特性粘数测量
- 格式:ppt
- 大小:1.08 MB
- 文档页数:30
聚丙烯酰胺特性粘数测定方法聚丙烯酰胺(Polyamide,PA)是一类具有特殊功能性和高性能的高分子材料,广泛应用于多个领域,如航空航天、汽车、电子电气、计算机、通讯等。
因其特定粘数特性,PA及其复合材料被广泛用于制造胶粘剂、内衬绝缘材料、电气绝缘材料等,特别是用于制造特殊性能的特种粘合剂,如热收缩膜、保护膜等。
因此,对 PA粘数性能的测定具有重要的意义,尤其是粘数的变化。
1、PA的粘数性能的测定方法(1)热压粘数测定:适用于测试PA的热压粘数特性。
热压粘数测定原理是将测试样品放置在热压粘数仪上,通过控制加压温度和时间,将测试样品挤压和熔融至一定的厚度,测量熔化后的粘数,用以评价PA材料的热压粘数特性。
(2)玻璃平板粘数测定:采用玻璃平板粘数测定方法可以测定PA的低温粘数特性。
原理是:将一定体积的PA样品抹在玻璃平板上,在规定的温度和时间内,拉开玻璃板,测量样品根据拉开距离拉伸对应的粘数,从而求出低温粘数特性。
(3)热熔粘数测定:采用热熔粘数测定法可以测定PA的高温粘数特性。
原理是:先将PA样品熔融,且将熔融液填充到规定的测试环中,然后拉开测试环,测量样品根据拉开距离拉伸对应的粘数,从而求出高温粘数特性。
2、常用的PA粘数测定仪器(1)热压粘数仪:热压粘数仪是一种测试PA的热压粘合性能的仪器,能够控制充分的温度和时间,并可以准确测量出熔融后的粘合性强度。
(2)玻璃平板粘数测定仪:玻璃平板粘数测定仪是一种可用于测定PA的低温粘数特性的仪器,它可以控制准确的温度和时间,并可以准确测量出根据拉开距离拉伸对应的粘数。
(3)热熔粘数测定仪:热熔粘数测定仪是一种用于测定PA的高温粘数特性的仪器。
它可以控制准确的温度和时间,并可以准确测量出根据拉开距离拉伸对应的粘数。
3、结论PA于其独特的功能性和高性能,在航空航天、汽车、电子电气、计算机、通讯等的生产中得到了广泛的应用,而PA材料的粘数性能也是衡量PA材料性能的重要因素。
粘度测定法标准操作规程目的:制订粘度测定法标准操作规程。
适用范围:粘度测定。
责任:检验人员对本规程操作,检验室主任监督本规程的实施。
程序:粘度系指流体对流动的阻抗能力,中国药典2000年版二部附录Ⅵ G中采用动力粘度、运动粘度或特性粘数表示。
液体以1cm/s的速度流动时,在每1cm2平面上所需切应力的大少,称为动力粘度(又称绝对粘度),以Pa·s为单位。
在相同温度下,液体的动力粘度与其密度(kg/m3)的比值,再乘以106即得运动粘度,以mm2/s为单位。
高聚物稀溶液的相对粘度的对数值与其浓度的比值,称为特性粘数。
第一法用平氏粘度计测定运动粘度或动力粘度1.简述1.1本法系用相对法测量一定体积的液体在重力作用下流经毛细管所需时间,以求得液体的运动粘度或动力粘度。
1.2本法适用于测定牛顿流体(如纯液体和低分子物质的溶液)的动力粘度或运动粘度。
2.仪器与用具2.1平氏粘度计(见中国药典2000年版二部附录Ⅵ G中的附图1),毛细管内径有(0.8±0.05、1.0±0.05、1.2±0.05、1.5±0.1或2.0±0.1)mm多种,可根据各该药品项下规定选用(流出时间应不少于200秒)。
2.2恒温水浴直径30cm以上、高40cm以上的玻璃缸或有机玻璃缸,附有电动搅拌器及电热装置,恒温精度±0.1℃。
2.3温度计分度0.1℃,经周期检定。
2.4秒表分度0.2秒,经周期检定。
3.操作方法3.1粘度计的清洗和干燥取粘度计,置铬酸洗液中浸泡2小时以上(沾有油渍者,应依次先用氯仿或汽油、乙醇、自来水洗涤晾干后,再用铬酸洗液浸泡6小时以上),自来水冲洗至内壁不挂水珠,再用水洗3次,120℃干燥,备用。
3.2按各该药品项下规定的测定温度调整恒温水浴温度。
3.3取粘度计,在支管F上连接一橡皮管,用手指堵住管口2,倒置粘度计,将管口1插入供试品(或供试溶液)中,自橡皮管的另一端抽气,使供试品充满球C与A并达到测定线m2处。
目的:建立粘度测定法的标准操作程序,规范粘度测定法的操作。
