)a 1. 因为a 1≠0,所以2S m +2≠S m +S m +1,此时S m ,S m +2,S m +1不成等差数列. 当q =-12时,S m +2=a 1[1-⎝ ⎛⎭⎪⎫-12m +2]1-⎝ ⎛⎭⎪⎫-12=2a 13[1-(-12)m +2] =2a 13 [1-14×(-12)m ],S m +S m +1=a 1[1-⎝ ⎛⎭⎪⎫-12m ]1-(-12)+a 1[1-⎝ ⎛⎭⎪⎫-12m +1]1-(-12)=2a 13[1-(-12)m +1-(-12)m +1] =2a 13[2-12×(-12)m ],所以2S m +2=S m +S m +1.故当q =1时,S m ,S m +2,S m +1不成等差数列;当q =-12时,S m ,S m +2,S m +1成等差数列.判定数列{a n }是等差数列的常用方法(1)定义法:对任意n ∈N *,a n +1-a n 是同一个常数.(证明用) (2)等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1.(证明用) (3)通项公式法:数列的通项公式a n 是n 的一次函数.(4)前n 项和公式法:数列的前n 项和公式S n 是n 的二次函数,且常数项为0.提醒:判断是否为等差数列,最终一般都要转化为定义法判断.将本例1条件变为“数列{a n }的前n 项和为S n (n ∈N *),2S n -na n =n ,”求证:{a n }为等差数列.证明:因为2S n -na n =n ,①所以当n ≥2时,2S n -1-(n -1)a n -1=n -1,② 所以①-②得:(2-n )a n +(n -1)a n -1=1, (1-n )a n +1+na n =1,所以2a n =a n -1+a n +1(n ≥2), 所以数列{a n }为等差数列.考点三 等差数列前n 项和及综合问题◄考素养——懂理[例5] (1)(2018·高考全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.①求{a n }的通项公式; ②求S n ,并求S n 的最小值.解析:①设{a n }的公差为d ,由题意得3a 1+3d =-15. 由a 1=-7得d =2.所以{a n }的通项公式为a n =a 1+(n -1)d =2n -9. ②由①得S n =a 1+a n2·n =n 2-8n =(n -4)2-16. 所以当n =4时,S n 取得最小值,最小值为-16.(2)已知数列{a n }满足a 1=2,n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *).①求证数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求其通项公式;②设b n =2a n -15,求数列{|b n |}的前n 项和T n . 解析:①∵n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *), ∴na n +1-(n +1)a n =2n (n +1),∴a n +1n +1-a nn =2, ∴数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,其公差为2,首项为2,∴a nn =2+2(n -1)=2n .②由①知a n =2n 2,∴b n =2a n -15=2n -15, 则数列{b n }的前n 项和S n =n (-13+2n -15)2=n 2-14n .令b n =2n -15≤0,解得n ≤7.∴n ≤7时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b n =-S n =-n 2+14n . n ≥8时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b 7+b 8+…+b n =-2S 7+S n =-2×(72-14×7)+n 2-14n =n 2-14n +98.∴T n =⎩⎨⎧14n -n 2,n ≤7,n 2-14n +98,n ≥8.关于等差数列前n 项和问题,主要是求和方法及性质的应用,其关键点为: (1)定性质,根据已知条件判断出数列具有哪些特性.(2)定方法,根据已知条件或具有的性质,确定解决问题的方法. ①_x0001_求和:用哪个公式,需要哪些量.②求S n 最值:(ⅰ)借助S n 的二次函数法; (ⅱ)借用通项的邻项变号法a 1>0,d <0,满足⎩⎨⎧ a m ≥0a m +1≤0S n 取得最大值S m ;a 1<0,d >0,满足⎩⎨⎧a m ≤0a m +1≥0,S n 取得最小值S m .1.在等差数列{a n }中,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使S n 达到最大值的n 是( ) A .21 B .20 C .19D .18解析:由a 1+a 3+a 5=3a 3=105,∴a 3=35. a 2+a 4+a 6=3a 4=99,∴a 4=33,∴d =a 4-a 3=-2. ∴a n =a 4+(n -4)×d =33+(n -4)×(-2)=-2n +41. ∴a 20>0,a 21<0,∴当n =20时,S 20最大,故选B. 答案:B2.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值. 解析:∵2a n +1=a n +a n +2,∴a n +1-a n =a n +2-a n +1, 故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎨⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4.故a n =4n -2,则b n =12a n -30=2n -31, 令⎩⎨⎧ b n ≤0,b n +1≥0,即⎩⎨⎧2n -31≤0,2(n +1)-31≥0, 解得292≤n ≤312, ∵n ∈N *,∴n =15,即数列{b n }的前15项均为负值,∴T 15最小. ∵数列{b n }的首项是-29,公差为2, ∴T 15=15×(-29+2×15-31)2=-225,∴数列{b n }的前n 项和T n 的最小值为-225.