随机算法(数值概率&舍伍德)
- 格式:ppt
- 大小:907.50 KB
- 文档页数:42
详解各种随机算法之前将的算法都是确定的,即对于相同的输⼊总对应着相同的输出。
但实际中也常常⽤到不确定的算法,⽐如随机数⽣成算法,算法的结果是不确定的,我们称这种算法为(随机)概率算法,分为如下四类:1、数值概率算法⽤于数值问题的求解,通常是近似解2、蒙特卡洛算法Monte Carlo能得到问题的⼀个解,但不⼀定是正确解,正确的概率依赖于算法运⾏的时间,算法所⽤的时间越多,正确的概率也越⾼。
求问题的准确解;3、拉斯维加斯算法 Las Vegas不断调⽤随机算法求解,直到求得正确解或调⽤次数达到某个阈值。
所以,如果能得到解,⼀定是正确解。
4、舍伍德算法 Sherwood利⽤随机算法改造已有算法,使得算法的性能尽量与输⼊数据⽆关,即平滑算法的性能。
它总能求得问题的⼀个解,且求得的解总是正确的。
随机数概述计算机产⽣的随机数都是伪随机数,通过线性同余法得到。
⽅法:产⽣随机序列d称为种⼦;m取值越⼤越好;m,b互质,常取b为质数;案例伪随机数在实际编程中,我们使⽤rand()函数来产⽣随机数,rand()函数返回0到⼀个最⼤值之间的⼀个随机数。
#include#include#include//产⽣[0,100)的随机数void GenerateRandomNumber(){for(int i=0;i10;i++){printf('%-4d',rand()%100);//产⽣[0,m)的随机数}printf('\n');}int main(){GenerateRandomNumber();return 0;}运⾏代码,输出:41 67 34 0 69 24 78 58 62 64如果我们重复运⾏代码就会发现,每次的输出结果都是这个序列。
这就是因为rand产⽣的随机序列是伪随机序列。
解决⽅法是:使⽤当前的时间作为随机种⼦。
时间作为随机种⼦在GenerateRandomNumber()函数开头加⼊下⾯⼀条语句。
常见的随机算法、近似算法和启发式算法的案例常见的随机算法、近似算法和启发式算法的案例有:
随机算法:
1. 随机洗牌算法:用于打乱一组数据的顺序,常用于实现随机排列或游戏中的洗牌操作。
2. 蒙特卡洛算法:通过随机采样的方法,来估计一个问题的解或某个数值的概率分布,例如蒙特卡洛模拟的方法用于计算圆周率π的值。
近似算法:
1. 近似最近邻算法:快速搜索给定查询点最近邻的点,而不需要对所有数据点进行完全搜索,例如kd树算法。
2. 近似最小覆盖问题的算法:在给定一组区域的情况下,选择尽可能少的区域来覆盖所有点,例如贪心算法。
启发式算法:
1. 蚁群算法:模拟蚂蚁在寻找食物时的行为,通过信息素的释放和感知,来寻找全局最优解,常用于求解旅行商问题。
2. 遗传算法:基于生物进化理论,通过模拟自然选择、基因交叉、变异等操作,来搜索优化问题的解空间,例如用于解决旅行商问题或优化函数的最优解。
数学中的随机算法设计与分析随机算法是指在算法的执行过程中引入随机性的一种计算方法。
随机算法在计算机科学和数学领域中广泛应用,它能够解决许多与随机性相关的问题,如概率、统计、优化等。
本文将介绍数学中的随机算法设计与分析,并探讨其应用领域和挑战。
一、随机算法的定义和基本思想随机算法是一种通过引入随机性来解决问题的计算方法。
它与确定性算法不同,其执行结果在相同的输入情况下可能会有不同的输出。
随机算法的基本思想是利用随机数生成器生成一系列的随机数,并根据这些随机数进行计算和决策。
随机算法通常包括以下几个步骤:1. 随机数生成:通过随机数生成器生成随机数序列。
2. 初始化:对算法进行初始化,使其获得一个合理的起始状态。
3. 迭代计算:根据生成的随机数和当前状态进行计算,得到新的状态。
4. 终止条件判断:判断是否满足终止条件,如果满足则停止计算,否则返回步骤3。
二、蒙特卡罗方法蒙特卡罗方法是一种以随机采样的方式来解决问题的数值计算方法。
其基本思想是通过随机采样产生问题的一个随机样本,并利用这个样本的统计特征来估计问题的解。