范围:适用于粘度测定法。
职责:检验室主任、检验员。
规程:粘度系指流体对流动的阻抗能力,中国药典2000年版二部附录VI G中采用动力粘度、运动粘度或特性粘数表示。
液体以1cm/s的速度流动时,在每lcm2平面上所需切应力的大小,称为动力粘度(又称绝对粘度),以Pa·S为单位。
在相同温度下,液体的动力粘度与度与其密度(kg/m3)的比值,再乘以106,即得运动粘度,以mm2/S为单位。
高聚物平衡溶液的相对粘度的对数值与其浓度的比值,称为特性粘数。
第一法用平氏粘度计测定运动粘度或动力粘度1简述1.1 本法系用相对法测量一定体积的液体在重力作用下流经毛细管所需时间,以求得液体的运动粘度或动力粘度。
1.2 本法适用于测定牛顿流体(如纯液体和低分子物质的溶液)的动力粘度或运动粘度。
2 仪器与用具2.1 平氏粘度计(见中国药典2000年版二部附录Ⅵ G中的附图l),毛细管内径有(0.8±0.05、1.0±0.05、1.2±0.05、1.5±0.1或2.0±0.1)mm多种,可根据各该药品项下规定选用(流出时间应不小于200秒)。
2.2 恒温水浴直径30cm以上、高40cm以上的玻璃缸或有机玻璃缸,附有电动搅拌器及电热装置,恒温精度±0.1℃。
2.3 温度计分度0.1℃,经周期检定;秒表分度0.2秒,经周期检定。
3 操作方法3.1 粘度计的清洗和干燥:取粘度计,置铬酸洗液中浸泡2小时以上(沾有油渍者,应依次先用氯仿或汽油、乙醇、自来水洗涤晾干后,再用铬酸洗液洗液浸泡6小时以上),自来水冲洗至内壁不挂水珠,再用水洗3次,120℃干燥,备用。
3.2 按各该药品项下规定的测定温度调整恒温水浴温度。
3.3 取粘度计,在支管F上连接一橡皮管,用手指堵住管口2,倒置粘度计,将管口l插入供试品(或供试溶液)中,自橡皮管的另一端抽气,使供试品充满球C与A并达到测定线m2处,提出粘度计并迅速倒转,抹去粘附于管外的供试品,取下橡皮管接于管1上,将粘度计垂直固定于恒温水浴中,并使水浴的液面高于球C的中部,放置15分钟后,自橡皮管的另一端抽气,使供试品充满A并超过测定线m1,开放橡皮管口,使供试品在管内自然下落,用秒表准确记录液面自测定线m1下降至测定线m2处的流出时间,依法重复测定3次以上,每次测定值与平均值的差数不得超过平均值的±5%。
丙烯酸及其同系物的酯类的总称。
比较重要的有丙烯酸甲酯、丙烯酸乙酯、2-甲基丙烯酸甲酯和2-甲基丙烯酸乙酯等。
能自聚或和其他单体共聚,是制造胶粘剂、合成树脂、特种橡胶和塑料的单体。
商品牌号很多,根据其分子结构中所含的不同交联单体,加工时硫化体系也不相同,由此可将丙烯酸酯橡胶划分为含氯多胺交联型、不含氯多胺交联型、自交联型、羧酸铵盐交联型、皂交联型等五类。
此外,还有特种丙烯酸酯橡胶,如含氟型及热塑性丙烯酸酯橡胶等。
性能丙烯酸酯橡胶的性能受其主要单体丙烯酸烷基酯中烷基碳原子数目的影响。
以丙烯酸酯为基础的橡胶,耐油、耐热性较好;而以丙烯酸丁酯为基础的橡胶,因烷基碳原子数目的增多,对酯基极性基的屏蔽效应增大,因此使耐水性有所改善,同时由于屏蔽效应,减弱了橡胶分子间力,增大了内部塑性,从而使脆性温度降低,耐寒性较好。
若通过上述两种单体并用,则可得到介于两者性能之间的橡胶。
特点无论哪一种类型的丙烯酸酯橡胶,其分子结构的共同特点有两个:一是高极性;二是完全饱和性。
从而使其具有优越的耐矿物油和耐高温氧化性能。
其耐油性仅次于氟胶,而与一般中高丙烯晴含量的丁腈橡胶相似。
而耐热性介于通用橡胶和硅、氟橡胶之间,比丁腈橡胶使用温度高出30~60℃,最高使用温度180℃,断续和短时间使用可达200℃,在150℃热空气老化数年性能无明显变化。
此外,最重要的是其对含有硫、氯、磷等极压剂的极压型润滑油十分稳定,使用温度可达150℃,间断使用温度可更高些。
而带有双键的丁腈橡胶在含有极压剂的油中,当温度超过110℃时,即发生显著硬化与变脆。
丙烯酸酯橡胶还具有优良的抗臭氧性、气密性、耐屈挠和耐裂口增长性,以及抗紫外线变色性等。
缺点加工性能差,胶料易粘辊,流速慢,耐寒性差,不耐水、水蒸气、酸碱、盐溶液以及有机极性溶剂,室温下的弹性差、耐磨性差,电性能差。