数学建模——传统文化中的数列的学科素养在传统文化中,涉及很多等差数列的模型,经过转化用等差数列的知识求解,体现了数学建模,数学运算的素养.[例1] 《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( ) A.47尺 B.1629尺 C.815尺 D.1631尺解析:设该女子织布每天增加d 尺,由题意知S 30=30×5+30×292d =390,解得d =1629.故该女子织布每天增加1629尺.故选B. 答案:B[例2] 中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( ) A.174斤B .184斤C.191斤 D .201斤解析:用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数,由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996,∴8a 1+8×72×17=996,解得a 1=65.∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤,故选B.答案:B课时规范练1.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14 D.12解析:由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0.答案:B2.等差数列{a n }中,a 1=1,a n =100(n ≥3).若{a n }的公差为某一自然数,则n 的所有可能取值为( )A .3,7,9,15,100B .4,10,12,34,100C .5,11,16,30,100D .4,10,13,43,100解析:由等差数列的通项公式得,公差d =a n -a 1n -1=99n -1.又因为d ∈N ,n ≥3,所以n -1可能为3,9,11,33,99,n 的所有可能取值为4,10,12,34,100,故选B. 答案:B3.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11解析:因为{a n }是等差数列,∴a 1+a 5=2a 3,即a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5,故选A. 答案:A4.等差数列{a n }的前n 项和为S n ,若S 8-S 4=36,a 6=2a 4,则a 1=( )A .-2B .0C .2D .4解析:设等差数列{a n }的公差为d ,∵S 8-S 4=36,a 6=2a 4,∴⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫8a 1+8×72d -⎝ ⎛⎭⎪⎫4a 1+4×32d =36,a 1+5d =2a 1+6d ,解得⎩⎨⎧a 1=-2,d =2.故选A. 答案:A5.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( )A .12B .13C .14D .15 解析:由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.答案:B6.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97解析:由题意可知,⎩⎨⎧a 1+4d =3,a 1+9d =8,解得a 1=-1,d =1,所以a 100=-1+99×1=98.答案:C7.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于__________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n-a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38, 解得n =10.答案:108.中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析:设数列首项为a 1,则a 1+2 0152=1 010,故a 1=5. 答案:59.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值.(2)已知数列{b n }满足b n =S n n ,证明数列{b n }是等差数列,并求其前n 项和T n .解析:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a=8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2. 10.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *). (1)求证:数列{b n }为等差数列;(2)求数列{a n }的通项公式.解析:(1)证明:∵b n =1a n,且a n =a n -12a n -1+1,∴b n+1=1a n+1=1a n2a n+1=2a n+1a n,∴b n+1-b n=2a n+1a n-1a n=2.又∵b1=1a1=1,∴数列{b n}是以1为首项,2为公差的等差数列.(2)由(1)知数列{b n}的通项公式为b n=1+(n-1)×2=2n-1,又b n=1a n,∴a n=1b n=12n-1.∴数列{a n}的通项公式为a n=12n-1.。