蒙特卡罗方法的应用领域非常广泛,如计算机图形学中的光线跟踪算法、金融工程中的期权定价、物理学中的数值模拟等等。
该方法的优势在于能够处理复杂的数学模型和实际问题,但也存在着计算复杂度高、采样误差等问题。
三、马尔可夫链马尔可夫链是一种随机过程,具有马尔可夫性质。
它的基本思想是当前状态只与前一时刻的状态相关,与之前所有的状态无关。
在随机算法中,马尔可夫链常用于模拟和优化问题。
通过构建一个马尔可夫链模型,可以利用其平稳分布进行采样和估计。
马尔可夫链蒙特卡罗方法以及马尔可夫链蒙特卡罗近似算法是利用马尔可夫链进行随机采样和近似计算的重要技术。
四、遗传算法遗传算法是一种基于生物进化原理的优化算法。
其基本思想是通过模拟生物进化过程中的选择、交叉和变异等操作来搜索最优解。
遗传算法在解决复杂优化问题方面具有很大的优势。
hutool 范围内随机数数据分布概率题目:hutool范围内随机数的数据分布概率引言:在计算机编程和数据处理领域,随机数是非常重要的概念之一,它在众多应用中扮演着至关重要的角色。
hutool是一款Java工具库,提供了丰富的功能帮助程序员更高效地进行开发。
其中,hutool工具库中提供了生成随机数的相关接口,使得程序员可以轻松地生成特定范围内的随机数。
在本文中,我们将探讨hutool范围内随机数的数据分布概率。
一、随机数的概念和生成方式随机数是一种无序、无规律可循的数列或数值,是自然界中众多现象和活动的关键要素之一。
在计算机中,随机数在许多方面起着重要作用,包括密码学、模拟实验、数据加密等。
通常,随机数生成器通过某种算法或物理过程产生一个不断变化的数列,从而生成随机数。
在hutool工具库中,提供了多种生成随机数的方法,包括生成整数、浮点数、以及指定范围内的随机数等。
我们可以通过调用相应的方法,指定范围和规则来获取我们所需要的随机数。
二、hutool范围内随机数的生成概率在使用hutool生成随机数时,我们可以指定一个范围,例如生成一个100以内的随机数。
那么这个范围内的每一个数值出现的概率是否相同,还是存在某些数值更容易出现的情况呢?根据概率论的基本原理,对于一个范围内的随机数生成器,每个数值出现的概率应该是相等的。
例如,在生成一个1-100之间的随机数时,每个数值出现的概率应该是1。
但是,由于程序中的随机数生成算法通常是基于伪随机数生成器,其结果是由一个或多个起始状态数(种子)生成的,所以在实际应用中,可能存在一些偏差。
三、随机数生成算法对分布概率的影响具体到hutool工具库,为了生成随机数,通常会使用一些常见的随机数生成算法,例如线性同余法。
而不同的随机数生成算法对分布概率可能会有一定的影响。
线性同余法是一种简单常用的随机数生成算法,其特点是通过当前的随机数值和一个预定义的常数进行计算,生成下一个随机数。
二、填空题1.算法的复杂性有时间复杂性和空间复杂性之分。
2、程序是算法用某种程序设计语言的具体实现。
3、算法的“确定性”指的是组成算法的每条指令是清晰的,无歧义的。
4.矩阵连乘问题的算法可由动态规划设计实现。
5、拉斯维加斯算法找到的解一定是正确解。
6、算法是指解决问题的一种方法或一个过程。
7、从分治法的一般设计模式可以看出,用它设计出的程序一般是递归算法。
8、问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。
9、以深度优先方式系统搜索问题解的算法称为回溯法。
10、数值概率算法常用于数值问题的求解。
11、计算一个算法时间复杂度通常可以计算循环次数、基本操作的频率或计算步。
12、利用概率的性质计算近似值的随机算法是__数值概率算法,运行时以一定的概率得到正确解的随机算法是__蒙特卡罗算法_____________________。
14、解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中不需要排序的是动态规划,需要排序的是回溯法,分支限界法。
