车身变形测量矫正与修复
- 格式:ppt
- 大小:7.59 MB
- 文档页数:63
车身矫正仪操作方法步骤
操作车身矫正仪的步骤如下:
1. 确保车身矫正仪放置在平稳的地面上,确保安全使用。
2. 将被矫正的车辆停放在车身矫正仪上,确保车辆准备好进行矫正。
3. 调整车身矫正仪的高度和长度,以适应被矫正的车辆,并确保车辆固定在矫正仪上。
4. 使用车身矫正仪的测量工具,测量车辆的偏差、扭曲和不平衡情况,以确定需要进行矫正的部位。
5. 使用车身矫正仪的调整工具,调整车辆的车身结构,包括挡板、车顶、车身支架等,使其回到正常的形状和位置。
6. 检查和调整车身矫正仪的测量结果,并再次进行车辆的测量,确保矫正效果符合要求。
7. 在矫正过程中,应根据需要进行适当的喷漆修复、喷漆和细节修复等,以确保车辆的外观和质量。
8. 完成车身矫正后,进行最后的检查和测试,确保车辆的结构和性能符合安全和质量要求。
9. 整理和清理车身矫正仪,确保其保持整洁和良好状态,以便下次使用。
请注意,以上步骤仅供参考,具体操作方法可能会因不同车身矫正仪的品牌和型号而有所不同。
在操作车身矫正仪之前,请仔细阅读和理解使用说明书,并按照其指示进行操作。
如果不熟悉操作方法,请咨询专业人士或设备制造商的相关指导。
车身校正简介车身校正是指对车辆的车身结构和外观进行调整和修复的过程。
在车辆发生碰撞、事故等情况下,车身易受损,需要进行校正工作以恢复其正确的结构和外观状况。
本文将介绍车身校正的目的、方法和步骤,并探讨车身校正对车辆安全和外观的重要性。
目的车身校正的根本目的是恢复车辆的正常工作状态,确保车辆在行驶过程中的安全性、稳定性和功能性。
车辆在发生碰撞或事故后,车身的结构可能会发生变形、扭曲或扭转,这会导致车辆的性能下降,甚至影响车辆的安全性。
通过进行车身校正,可以修复和调整车身的结构,使车辆恢复到正常的工作状态。
方法和步骤1. 评估和检查在进行车身校正前,首先需要进行全面的评估和检查,以确定车身是否存在结构性损伤和变形。
评估和检查的过程通常包括以下方面: - 车辆外观检查:检查车身表面是否存在凹痕、划痕和裂缝等明显的损伤。
- 车辆测量:使用专业测量设备对车身进行测量,以确定是否存在结构性损伤和变形。
- 针对性检查:根据车辆的具体情况,对可能受损的部位进行更加细致和深入的检查。
2. 车身拉直和修复一旦确定存在车身结构变形和损伤,就可以采取相应的修复措施。
主要的修复措施包括车身拉直和修复,具体步骤如下:- 车身拉直:使用专业的车身校正设备和工具,对车身进行拉直操作,以恢复车身的原始形状。
- 车身修复:根据车身的具体损伤情况,使用合适的修复材料和工艺进行修复,以修复裂缝、凹痕和划痕等损伤。
3. 车身涂装和打磨车身校正后,还需要进行车身涂装和打磨工作,以修复车身表面的划痕和凹痕,提高车身的外观质量和光洁度。
涂装和打磨的主要步骤如下: - 表面准备:清洁和处理车身表面,以确保涂装材料可以附着在车身表面,并获得良好的涂装效果。
- 涂装:选择合适的涂装材料,对车身进行喷涂,以恢复车身的原始颜色和外观。
- 打磨:对涂装后的车身进行打磨,以消除涂装过程中可能出现的瑕疵和不平整。
4. 最终检查和测试完成车身校正和修复后,还需要进行最终的检查和测试,以确保车身恢复到正常的工作状态。
目录摘要: (2)关键词: (2)引言 (2)1宝马5系车身结构特点 (2)1.1 车身的结构 (2)1.2车身的材料 (2)2车身严重损伤修复流程 (4)2.1严重损伤的车辆修理工艺流程 (4)2.2车身损伤的类型 (5)3车身测量和矫正的设备 (6)3.1测量设备 (6)3.2矫正设备 (7)4车身前端碰撞损伤的测量和矫正流程 (7)4.1拉伸时的测量 (8)4.2拉伸前的部件拆卸 (9)4.3制定拉伸计划 (9)4.4车身的固定与拉伸 (10)结论 (11)致谢 (11)[参考文献] (11)宝马5系汽车车身测量和矫正摘要:车身作为车辆的主体结构部分,在碰撞和倾翻事故中是受损最严重的部分。