§6.6数列中的综合问题考试要求数列的综合运算问题以及数列与函数、不等式等知识的交汇问题,是历年高考的热点内容.一般围绕等差数列、等比数列的知识命题,涉及数列的函数性质、通项公式、前n 项和公式等.题型一等差数列、等比数列的综合运算例1(2023·厦门模拟)已知数列{a n }的前n 项和为S n ,且S n =32n 2+12n ,递增的等比数列{b n }满足b 1+b 4=18,b 2·b 3=32.(1)求数列{a n },{b n }的通项公式;(2)若c n =a n ·b n ,n ∈N +,求数列{c n }的前n 项和T n .解(1)当n ≥2时,a n =S n -S n -1=32n 2+12n -32(n -1)2+12(n -1)=3n -1,又∵当n =1时,a 1=S 1=2符合上式,∴a n =3n -1.∵b 2b 3=b 1b 4,∴b 1,b 4是方程x 2-18x +32=0的两根,又∵b 4>b 1,∴解得b 1=2,b 4=16,∴q 3=b4b 1=8,∴q =2,∴b n =b 1·q n -1=2n .(2)∵a n =3n -1,b n =2n ,则c n =(3n -1)·2n ,∴T n =2·21+5·22+8·23+11·24+…+(3n -1)·2n ,2T n =2·22+5·23+8·24+11·25+…+(3n -1)·2n +1,将两式相减得-T n =2·21+3(22+23+24+…+2n )-(3n -1)·2n +1=4+322(1-2n -1)1-2-(3n -1)·2n +1=(4-3n )·2n +1-8,∴T n =(3n -4)·2n +1+8.思维升华数列的综合问题常将等差、等比数列结合,两者相互联系、相互转化,解答这类问题的方法:寻找通项公式,利用性质进行转化.跟踪训练1(2022·全国甲卷)记S n 为数列{a n }的前n 项和.已知2S nn+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.(1)证明由2S nn+n =2a n +1,得2S n +n 2=2a n n +n ,①所以2S n +1+(n +1)2=2a n +1(n +1)+(n +1),②②-①,得2a n +1+2n +1=2a n +1(n +1)-2a n n +1,化简得a n +1-a n =1,所以数列{a n }是公差为1的等差数列.(2)解由(1)知数列{a n }的公差为1.由a 4,a 7,a 9成等比数列,得a 27=a 4a 9,即(a 1+6)2=(a 1+3)(a 1+8),解得a 1=-12.所以S n =-12n +n (n -1)2=n 2-25n2-6258,所以当n =12或13时,S n 取得最小值,最小值为-78.题型二数列与其他知识的交汇问题命题点1数列与不等式的交汇例2(1)已知数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n (n ∈N +),设数列{b n }满足:b n =2n +1a n a n +1,数列{b n }的前n 项和为T n ,若T n <nn +1λ(n ∈N +)恒成立,则实数λ的取值范围为()A.14,+∞C.38,+∞答案D解析数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n ,①当n ≥2时,a 1+12a 2+13a 3+…+1n -1a n -1=(n -1)2+(n -1),②①-②得1na n =2n ,故a n =2n 2,当n =1时,a 1=2也满足上式.数列{b n }满足:b n =2n +1a n a n +1=2n +14n 2(n +1)2=141n 2-1(n +1)2,则T n =141+…+1n 2-1(n +1)2=141-1(n +1)2,由于T n <nn +1λ(n ∈N +)恒成立,故141-1(n +1)2<n n +1λ,整理得λ>n +24n +4,因为y =n +24n +4=n ∈N +上单调递减,故当n =1=38,所以λ>38.(2)已知数列{a n }满足a 1=37,3a n ,2a n +1,a n a n +1成等差数列.{a n }的通项公式;②记{a n }的前n 项和为S n ,求证:1271S n <7528.①解由已知得4a n +1=3a n +a n a n +1,因为a 1=37≠0,所以由递推关系可得a n ≠0恒成立,所以4a n =3a n +1+1,所以4a n -4=3a n +1-3,即1a n +1-1又因为1a 1-1=73-1=43,所以数列是首项为43,公比为43的等比数列,所以1a n-1,所以a n =11.②证明由①可得a n =111-1=37×-1,所以S n ≥37+37×+…+37×-1=1271n,a n =11<1,S 1=37<7528,当n ≥2时,S n <37++ (37)1-34=7528-3<7528.综上所述,1271n≤S n <7528成立.命题点2数列与函数的交汇例3(1)(2023·龙岩模拟)已知函数f (x )=13x 3+4x ,记等差数列{a n }的前n 项和为S n ,若f (a 1+2)=100,f (a 2022+2)=-100,则S 2022等于()A .-4044B .-2022C .2022D .4044答案A解析因为f (-x )=-13x 3-4x =-f (x ),所以f (x )是奇函数,因为f (a 1+2)=100,f (a 2022+2)=-100,所以f (a 1+2)=-f (a 2022+2),所以a 1+2+a 2022+2=0,所以a 1+a 2022=-4,所以S 2022=2022(a 1+a 2022)2=-4044.(2)数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为________.答案-12解析因为a 4+λa 10+a 16=15,所以a 1+3d +λ(a 1+9d )+a 1+15d =15,令λ=f (d )=151+9d -2,因为d ∈[1,2],所以令t =1+9d ,t ∈[10,19],因此λ=f (t )=15t -2,当t ∈[10,19]时,函数λ=f (t )是减函数,故当t =10时,实数λ有最大值,最大值为f (10)=-12.思维升华(1)数列与不等式的综合问题及求解策略①判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.②以数列为载体,考查不等式恒成立的问题,此类问题可转化为函数的最值.③考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(2)数列与函数交汇问题的主要类型及求解策略①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.②已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前n 项和公式、求和方法等对式子化简变形.跟踪训练2(1)设{a n }是等比数列,函数y =x 2-x -2023的两个零点是a 2,a 3,则a 1a 4等于()A .2023B .1C .-1D .-2023答案D解析由题意a 2,a 3是x 2-x -2023=0的两根.