宇宙双星模型
- 格式:ppt
- 大小:1.31 MB
- 文档页数:24
专题33 双星多星模型卫星的变轨及能量问题拉格朗日点考点一双星模型双星系统:绕公共圆心转动的两个星体组成的系统,而且两颗星与该中心点总在同一直线上,如图,1.两个星体各自所需的向心力由彼此间的万有引力相互提供,即Gm1m2L2=m1ω21r1,Gm1m2L2=m2ω22r22.两颗星的周期及角速度都相同,即T1=T2,ω1=ω23.两颗星的半径与它们之间的距离关系为:r1+r2=L4.由m1ω21r1=m2ω22r2 得:两颗星到圆心的距离r1、r2与星体质量成反比,即m1m2=r2r15.双星的总质量公式m1+m2=4π2L3T2G推论:L3T2=kM总6.双星的运动周期T=2π)(213mmGL1.(多选)我国天文学家通过“天眼”(FAST,500米口径球面射电望远镜)在武仙座球状星团M13中发现一个脉冲双星系统,如图所示,由恒星A与恒星B组成的双星系统绕其连线上的O点做匀速圆周运动,若恒星A的质量为3m,恒星B的质量为5m,恒星A和恒星B之间的距离为L,引力常量为G。
下列说法正确的是()A.恒星A运行的角速度大于恒星B运行的角速度 B.恒星A与恒星B的线速度之比为5:3C.恒星A到O点的距离为35L D.恒星B的运行周期为π√L32Gm【答案】BD【解析】A.由于双星系统在相等时间内转过的圆心角相同,则双星的角速度一定相等,A错误;C.对恒星A有G5m×3mL2=3mω2rA对恒星B有G3m×5mL2=5mω2rB解得rArB=53又由于rA +rB=L解得rA=58L,rB=38L C错误;B.根据v=ωr解得vAvB=53B正确;D.恒星B的运行周期为T=2πω=π√L32GmD正确。
2.(2022·全国·高三课时练习)(多选)天文学家通过观测两个黑洞并合的事件,间接验证了引力波的存在。
该事件中甲、乙两个黑洞的质量分别为太阳质量的36倍和29倍,假设这两个黑洞绕它们连线上的某点做圆周运动,且两个黑洞的间距缓慢减小。
双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。
双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。
【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。
(引力常量为G )【解析】:设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2。
根据题意有21ωω=①r r r =+21②根据万有引力定律和牛顿定律,有G1211221r w m rm m = ③G1221221r w m rm m =④联立以上各式解得2121m m rm r +=⑤根据解速度与周期的关系知Tπωω221== ⑥联立③⑤⑥式解得322214r GT m m π=+【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考虑其他天体的影响.A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-2所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T.(1)可见星A 所受暗星B 的引力F a 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m ′(用m 1、m 2表示).(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s 的2倍,它将有可能成为黑洞.若可见星A的速率v=2.7×105 m/s ,运行周期T=4.7π×104s ,质量m 1=6m s ,试通过估算来判断暗星B 有可能是黑洞吗?(G=6.67×10-11 N ·m 2/kg 2,m s =2.0×1030kg )解析:设A 、B 的圆轨道半径分别为,由题意知,A 、B 做匀速圆周运动的角速度相同,设其为。
