第二章 变化率与导数
§2.1 变化的快慢与变化率
问题提出
世界上,变化无处不在,人们以常关心变化的 快慢问题,如何刻画事物变化的快慢呢?
实例分析
问题1
物体从某一时刻开始运 动, 设s表示此物体经过时间 t走过 的路程 , 显然 s是时间 t的函数 , 表示为 s s(t ).在运动的过 程中测得了一些数据 , 如下表 :
在第二个问题中我们用一段时间内体温 , 的平均变化率刻画了 体温变化的快慢当时间从x0变为x1时, 体温从 y ( x0 )变为y ( x1 ), , 这段时间内物体的平均 速度是: y ( x1 ) y ( x0 ) 平均速度 . x1 x0
抽象概括
对一般的函数 f ( x)来说,当自变量 从x1变为x2时,函数值从 ( x1 ) y x f 变为f ( x2 ), 它的平均变化率为 : f ( x2 ) f ( x1 ) . x2 x1
当时间x从0 min 到20 min时, 分析 由上图可看出:体温y从39c变为38.5c, 下降了0.5c;
当时间 x从20 min 到30 min时, 体温y从38.5c变为38c, 下降了0.5c;
两段时间下降相同的温度,而后一段时间比前 一段时间短,所以后一段时间的体温比前一段 时间变化快.
练习
在高台跳水运动中,运动员相对于水面的高度 h(单位:米)与起跳后的时间t(单位:秒)存 h 在函数关系 h(t)=-4.9t2+6.5t+10. 如何用运动员在某些时 间段内的平均速度粗略 地描述其运动状态?
o t
请计算
0 t 0.5和1 t 2时的平均速度v :
在0 t 0.5这段时间里 , h(0.5) h(0) v 4.05(m / s); 0.5 0 在1 t 2这段时间里 , h(2) h(1) v 8.2(m / s). 2 1