由根与系数的关系得a 2a 3=-2023.又a 1a 4=a 2a 3,所以a 1a 4=-2023.(2)数列{a n }满足a 1=1,a n +1=2a n (n ∈N +),S n 为其前n 项和.数列{b n }为等差数列,且满足b 1=a 1,b 4=S 3.①求数列{a n },{b n }的通项公式;②设c n =1b n ·log 2a 2n +2,数列{c n }的前n 项和为T n ,证明:13≤T n <12.①解由题意知,{a n }是首项为1,公比为2的等比数列,所以a n =a 1·2n -1=2n -1.所以S n =2n-1.设等差数列{b n }的公差为d ,则b 1=a 1=1,b 4=1+3d =7,所以d =2,b n =1+(n -1)×2=2n -1.②证明因为log 2a 2n +2=log 222n +1=2n +1,所以c n =1b n ·log 2a 2n +2=1(2n -1)(2n +1)=所以T n -13+13-15+…+12n -1-因为n ∈N +,所以T n <12,=n 2n +1.当n ≥2时,T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0,所以数列{T n }是一个递增数列,所以T n ≥T 1=13.综上所述,13≤T n <12.课时精练1.(2022·汕头模拟)已知各项均为正数的等比数列{a n }的前4项和为15,4a 1,2a 3,a 5成等差数列,则a 1等于()A .52-5B .52+5C .52D .5答案A解析设各项均为正数的等比数列{a n }的公比为q ,q >0,由前4项和为15,4a 1,2a 3,a 5成等差数列,可得a 1+a 1q +a 1q 2+a 1q 3=15,4a 3=4a 1+a 5,即4a 1+a 1q 4=4a 1q 2,即q 2-2=0,解得q =2,a 1=52-5.2.(2023·焦作模拟)直播带货是一种直播和电商相结合的销售手段,目前受到了广大消费者的追捧,针对这种现状,某传媒公司决定逐年加大直播带货的资金投入,若该公司今年投入的资金为2000万元,并在此基础上,以后每年的资金投入均比上一年增长12%,则该公司需经过____年其投入资金开始超过7000万元()(参考数据:lg 1.12≈0.049,lg 2≈0.301,lg 7≈0.845)A .14B .13C .12D .11答案C解析设该公司经过n 年投入的资金为a n 万元,则a 1=2000×1.12,由题意可知,数列{a n }是以2000×1.12为首项,以1.12为公比的等比数列,所以a n =2000×1.12n ,由a n =2000×1.12n >7000可得n >log 1.1272=lg 7-lg 2lg 1.12≈11.1,因此,该公司需经过12年其投入资金开始超过7000万元.3.在正项等比数列{a n }中,3为a 6与a 14的等比中项,则a 3+3a 17的最小值为()A .23B .89C .6D .3答案C解析因为{a n }是正项等比数列,且3为a 6与a 14的等比中项,所以a 6a 14=3=a 3a 17,则a 3+3a 17=a 3+3·3a 3≥2a 3·3·3a 3=6,当且仅当a 3=3时,等号成立,所以a 3+3a 17的最小值为6.4.(2023·岳阳模拟)在等比数列{a n }中,a 2=-2a 5,1<a 3<2,则数列{a 3n }的前5项和S 5的取值范围是()-118,--338,-答案A解析设等比数列{a n }的公比为q ,则q 3=a 5a 2=-12,数列{a 3n }是首项为a 3,公比为q 3=-12的等比数列,则S 51+12=1116a 35.(多选)(2023·贵阳模拟)已知函数f (x )=lg x ,则下列四个命题中,是真命题的为()A .f (2),f (10),f (5)成等差数列B .f (2),f (4),f (8)成等差数列C .f (2),f (12),f (72)成等比数列D .f (2),f (4),f (16)成等比数列答案ABD解析对于A ,f (2)+f (5)=lg 2+lg 5=lg 10=1,2f (10)=2lg 10=1,故f (2),f (10),f (5)成等差数列,故是真命题;对于B ,f (2)+f (8)=lg 2+lg 8=lg 16,2f (4)=2lg 4=lg 16,故f (2),f (4),f (8)成等差数列,故是真命题;对于C ,f (2)·f (72)=lg 2×lg =lg 212=f 2(12),故f (2),f (12),f (72)不成等比数列,故是假命题;对于D ,f (2)f (16)=lg 2×lg 16=4lg 22=(2lg 2)2=lg 24=f 2(4),故f (2),f (4),f (16)成等比数列,故是真命题.6.数学家也有许多美丽的错误,如法国数学家费马于1640年提出了F n =22n+1(n =0,1,2,…)是质数的猜想,直到1732年才被善于计算的大数学家欧拉算出F 5=641×6700417,不是质数.现设a n =log 4(F n -1)(n =1,2,…),S n 表示数列{a n }的前n 项和.若32S n =63a n ,则n 等于()A .5B .6C .7D .8答案B解析因为F n =22n+1(n =0,1,2,…),所以a n =log 4(F n -1)=log 4(22n+1-1)=log 422n=2n -1,所以{a n }是等比数列,首项为1,公比为2,所以S n =1(1-2n )1-2=2n -1.所以32(2n -1)=63×2n -1,解得n =6.7.宋元时期我国数学家朱世杰在《四元玉鉴》中所记载的“垛积术”,其中“落—形”就是每层为“三角形数”的三角锥垛,三角锥垛从上到下最上面是1个球,第二层是3个球,第三层是6个球,第四层是10个球,…,则这个三角锥垛的第十五层球的个数为________.答案120解析∵“三角形数”可写为1,1+2,1+2+3,1+2+3+4,1+2+3+4+5,…,∴“三角形数”的通项公式为a n =1+2+3+…+n =n (n +1)2,∴这个三角锥垛的第十五层球的个数为a 15=15×162=120.8.已知数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,则p 的取值范围为________.