由于丙烯酸酯橡胶在耐热和耐油综合性能方面仅次于氟橡胶,因此是制造180℃高温下使用的橡胶油封、O型圈、垫片和胶管的使用材料。
聚合物分子量的测定----粘度法一.实验目的学会一种测定分子量的方法二.实验原理由于聚合物具有多分散性,所以聚合物的分子量是一个平均值。
有许多测定分子量的方法(如光散射法、渗透压法、超速离心法、端基分析法等),但最简单、而使用范围又广的是粘度法。
由粘度法测得的聚合物的分子量叫粘均分子量,以 “M v ”表示。
粘度法又分多点法和一点法:1.多点法多点法测定聚合物粘均分子量的计算依据是:[]αηM K =式中: [η]-特性粘数;K,v --与温度和溶剂有关的常数;M η―聚合物的粘均分子量。
若设溶剂的粘度为η 0,聚合物溶液浓度为 c(100mL 所含聚合物的克数表示)时的粘度为η,则聚合物溶液粘度与浓度间有如下关系:sp 2k c c ηηη=[]+[][][]c cr 2ln ηβηη-=以ηsp , r ln c η/对 c 作图,外推直线至 c 为0(参考图 7-1)求 [η],即sp r c 0c 0ln lim lim c c ηηη→→[]==图 7-1特性粘数 [η]的求法由于k 、α是与温度、溶剂有关的常数,所以对一定温度和特定的溶剂,k 、α有确定的数值。
例如,30℃时,以 1mol/L 硝酸钠溶液作溶剂,用粘度法测定聚丙烯酰胺粘均分子量的经验式可表示如下:[]3/241073.3M -⨯=η即: []2/351040.1η⨯=v M因此,只要测定不同浓度下聚合物溶液的粘度,即可通过上述的数据处理,求出聚合物的粘均分子量MV 。
2.单点法对低浓度的聚合物溶液,其特性粘数可由下式计算:[]()r sp cηηηln 21+= 实验时,只要测定一个低浓度的聚合物溶液的相对粘度,即可由式7-7求得所测试样的特性粘数。
本实验采用如图7-2所示的乌氏粘度计测定聚合物溶液在不同浓度下的粘度。
这种粘度计的具体用法参考下述步骤。
图 7-2乌氏粘度计三.仪器与药品1.仪器乌氏粘度计,秒表,吸耳球,恒温箱,移液管,容量瓶。
粘度测定方法简介粘度是流体内部摩擦力的度量,它对于液体和气体的流动性质以及物质的性质有着重要的影响。
粘度测定方法是在不同条件下对流体的黏滞阻力进行测量,常用于工业制造、实验室研究以及其他领域。
常见的粘度测定方法1.水平旋转式圆柱流变仪:该方法通过旋转圆柱形的试样容器,测量试样在剪切力作用下的变形情况,从而计算出粘度。
2.立式旋转式圆盘流变仪:该方法通过旋转圆盘形的试样容器,测量试样在剪切力作用下的变形情况,从而计算出粘度。
3.管道流变法:该方法利用长管道中流体的流动特性,通过测量流体的流速和压力降来计算粘度。
4.滚珠流变仪:该方法利用滚珠在粘度流体中的受力情况,测量流体的黏滞特性。
5.悬臂梁振动法:该方法通过测量在振动条件下流体的阻尼特性来计算粘度。
水平旋转式圆柱流变仪原理水平旋转式圆柱流变仪通过使试样容器内液体产生剪切流动,测量剪切力和切变速率的关系,从而计算出粘度。
### 实验步骤 1. 将待测液体通过注射器注入螺旋式圆柱容器内。
2. 调整仪器参数,使得旋转的速度符合实验要求。
3. 开始采集数据,包括旋转速度、剪切力以及剪切速率。
4. 根据已知的流体模型,利用采集到的数据计算粘度。
### 适用范围水平旋转式圆柱流变仪适用于中高黏度的液体,如涂料、聚合物等。
立式旋转式圆盘流变仪原理立式旋转式圆盘流变仪通过使试样容器内液体产生剪切流动,测量剪切力和切变速率的关系,从而计算出粘度。
### 实验步骤 1. 将待测液体通过注射器注入圆盘容器内。
2. 调整仪器参数,使得圆盘的旋转速度符合实验要求。
3. 开始采集数据,包括旋转速度、剪切力以及剪切速率。
4. 根据已知的流体模型,利用采集到的数据计算粘度。
### 适用范围立式旋转式圆盘流变仪适用于低中黏度的液体,如乳液、胶体等。
管道流变法原理管道流变法通过测量液体在长管道中流动的特性,通过测量流体的流速和压力降来计算粘度。