15、使用回溯法进行状态空间树裁剪分支时一般有两个标准:约束条件和目标函数的界,N皇后问题和0/1背包问题正好是两种不同的类型,其中同时使用约束条件和目标函数的界进行裁剪的是0/1背包问题,只使用约束条件进行裁剪的是N皇后问题。
16、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。
17、矩阵连乘问题的算法可由动态规划设计实现。
18、拉斯维加斯算法找到的解一定是正确解。
19.贪心算法的基本要素是贪心选择质和最优子结构性质。
21. 动态规划算法的基本思想是将待求解问题分解成若干子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
22.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有限性四条性质。
23、大整数乘积算法是用分治法来设计的。
24、以广度优先或以最小耗费方式搜索问题解的算法称为分支限界法。
概率分布函数的数值求解算法在概率统计学中,概率分布函数(Probability Distribution Function,简称PDF)是用来描述随机变量取各种不同值的概率的函数。
对于连续型随机变量,PDF通常由概率密度函数(Probability Density Function,简称PDF)来表示;而对于离散型随机变量,则由概率质量函数(Probability Mass Function,简称PMF)来表示。
概率分布函数的求解在实际应用中具有重要的意义,本文将介绍一些常见的数值求解算法。
一、直接计算法直接计算法是最简单直接的方法,适用于一些简单的概率分布函数。
其基本思想是根据随机变量的定义和已知的分布参数,通过数学计算得到每个特定取值对应的概率。
例如,对于离散型随机变量的概率质量函数,我们可以直接计算每个可能取值的概率。
对于连续型随机变量的概率密度函数,我们可以通过数学积分的方法计算出特定取值的概率。
二、逆变换法逆变换法是一种常用的随机数生成算法。
其基本思想是通过随机数生成器生成服从均匀分布的随机数,然后通过概率分布函数的逆函数来将均匀分布的随机数转换为目标分布的随机数。
逆变换法的主要步骤如下:1. 生成一个服从均匀分布的随机数U,其取值范围为[0, 1);2. 使用概率分布函数的逆函数F^(-1)(x),将随机数U转换为目标分布的随机数X。
逆变换法的优点是简单易实现,适用于大多数常见的概率分布函数。
然而,对于一些复杂的概率分布函数,其逆函数可能难以求解,从而导致逆变换法的应用受限。
三、接受-拒绝法接受-拒绝法是一种常用的概率分布函数数值求解算法。
其基本思想是通过生成服从辅助分布的随机数来模拟目标分布的随机数,并使用接受-拒绝准则来筛选出符合目标分布的随机数。
接受-拒绝法的主要步骤如下:1. 生成一个服从辅助分布的随机数Y,并计算辅助分布和目标分布在该点上的函数值,即f(Y)和g(Y);2. 生成一个服从均匀分布的随机数U,其取值范围为[0, 1);3. 如果U * M <= f(Y),则接受Y作为目标分布的随机数;4. 如果U * M > f(Y),则拒绝Y,并返回第一步。
1、概率算法:允许算法在执行的过程中随机的选择下一个计算步骤。
2、在多数情况下,当算法在执行过程中面临一个选择是:随机性选择常比最优选择省时,因此概率算法可在很大程度上降低算法复杂性。
3、概率算法的一个基本特征是对所求解问题的同一实例用同一概率算法求解两次可能得到完全不同的效果(所需时间或计算结果)。
4、概率算法包括:▪数值概率算法:求解数值问题的近似解,精度随计算时间增加而不断提高▪舍伍德算法:消除算法最坏情形行为与特定势力之间的关联性,并不提高平均性能,也不是刻意避免算法的最坏情况行为▪拉斯维加斯算法:求解问题的正确解,但可能找不到解▪蒙特卡罗算法:求解问题的准确解,但这个解未必正确,且一般情况下无法有效判定正确性5、随机数:随机数在概率算法设计中扮演着十分重要的角色。
在现实计算机上无法产生真正的随机数,因此在概率算法中使用的随机数都是一定程度上随机的,即伪随机数。