双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
双星模型知识点总结双星模型(Dual Star Model)是一种用于研究宇宙中双星系统的模型,这是一种包括一颗恒星和另一颗天体(通常是另一个恒星)的天体系统。
在宇宙中,双星系统是非常普遍的一种天体系统。
在这种系统中,两颗天体围绕着彼此运转,并由于引力相互作用而产生一系列复杂的现象。
因此,研究双星系统可以帮助我们更深入地了解宇宙的一些基本物理规律,例如引力相互作用、恒星演化、宇宙起源等。
双星系统的构成双星系统通常由两种类型的天体组成,分别为主要成员(Primary)和次要成员(Secondary)。
主要成员通常是一颗恒星,而次要成员则可以是其他类型的天体,例如行星、白矮星或中子星。
在一些情况下,双星系统的两颗天体都是恒星,这样的系统被称为双星。
双星的形成双星系统的形成有多种机制。
一种常见的形成机制是原始星团或星云中的恒星形成,这些恒星在形成过程中可能由于相互间的引力相互作用而形成双星系统。
另一种形成机制是两颗恒星在宇宙中产生的碰撞或者合并。
除此之外,还有一种形成机制是一颗恒星向另一颗恒星捕获而形成。
双星系统分类根据双星系统的性质和构成,我们可以根据多种分类方法对双星系统进行分类。
其中一个常见的分类方法是根据双星系统的物理间距来分类。
按照这种分类方法,双星系统可以被分为紧密双星系统和松散双星系统。
紧密双星系统是指两颗天体之间距离很近,它们之间的引力相互作用非常显著,造成一系列复杂的演化过程和现象。
而松散双星系统的两颗天体之间间距较大,它们之间引力相互作用较小。
另一个常见的分类方法是根据双星系统的构成类别来分类。
按照这种分类方法,我们可以将双星系统分为天体-恒星双星系统、恒星-恒星双星系统、行星-行星双星系统等等。
双星的运动规律双星系统的运动规律是由两颗天体间的引力相互作用决定的。
在双星系统中,两颗天体围绕着彼此运转。
根据牛顿引力定律,两颗天体之间的引力与它们之间的质量和距离成反比。
因此,双星系统中的天体将沿着椭圆轨道相互运转。
双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。
双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。
【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。
(引力常量为G ) 【解析】:设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2。
根据题意有21ωω=①rr r =+21②根据万有引力定律和牛顿定律,有G 1211221rw m rm m = ③G 1221221rw m r m m =④联立以上各式解得2121m m r m r +=⑤根据解速度与周期的关系知Tπωω221==⑥联立③⑤⑥式解得322214rGT m m π=+【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考虑其他天体的影响.A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-2所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T.(1)可见星A 所受暗星B 的引力F a 可等效为位于O 点处质量为m′的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m′(用m 1、m 2表示).(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s 的2倍,它将有可能成为黑洞.若可见星A的速率v=2.7×105 m/s ,运行周期T=4.7π×104 s ,质量m 1=6m s ,试通过估算来判断暗星B 有可能是黑洞吗?(G=6.67×10-11 N·m 2/kg 2,m s =2.0×1030 kg )解析:设A 、B 的圆轨道半径分别为,由题意知,A 、B 做匀速圆周运动的角速度相同,设其为。