### 实验步骤 1. 将待测液体通过注射器注入管道流变仪中。
实验二乌氏粘度计测定聚合物的特性粘度一、实验目的粘度法是测定聚合物分子量的相对方法,此法设备简单,操作方便,且具有较好的精确度,因而在聚合物的生产和研究中得到十分广泛的应用。
通过本实验要求掌握粘度法测定高聚物分子量的基本原理、操作技术和数据处理方法。
二、实验原理分子量是表征化合物特征的基本参数之一。
但高聚物分子量大小不一,参差不齐,一般在103~107之间,所以通常所测高聚物的分子量是平均分子量。
测定高聚分子量的方法很多,本实验采用粘度法测定高聚物分子量。
高聚物在稀溶液中的粘度,主要反映了液体在流动时存在着内摩擦。
在测高聚物溶液粘度求分子量时,常用到下面一些名词。
如果高聚物分子的分子量愈大,则它与溶剂间的接触表面也愈大,摩擦就大,表现出的特性粘度也大。
特性粘度和分子量之间的经验关系式为:式中,M 为粘均分子量;K为比例常数;alpha是与分子形状有关的经验参数。
K 和alpha值与温度、聚合物、溶剂性质有关,也和分子量大小有关。
K 值受温度的影响较明显,而alpha值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值解与0.5~1 之间。
K 与alpha 的数值可通过其他绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定[η]。
在无限稀释条件下因此我们获得[η]的方法有二种;一种是以ηsp/C对C 作图,外推到C→0 的截距值;另一种是以lnηr/C对C作图,也外推到C→0 的截距,两根线会合于一点。
方程为:测定粘度的方法主要有毛细管法、转筒法和落球法。
在测定高聚物分子的特性粘度时,以毛细管流出发的粘度计最为方便若液体在毛细管粘度计中,因重力作用流出时,可通过泊肃叶公式计算粘度。
(m=1)。
对于某一只指定的粘度计而言,(4)可以写成下式省略忽略相关值,可写成:式中,t 为溶液的流出时间;t0为纯溶剂的流出时间。
可以通过溶剂和溶液在毛细管中的流出时间,从(6)式求得ηr,再由图求得[η]。
聚氧乙烯(Polyethylene oxide,PEO)是环氧乙烷经催化聚合生成的水溶性聚合物[1]。
在生产过程中,产用不同的催化体系可以得到平均相对分子量不同的产品。
一般来说,相对分子量小于25000的产品称作聚乙二醇,而市售PEO的相对分子量范围则在100000~7000000之间。
由于具有高水溶性,高凝胶作用和低毒性,PEO已广泛应用与化学、制药学、农业工程和食品工业[2-4]。
尤其近年来其在口服控释制剂领域的潜力被逐渐开发出来,得到了越来越多学者的重视。
比如说,对于当今最具优势的控释制剂之一的渗透泵制剂来说,可以利用PEO水化后的粘度特性来混悬药物粉末,从而利用衣膜内外的压差而将药物从释药孔中释放出去。
因此,考察不同分子量PEO的特性粘数[η]对于制剂处方设计和筛选具有十分重要的意义。
特性粘数是描述高分子聚合物和溶剂间动力学相互作用的参数,它反应了溶剂使高分子物质溶解和膨胀的能力,是高分子聚合物特定的性质,和聚合物浓度无关。
我们可以配制一系列具有一定比例浓度的溶液,测定不同浓度溶液流经粘度计所需时间来计算粘数值V.N.。
利用外推法,即以V.N.(纵坐标)对浓度(横坐标)做图并将此线外推至浓度0,从纵坐标上读取特性粘数[5]。
同时,利用公式[η]=KMα(25℃,K=11.92×10-5,α=0.76)可以计算出PEO的粘均分子量M。
为了保证测量流经时间差有足够的精度,相对粘度即溶液的流经时间(t)和溶剂的流经时间(t)之比规定1.2作为下限;同时,因为在高摩尔质量时即便在通常的浓度也会存在切变的影响和粘数对浓度的非线性关系,故规定2.5作为上限。
因此,不同分子量PEO配制何种浓度梯度的溶液来测定[η]需要详细考察。
1 材料与方法1.1 药品 聚氧乙烯(N10:Mr 1×105,N12K:Mr 10×105,WSR303:Mr 70×105,美国陶氏公司)。