答案ln 33,+∞解析数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,故p ,设f (x )=ln x x ,则f ′(x )=1x ·x -ln x x 2,令f ′(x )=1-ln x x 2=0,解得x =e ,故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞),所以函数在x =e 处取最大值,由于n ∈N +,所以当n =3时函数最大值为ln 33.所以p 的取值范围是ln 33,+9.记关于x 的不等式x 2-4nx +3n 2≤0(n ∈N +)的整数解的个数为a n ,数列{b n }的前n 项和为T n ,满足4T n =3n +1-a n -2.(1)求数列{b n }的通项公式;(2)设c n =2b n -,若对任意n ∈N +,都有c n <c n +1成立,试求实数λ的取值范围.解(1)由不等式x 2-4nx +3n 2≤0可得,n ≤x ≤3n ,∴a n =2n +1,T n =14×3n +1-12n -34,当n =1时,b 1=T 1=1,当n ≥2时,b n =T n -T n -1=12×3n -12,∵b 1=1适合上式,∴b n =12×3n -12.(2)由(1)可得,c n =3n -1+(-1)n -1,∴c n +1=3n +1-1+(-1)n +1,∵c n <c n +1,∴c n +1-c n =2×3n +52(-1)n >0,∴(-1)n λ>-45×2n ,当n 为奇数时,λ<45×2n ,由于45×2n 随着n 的增大而增大,当n =1时,45×2n 的最小值为85,∴λ<85,当n 为偶数时,λ>-45×2n ,由于-45×2n 随着n 的增大而减小,当n =2时,-45×2n 的最大值为-165,∴λ>-165,综上可知,-165<λ<85.10.设n ∈N +,有三个条件:①a n 是2与S n 的等差中项;②a 1=2,S n +1=a 1(S n +1);③S n =2n +1-2.在这三个条件中任选一个,补充在下列问题的横线上,再作答.若数列{a n }的前n 项和为S n ,且________.(1)求数列{a n }的通项公式;(2)若{a n ·b n }是以2为首项,4为公差的等差数列,求数列{b n }的前n 项和T n .注:如果选择多个条件分别解答,那么按第一个解答计分.解(1)选择条件①:因为a n 是2与S n 的等差中项,所以2a n =2+S n ,所以当n ≥2时,2a n -1=2+S n -1,两式相减得,2a n -2a n -1=a n ,即a n =2a n -1(n ≥2),在2a n =2+S n 中,令n =1,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件②:由a 1=2,S n +1=a 1(S n +1),知S n +1=2(S n +1),当n =1时,可求得a 2=4,所以当n ≥2时,S n =2(S n -1+1),两式相减得,a n +1=2a n (n ≥2),又a 1=2,a 2=4也满足上式,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件③:在S n =2n +1-2中,令n =1,则a 1=21+1-2=2,当n ≥2时,有S n -1=2n -2,两式相减得,a n =2n (n ≥2),当n =1时,a 1=2满足上式,所以a n =2n .(2)因为{a n ·b n }是以2为首项,4为公差的等差数列,所以a n ·b n =2+(n -1)·4=4n -2,由(1)知,a n =2n ,所以b n =2n -12n -1,所以T n =1+3+5+…+2n -12n -1,12T n =1+3+…+2n -32n -1+2n -12n ,两式相减得,12T n =1+2+2+…+2-1-2n -12n =1+2×21-12-2n -12n =3-2n +32n,所以T n =6-2n +32n -1.11.(2022·北京)设{a n }是公差不为0的无穷等差数列,则“{a n }为递增数列”是“存在正整数N 0,当n >N 0时,a n >0”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案C 解析设无穷等差数列{a n }的公差为d (d ≠0),则a n =a 1+(n -1)d =dn +a 1-d .若{a n }为递增数列,则d >0,则存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,所以充分性成立;若存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,即d >d -a 1n对任意的n >N 0,n ∈N +均成立,由于n →+∞时,d -a 1n→0,且d ≠0,所以d >0,{a n }为递增数列,必要性成立.故选C.12.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则()A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4答案B 解析因为ln x ≤x -1(x >0),所以a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1,所以a 4=a 1·q 3≤-1.由a 1>1,得q <0.若q ≤-1,则ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4=a 1(1+q )·(1+q 2)≤0.又a 1+a 2+a 3=a 1(1+q +q 2)≥a 1>1,所以ln(a 1+a 2+a 3)>0,矛盾.因此-1<q <0.所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0,所以a 1>a 3,a 2<a 4.13.函数y =f (x ),x ∈[1,+∞),数列{a n }满足a n =f (n ),n ∈N +,①函数f (x )是增函数;②数列{a n }是递增数列.写出一个满足①的函数f (x )的解析式________.写出一个满足②但不满足①的函数f (x )的解析式________.