模型双星或多星模型学校:_________班级:___________姓名:_____________模型概述1.双星问题(1)模型构建:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统.(2)特点:①各自所需的向心力由彼此间的万有引力提供,即G m 1m 2L 2=m 1ω21r 1,G m 1m 2L2=m 2ω22r 2.②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2.③两颗星的轨道半径与它们之间的距离关系为:r 1+r 2=L .④两星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.⑤双星的运动周期T =2πL 3G (m 1+m 2).⑥双星的总质量m 1+m 2=4π2L 3GT 22.多星模型:所研究星体所受万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度、周期相同。
常见的多星模型及其规律:Gm 2(2R )2+GMmR2=ma 向Gm 2L2×cos30°×2=ma 向Gm 2L 2×cos45°×2+Gm 2(2L )2=ma 向Gm 2L2×cos30°×2+GMmL 32=ma 向典题攻破1.双星问题1.(2024·重庆·高考真题)在万有引力作用下,太空中的某三个天体可以做相对位置不变的圆周运动,假设a 、b 两个天体的质量均为M ,相距为2r ,其连线的中点为O ,另一天体(图中未画出)质量为m (m <<M ),若c 处于a 、b 连线的垂直平分线上某特殊位置,a 、b 、c 可视为绕O 点做角速度相同的匀速圆周,且相对位置不变,忽略其他天体的影响。
引力常量为G 。
则()A.c 的线速度大小为a 的3倍B.c 的向心加速度大小为b 的一半C.c 在一个周期内的路程为2πrD.c 的角速度大小为GM8r 3【答案】A【详解】D .a 、b 、c 三个天体角速度相同,由于m <<M ,则对a 天体有G MM(2r )2=Mω2r 解得ω=GM4r 3故D 错误;A .设c 与a 、b 的连线与a 、b 连线中垂线的夹角为α,对c 天体有2G Mmrsin α2cos α=mω2rtan α解得α=30°则c 的轨道半径为r c =rtan30°=3r由v =ωr ,可知c 的线速度大小为a 的3倍,故A 正确;B .由a =ω2r ,可知c 的向心加速度大小是b 的3倍,故B 错误;C .c 在一个周期内运动的路程为s =2πr =23πr 故C 错误。
微专题(二)天体(或卫星)的两类典型问题(双星模型、卫星的变轨)学习目标1.理解双星模型的动力学特点,并能分析其运动规律.2.会分析卫星的变轨问题,知道卫星变轨的缘由和变轨前后的速度改变.关键实力·合作探究——突出综合性素养形成类型一双星模型归纳总结1.“双星”模型如图所示,宇宙中两个靠得比较近的天体,不考虑其他天体的引力作用,在彼此间的万有引力作用下绕其连线上的某固定点做匀速圆周运动,称为“双星”模型.2.“双星”模型的分析方法两颗星各自所需的向心力由彼此间的万有引力相互供应,即:对m1:=r1对m2:=r23.“双星”模型的特点(1)两颗星的周期及角速度都相同,即T1=T2,ω1=ω2.(2)两颗星的轨道半径与它们之间的距离关系为:r1+r2=L.(3)两颗星到圆心的距离r1、r2与星体质量成反比,即=.(4)“双星”的运动周期T=2π.(5)“双星”的总质量公式m1+m2=.典例示范例 1 宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用相互绕转,称之为双星系统.设某双星系统A、B绕其连线上的某固定点O点做匀速圆周运动,如图所示.现测得两星球球心之间的距离为L,运动周期为T,已知万有引力常量为G.若AO>OB,则( )A.星球A的线速度等于星球B的线速度B.星球A所受向心力大于星球B所受向心力C.双星的质量肯定,双星之间的距离减小,其转动周期增大D.