6、线性同余法是产生伪随机数的最常用的方法。
7、数值概率算法:通常用于数值问题的求解中,求解数值问题的近似解,精度随计算时间增加而不断提高例如:设有一半径为r的圆及其外切四边形。
向该正方形随机地投掷n个点。
设落入圆内的点数为k。
由于所投入的点在正方形上均匀分布,因而所投入的点落入圆内的概率为224rr∏。
所以当n足够大,4kn∏=程序一:double Darts(int n){ // 用随机投点法计算π值static RandomNumber dart; int k=0;for (int i=1;i <=n;i++) {double x=dart.fRandom(); double y=dart.fRandom(); if ((x*x+y*y)<=1) k++;}return 4*k/double(n);}计算定积分,同样的道理可以阐述到10()I f x dx=⎰表示曲线以下面积,那么落入曲线下面积的概率为()11000{()}()f xrP y f x dydx f x dx≤==⎰⎰⎰,即可知I mn≈8、舍伍德算法:设A 是一个确定性算法,当它的输入实例为x 时所需的计算时间记为tA(x)。
一。
选择题1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( B )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B )。
A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( B )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9. 实现循环赛日程表利用的算法是( A )。
A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是(C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A )。
概率算法概率算法的一个基本特征是对所求解问题的同一实例用同一概率算法求解两次可能得到完全不同的效果。
这两次求解问题所需的时间甚至所得到的结果可能会有相当大的差别。
一般情况下,可将概率算法大致分为四类:数值概率算法,蒙特卡罗算法,拉斯维加斯算法和舍伍德算法。
一、数值概率算法常用于数值问题的求解。
这类算法所得到的往往是近似解。
而且近似解的精度随计算时间的增加不断提高。
在许多情况下,要计算出问题的精确解是不可能或没有必要的,因此用数值概率算法可得到相当满意的解。
1、用随机投点法计算π值设有一半径为r 的圆及其外切四边形。
向该正方形随机地投掷n 个点。
设落入圆内的点数为k 。
由于所投入的点在正方形上均匀分布,因而所投入的点落入圆内的概率为4422ππ=r r 。
所以当n 足够大n k 4≈π(n k≈4π)2、计算定积分设f(x)是[0,1]上的连续函数,且0≤f(x) ≤ 1。
需要计算的积分为⎰=1)(dx x f I , 积分I 等于图中的面积G在图所示单位正方形内均匀地作投点试验,则随机点落在曲线下面的概率为⎰⎰⎰==≤10)(01)()}({x f r dx x f dydx x f y P 假设向单位正方形内随机地投入 n 个点(xi,yi)。
如果有m 个点落入G 内,则随机点落入G 内的概率nm ≈I 3、解非线性方程组求解下面的非线性方程组⎪⎪⎩⎪⎪⎨⎧===0),,,(0),,,(0),,,(21212211n n n n x x x f x x x f x x x f 其中,x 1, x 2, …, x n 是实变量,fi 是未知量x1,x2,…,xn 的非线性实函数。
要求确定上述方程组在指定求根范围内的一组解x 1*, x 2*, …, x n * 。
在指定求根区域D 内,选定一个随机点x0作为随机搜索的出发点。
在算法的搜索过程中,假设第j 步随机搜索得到的随机搜索点为xj 。
在第j+1步,计算出下一步的随机搜索增量∆xj 。