不仅影响到美观,还会妨碍到汽车车身上其他总成的安装位置,而造成安全隐患,使车辆不能正常行驶。
因此,精确的车身修复至关重要。
而车身修复过程中车身的测量与校正是保证车身精确修复的前提。
本文主要介绍了宝马5系车身特点、车身严重损伤的维修流程、车身测量和矫正的工作流程。
关键词: 宝马5系车身损伤车身测量车身矫正引言作为一名合格的钣金技师,必须对汽车的结构和专业技能有全面系统的了解和掌握。
这样才能正确的对受损车辆进行拆卸,更新,修复维修工作以达到制造厂和经销商的所规定的技术标准。
掌握车辆碰撞后的相关理论知识,对碰撞后车辆受损状况可以有正确全面的的分析是制定正确的维修方案的基础。
1宝马5系车身结构特点1.1 车身的结构宝马5系非常重视轻型材料结构,车身部分构件是铝制的,车座舱和车的后厢都是由钢件制成的。
使用了这种混合式材质的方法和高强度的钢材,使车体(不算车门和前后盖的重量)重量降到255公斤,重量分布也明显改善。
轻型材料结构对减轻车辆重量起决定性作用,与高刚度车身骨架配合使用对以下方面非常有利:行驶动力性、降低耗油量、降低二氧化碳排放量、被动安全性。
如图1所示。
图1宝马5系车身1.2车身的材料现代车身要满足很多要求。
AUTO AFTERMARKET | 汽车后市场汽车车身结构性破坏的测量以及修复对策李永生河南技师学院 河南省郑州市 450044摘 要: 得益于民众物质生活水平的持续提升,我国私家车数量逐年增多。
而在多方面因素的影响下,使得驾车过程中不可避免的出现碰撞事故。
为保证汽车修复后能够具备较高的安全性、稳定性,需要以车身结构性破坏的精准测量为前提,结合对汽车修复对策的针对性、合理性应用来保障驾驶员的行车安全。
本文以汽车车身结构及其变形模式的分析入手,在此基础上具体阐明车身结构性破坏的测量与修复对策。
关键词:结构性破坏 修复对策 测量 汽车车身结构汽车碰撞事故时常发生,而因撞击力的不同,对车辆车身以及人员造成不同程度的损害。
通常情况下,以碰撞性质为依据进行碰撞事故类型划分,具体包括侧面碰撞、滚翻、正面碰撞、撞行人以及后面碰撞等,其中侧面、后面以及正面碰撞事故最为常见。
因碰撞破坏程度不同,可以将汽车碰撞分为外观损伤、关键部件损伤以及结构性破坏三个程度等级,针对结构性破坏汽车的修复,需借助多功能校正设备的应用,采用三维测量方法实现车身精准测量,并通过多角度拉伸,结合相关修复对策应用实现对车辆的高效修复。
1 汽车车身结构及其变形模式分析1.1 纵向碰撞理想特性与车身安全结构以纵向碰撞为前提,车辆车身的理想特性吸能段分别为:低速碰撞区,行人和车辆因变形力值、变形程度较低而受到保护[1]。
其区段结构组成包括软质发动机罩,且保险杠的应用要求其材料具备吸能特性;中速碰撞区,该区段在受到碰撞时产生的加速度峰值可以在能量被均匀吸收的影响下得到控制。
该区段要求前纵梁结构需要具备吸能变形的特性,如在前梁设计时采用预变形技术进行模式设计。
其原理体现为:车辆行驶过程中前纵梁可以在发挥应有的承载、支撑作用的基础上,在遭受碰撞时前纵梁相关部位会通过预先弱化来达到提前屈曲的目的,此时梁边在荷载达到极限值时产生屈服,碰撞能量在折叠压缩失效的影响下被有效吸收,最终产生的能量会在持续的屈曲、屈服后逐渐被消耗殆尽;自身保护区,碰撞时车身前围板与悬架间变形力值提升来达到扩展阻止的目的,避免乘员室在碰撞时出现内部侵入现象。