答案f (x )=x 2f (x )(答案不唯一)解析由题意,可知在x ∈[1,+∞)这个区间上是增函数的函数有许多,可写为f (x )=x 2.第二个填空是找一个数列是递增数列,而对应的函数不是增函数,可写为f (x ).则这个函数在1,43上单调递减,在43,+∴f (x )在[1,+∞)上不是增函数,不满足①.而对应的数列为a n 在n ∈N +上越来越大,属于递增数列.14.设函数f (x )-4,x ≤-3,x 2+2,x >-3,数列{a n }满足a n +1=f (a n )(n ∈N +),若{a n }是等差数列.则a 1的取值范围是__________.答案(-∞,-3]∪{-2,1}解析画出函数f (x )的图象如图所示,当a 1≤-3时,a 2=f (a 1)=a 1-4≤-7,a 3=f (a 2)=a 2-4≤-11,…,数列{a n }是首项为a 1,公差为-4的等差数列,符合题意,当a 1>-3时,因为{a n }是等差数列,①若其公差d >0,则∃k 0∈N +,使得0k a >2,这与a n +1=f (a n )=2-a 2n ≤2矛盾,②若其公差d =0,则a 2=-a 21+2=a 1,即a 21+a 1-2=0,解得a 1=-2或a 1=1,则当a 1=-2时,a n =-2为常数列,当a 1=1时,a n =1为常数列,此时{a n }为等差数列,符合题意,③若其公差d <0,则∃k 0∈N +,使得0k a >-3且01k a +≤-3,则等差数列的公差必为-4,因此001k k a a +-=-4,所以2-002k k a a -=-4,解得0k a =-3(舍去)或0k a =2.又当0k a =2时,000123k k k a a a +++===…=-2,这与公差为-4矛盾.综上所述,a 1的取值范围是(-∞,-3]∪{-2,1}.15.若数列{a n }对于任意的正整数n 满足:a n >0且a n a n +1=n +1,则称数列{a n }为“积增数列”.已知“积增数列”{a n }中,a 1=1,数列{a 2n +a 2n +1}的前n 项和为S n ,则对于任意的正整数n ,有()A .S n ≤2n 2+3B .S n ≥n 2+4nC .S n ≤n 2+4nD .S n ≥n 2+3n 答案D 解析∵a n >0,∴a 2n +a 2n +1≥2a n a n +1,∵a n a n +1=n +1,∴{a n a n +1}的前n 项和为2+3+4+…+n +1=n (2+n +1)2=n (n +3)2,∴数列{a 2n +a 2n +1}的前n 项和为S n ≥2×n (n +3)2=n 2+3n .16.设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的正整数n ,a n 与2的等差中项等于S n 与2的等比中项.(1)求数列{a n }的通项公式;(2)令b nn ∈N +),求证:b 1+b 2+b 3+…+b n <1+n .(1)解由已知a n +22=2S n (n ∈N +),整理得S n =18(a n +2)2,所以S n +1=18(a n +1+2)2.所以a n +1=S n +1-S n =18[(a n +1+2)2-(a n +2)2]=18(a 2n +1+4a n +1-a 2n -4a n ),整理得(a n +1+a n )(a n +1-a n -4)=0,由题意知a n +1+a n ≠0,所以a n +1-a n =4,而a 1=2,即数列{a n }是a 1=2,d =4的等差数列,所以a n =a 1+(n -1)d =4n -2.(2)证明令c n =b n -1,则c n +a n a n +1-=12n -1-12n +1.故b 1+b 2+…+b n -n =c 1+c 2+…+cn…1-12n +1<1.故b 1+b 2+…+b n <1+n .。
数列专题复习二 数列求和(教师版)1.基本公式法:()1等差数列求和公式:()()11122n n n a a n n S na d +-==+()2等比数列求和公式:()111,11,111n n n na q S a q a a qq q q =⎧⎪=-⎨-=≠⎪--⎩()3* ()()2221121216n n n n +++=++ ;()4* ()23333112314n n n ++++=+⎡⎤⎣⎦ ; 2.错位相消法:给12n n S a a a =+++ 各边同乘以一个适当的数或式,然后把所得的等式和原等式相减,对应项相互抵消,最后得出前n 项和n S .一般适应于数列{}n n a b 的前n 向求和,其中{}n a 成等差数列,{}n b 成等比数列。
3.分组求和:把一个数列分成几个可以直接求和的数列,然后利用公式法求和。
4.拆项(裂项)求和:把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩下有限项再求和.常见的拆项公式有:()1若{}n a 是公差为d 的等差数列,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭; ()2()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;()3* ()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦;()41a b=--;()5*1k=;5.倒序相加法:根据有些数列的特点,将其倒写后与原数列相加,以达到求和的目的。