两星球的总质量等于素养训练1 科学家发觉.距离地球2 764光年的宇宙空间存在适合生命居住的双星系统,这一发觉为人类探讨地外生命供应了新的思路和方向.假设宇宙中有一双星系统由质量分别为m和M的A、B两颗星体组成.这两颗星绕它们连线上的某一点在二者万有引力作用下做匀速圆周运动,如图所示,A、B两颗星的距离为L,引力常量为G,则( )A.因为OA>OB,所以m>MB.两恒星做圆周运动的周期为2πC.若恒星A由于不断吸附宇宙中的尘埃而使得质量缓慢增大,其他量不变,恒星A的周期缓慢增大D.若恒星A由于不断吸附宇宙中的尘埃而使得质量缓慢增大,其他量不变,则恒星A 的轨道半径将缓慢增大素养训练2 银河系的恒星中大约有四分之一是双星,某双星由质量不等的星体S1和S2构成,两星在相互之间万有引力的作用下绕两者连线上某肯定点O做匀速圆周运动(如图所示).由天文视察测得其运动周期为T,S1到O点的距离为r1,S1和S2的距离为r,已知引力常量为G.由此可求出S1的质量为( )A. B. D.类型二卫星的变轨归纳总结1.变轨问题概述(1)稳定运行卫星绕天体稳定运行时,万有引力供应了卫星做圆周运动的向心力,即G=m.(2)变轨运行当卫星由于某种缘由,其速度v突然改变时,F引和m不再相等,会出现以下两种状况:①当F引>m时,卫星做近心运动;②当F引<m时,卫星做离心运动.2.变轨问题的两种常见形式(1)渐变由于某个因素的影响使卫星的轨道半径发生缓慢的改变,由于半径改变缓慢,卫星每一周的运动仍可以看成是匀速圆周运动.①关键要点:轨道半径r减小(近心运动).这种变轨运动的起因是阻力使卫星速度减小,所须要的向心力减小了,而万有引力大小没有变,因此卫星将做近心运动,即轨道半径r将减小.②各个物理参量的改变:当轨道半径r减小时,卫星线速度v、角速度ω、向心加速度a增大,周期T减小.(2)突变由于技术上的须要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的轨道.放射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v1,在P点第一次点火加速,在短时间内将速率由v1增加到v2,使卫星进入椭圆轨道Ⅱ;卫星运行到远地点Q时的速率为v3,此时进行其次次点火加速,在短时间内将速率由v3增加到v4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动.典例示范例2如图所示,某次放射同步卫星的过程如下,先将卫星放射至近地圆轨道1,然后再次点火进入椭圆形的过渡轨道2,最终将卫星送入同步轨道3.轨道1、2相切于Q点,轨道2、3相切于P点,则当卫星分别在轨道1、2、3上正常运行时,以下说法正确的是( )A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度大于在轨道1上的角速度C.卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度素养训练3 2024年2月,“天问一号”探测器胜利实施近火制动,进入环火椭圆轨道,并于2024年5月软着陆火星表面,开展巡察探测等工作,探测器经过多次变轨后登陆火星的轨迹示意图如图所示,其中轨道Ⅰ、Ⅲ为椭圆,轨道Ⅱ为圆.探测器经轨道Ⅰ、Ⅱ、Ⅲ运动后在Q点登陆火星,O点是轨道Ⅰ、Ⅱ、Ⅲ的切点,O、Q还分别是椭圆轨道Ⅲ的远火星点和近火星点.关于探测器,下列说法正确的是( )A.由轨道Ⅰ进入轨道Ⅱ需在O点减速B.在轨道Ⅱ上运行的周期小于在轨道Ⅲ上运行的周期C.在轨道Ⅱ上运行的线速度大于火星的第一宇宙速度D.在轨道Ⅲ上,探测器运行到O点的线速度大于运行到Q点的线速度随堂演练·自主检测——突出创新性素养达标1.2024年6月5日,我国用神舟十四号载人飞船顺当将陈冬、刘洋和蔡旭哲三名航天员送入太空.其放射过程示意图如图,椭圆轨道Ⅰ为转移轨道,圆轨道Ⅱ为神舟十四号和空间站组合体的运行轨道,A为椭圆轨道的近地点,轨道Ⅰ、Ⅱ相切于B点,则( ) A.神舟十四号在轨道Ⅰ上从A点运动到B点,加速度渐渐增大B.神舟十四号在轨道Ⅰ上从A点运动到B点,线速度渐渐减小C.