6导数法:灵活利用求导法则有时也可以完成数列求和问题的解答. 7.递推法.8.奇偶分析法.一. 基本公式法例1. =+++++13742222n 练1.=++++98852 练2.123232323232-++++n =二.错位相消法例).0()12(531:112≠⋅-++++=-a an a a S n n :求和.)1()1(21)12(1,1)1(2)12(1)12()(21)(1② ①②)12()32(53①)12(53101.2)]12(1[)12(531121112132122a aa aan S a aa an an aaa S a a n an a a a aSan a a S a a n nn n S a n nn n nnn n nn nn n n --+-⋅--=∴--+--=--++++=---+-++++=-++++=≠≠=⋅-+=-++++==----- 得时,,当时,解:当例2.已知数列{n a }满足:}{,2)32()12(3121n n n b n a n a a 数列+⋅-=-+++ 的前n 项和n n n n W n b a n n S 项和的前求数列}{.222⋅-+=. 解.当),12(22)52(2)32()12(,21-=⋅--⋅-=⋅-≥+n n n a n n nnn n 时;14,2.4)2(2,4;2111-=-=≥⎩⎨⎧-=≥=-==∴-n S S b n a n a a a n n n n n nn 时当得而 而.)2(141,111⎩⎨⎧≥-===n n b b b n得 )14(215211272)],14(211272[443232-++⨯+⨯+⨯=-++⨯+⨯+-=∴n s n W nnn 记)14(2)54(2112722143-+-++⨯+⨯=∴+n n s n n ②, ①-②得)14(2)222(428143--++++=-+n s n n).54(2),54(24),45(24)14(2)12(322811112-=-+=∴-+-=---+=++++-n W n s n n n n n n n n 得练1. 已知数列.}{,)109()1(n n nn S n a n a 项和的前求⨯+=解. nn n b n a )109(,1=+=为等差数列 为等比数列,∴应运用错位求和方法:.)109()10(999),10()109(1099)109()1(])109(1[108159)109()1(])109()109()109[(59101:,)109()1()109(3)109(2109;)109()1()109(31092111321322nn n n nn nn n n nn n S n n n S n S n S ⨯+-=∴+-=⨯+--⨯+=⨯+-++++=⨯+++⨯+⨯=∴⨯+++⨯+⨯=++++ 两式相减得①练2. 已知数列nn n b 4249⋅+=,求数列{}n b 的前n 项和n T 。
例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050.【高考命题】一般数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.(1)1n (n +1)=1n -1n +1;(2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3)1n +n +1=n +1-n(4){}n a 为等差数列,公差为d ,则11n n a a += 【小测】1.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.解析 设等比数列的首项为a 1,公比为q .因为8a 2+a 5=0,所以8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S 5S 2=a 11-q 51-q·1-q a 11-q 2=1-q 51-q 2=1--251-4=-11.3.(2012·无锡市第一学期期末考试)设S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列,且a 2+a 5=2a m ,则m =________.解析 设等比数列{a n }的公比为q ,显然q ≠1.由2S 9=S 3+S 6得2·a 11-q 91-q=a 11-q 31-q+a 11-q 61-q,所以2q 9=q 3+q 6,即1+q 3=2q 6.由于a 2+a 5=2a m ,所以a 1q +a 1q 4=2a 1q m -1,即1+q 3=2q m -2,所以m -2=6,所以m =8.4.数列{a n }是等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =________.解析 由题意,可知数列{a n }的前n 项和S n 有最大值,所以公差小于零,故a 11<a 10,又因为a 11a 10<-1,所以a 10>0,a 11<-a 10,由等差数列的性质有a 11+a 10=a 1+a 20<0,a 10+a 10=a 1+a 19>0,所以S n 取得最小正值时n =19.【考点1】等差数列与等比数列的综合【例1】 (2011·江西卷)(1)已知两个等比数列{a n },{b n },满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3,若数列{a n }唯一,求a 的值;(2)是否存在两个等比数列{a n },{b n },使得b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成公差不为0的等差数列?若存在,求{a n },{b n }的通项公式;若不存在,说明理由.解 (1)设{a n }的公比为q ,则b 1=1+a ,b 2=2+aq ,b 3=3+aq 2,由b 1,b 2,b 3成等比数列得(2+aq )2=(1+a )(3+aq 2),即aq 2-4aq +3a -1=0.*由a >0得,Δ=4a 2+4a >0,故方程*有两个不同的实根. 再由{a n }唯一,知方程*必有一根为0,将q =0代入方程*得a =13.(2)假设存在两个等比数列{a n },{b n }使b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成公差不为0的等差数列. 设{a n }的公比为q 1,{b n }的公比为q 2,则b 2-a 2=b 1q 2-a 1q 1,b 3-a 3=b 1q 22-a 1q 21,b 4-a 4=b 1q 32-a 1q 31. 由b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成等差数列,得 ⎩⎨⎧2b 1q 2-a 1q 1=b 1-a 1+b 1q 22-a 1q 21,2b 1q 22-a 1q 21=b 1q 2-a 1q 1+b 1q 32-a 1q 31,即⎩⎨⎧b 1(q 2-1)2-a 1(q 1-1)2=0, ①b 1q 2(q 2-1)2-a 1q 1(q 1-1)2=0. ②①×q 2-②得a 1(q 1-q 2)(q 1-1)2=0, 由a 1≠0得q 1=q 2或q 1=1.(ⅰ)当q 1=q 2时,由①②得b 1=a 1或q 1=q 2=1,这时(b 2-a 2)-(b 1-a 1)=0,与公差不为0矛盾. (ⅱ)当q 1=1时,由①②得b 1=0或q 2=1,这时(b 2-a 2)-(b 1-a 1)=0,与公差不为0矛盾.综上所述,不存在两个等比数列{a n },{b n }使b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成公差不为0的等差数列.[方法总结] 对等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n 项和;分析等差、等比数列项之间的关系.往往用到转化与化归的思想方法.【变式】 (2012·苏州市自主学习调查)已知数列{a n }各项均为正数,其前n 项和为S n ,点(a n ,S n )在曲线(x +1)2=4y 上.(1)求数列{a n }的通项公式;第(2)问求出{b n }的通项公式,用裂项相消求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12,a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)又b n =S n 2n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. [方法总结] 使用裂项相消法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.【变式】 在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n ·a n +1,求数列{b n }的前n 项和S n . 解 a n =1n +1+2n +1+…+nn +1=1+2+…+n n +1=n n +12n +1=n2.∴b n =2a n ·a n +1=2n 2·n +12=8nn +1=8⎝ ⎛⎭⎪⎫1n -1n +1.∴S n =8⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =8⎝ ⎛⎭⎪⎫1-1n +1=8nn +1. 【考点4】错位相减法求和【例4】 设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *. (1)求数列{a n }的通项;(2)设b n =na n,求数列{b n }的前n 项和S n .审题视点 (1)由已知写出前n -1项之和,两式相减.(2)b n =n ·3n 的特点是数列{n }与{3n }之积,可用错位相减法. 解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n3,① ∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,② ①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n . (2)∵b n =na n,∴b n =n ·3n .∴S n =3+2×32+3×33+…+n ·3n ,③ ∴3S n =32+2×33+3×34+…+n ·3n +1.④ ④-③得2S n =n ·3n +1-(3+32+33+…+3n ), 即2S n =n ·3n +1-31-3n 1-3,∴S n =2n -13n +14+34.[方法总结] 解答本题的突破口在于将所给条件式视为数列{3n -1a n }的前n 项和,从而利用a n 与S n 的关系求出通项3n -1a n ,进而求得a n ;另外乘公比错位相减是数列求和的一种重要方法,但值得注意的是,这种方法运算过程复杂,运算量大,应加强对解题过程的训练,重视运算能力的培养. 【变式】 (2011·辽宁卷)已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎨⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎨⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n . (2)n2n -1.即2q 2-5q +2=0,解得q =2或q =12(舍去). 又∵a 25=a 10=a 5·q 5,∴a 5=q 5=25=32, ∴32=a 1·q 4,解得a 1=2,∴a n =2×2n -1=2n ,故a n =2n .4.(2012·重庆卷)已知数列{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值.解 (1)设数列{a n }的公差为d ,则由⎩⎨⎧a 1+a 3=8,a 2+a 4=12,得⎩⎨⎧2a 1+2d =8,2a 1+4d =12,解得a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n . (2)由(1)得S n =na 1+a n 2=n2+2n 2=n (n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1·S k +2,即(2k )2=2(k +2)(k +3), 也即k 2-5k -6=0,解得k =6或k =-1(舍去).7.(2012·常州一中期中)已知数列{a n }与{2a n +3}均为等比数列,且a 1=1,则a 168=________.解析 设{a n }公比为q ,a n =a 1q n -1=q n -1, 则2a 1+3,2a 2+3,2a 3+3也为等比数列, ∴5,2q +3,2q 2+3也为等比数列, 则(2q +3)2=5(2q 2+3),∴q =1, 从而a n =1为常数列,∴a 168=1.10.已知等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.13(4n-1). 14.(2012·盐城市二模)在等差数列{a n }中,a 2=5,a 6=21,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S 2n +1-S n ≤m 15对n ∈N *恒成立,则正整数m 的最小值为________. 解析 由条件得公差d =21-54=4,从而a 1=1,所以a n =4n -3,数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n =1+15+…+14n -3.11。