组合体在轨道Ⅱ上运行的周期小于神舟十四号在轨道Ⅰ上运行周期D.组合体在轨道Ⅱ上运行的线速度小于神舟十四号在轨道Ⅰ上运行线速度2.宇宙空间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量均为m的星体位于等边三角形的三个顶点,三角形边长为L.忽视其他星体对它们的引力作用,三星在同一平面内绕三角形中心O做匀速圆周运动,引力常量为G.下列说法正确的是( )A.每颗星做圆周运动的线速度为B.每颗星做圆周运动的加速度与三星的质量无关C.若距离L和每颗星的质量m都变为原来的2倍,则周期变为原来的2倍D.若距离L和每颗星的质量m都变为原来的2倍,则线速度变为原来的2倍3.(多选)天文学家通过观测两个黑洞并合的事务,间接验证了引力波的存在.该事务中甲、乙两个黑洞的质量分别为太阳质量的36倍和29倍,假设这两个黑洞绕它们连线上的某点做圆周运动,且两个黑洞的间距缓慢减小.若该双星系统在运动过程中,各自质量不变且不受其他星系的影响,则关于这两个黑洞的运动,下列说法正确的是( ) A.甲、乙两个黑洞运行的线速度大小之比为36∶29B.甲、乙两个黑洞运行的角速度大小始终相等C.随着甲、乙两个黑洞的间距缓慢减小,它们运行的周期也在减小D.甲、乙两个黑洞做圆周运动的向心加速度大小始终相等4.(多选)2024年7月23日,我国在海南文昌航天放射中心,胜利将我国首个深空探测器天问一号火星探测器送上太空.探测器接近火星后,探测器需经验如图所示的变轨过程,轨道Ⅰ为圆轨道,已知引力常量为G,则下列说法正确的是( )A.探测器在轨道Ⅰ上P点的速度大于在轨道Ⅱ上的速度B.探测器在轨道上运动时,运行的周期TⅢ>TⅡ>TⅠC.探测器若从轨道Ⅱ变轨到轨道Ⅰ,须要在P点朝速度反向喷气D.若轨道Ⅰ贴近火星表面,并已知探测器在轨道Ⅰ上运动的角速度,可以推知火星的密度5.(多选)卫星回收过程的示意图如图所示,卫星在圆轨道1上运行,到达轨道的P点时点火变轨进入椭圆轨道2,到达轨道的Q点时,再次点火变轨进入圆轨道3.轨道1、2相切于P点,轨道2、3相切于Q点.下列说法正确的是( )A.卫星在轨道2上的周期大于在轨道3上的周期B.卫星在轨道1上的角速度小于在轨道3上的角速度C.卫星在轨道1上的速率大于在轨道3上的速率D.卫星在轨道1上经过P点时的速率小于在轨道2上经过P点时的速率微专题(二) 天体(或卫星)的两类典型问题(双星模型、卫星的变轨)关键实力·合作探究类型一【典例示范】例1 解析:双星围绕同一点同轴转动,其角速度、周期相等,由v=rω可知,星球A 的轨道半径较大,线速度较大,A错误;双星靠相互间的万有引力供应向心力,依据牛顿第三定律可知向心力大小相等,B错误;双星A、B之间的万有引力供应向心力,有G=m Aω2R A,G=m Bω2R B,其中ω=,L=R A+R B,联立解得m A+m B=(R A+R B)3=,即T=,故当双星的质量肯定,双星之间的距离减小,其转动周期也减小,C错误;依据C选项计算可得m A+m B=,D正确.答案:D素养训练1 解析:依据万有引力供应向心力有G=m=M,因为OA>OB,所以m<M,由于OA+OB=L,解得T=2π ,当m增大时可知T减小,故A、C错误,B正确;依据m=M,且OA+OB=L,解得OA=,若恒星A由于不断吸附宇宙中的尘埃而使得质量m缓慢增大,其他量不变,则恒星A的轨道半径将缓慢减小,故D错误.答案:B素养训练2 解析:双星之间的万有引力供应各自做圆周运动的向心力,对S2有G=m2(r-r1),解得m1=.A对.答案:A类型二【典例示范】例2 解析:由G=m=mrω2得,v=,ω=,由于r1<r3,所以v1>v3,ω1>ω3,A、B错;轨道1上的Q点与轨道2上的Q点是同一点,到地心的距离相同,依据万有引力定律及牛顿其次定律知,卫星在轨道1上经过Q点时的加速度等于它在轨道2上经过Q点时的加速度,同理卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度,C错,D对.答案:D素养训练3 解析:由轨道Ⅰ进入轨道Ⅱ需在O点减速,由高轨道进入低轨道须要点火减速,A正确;依据开普勒第三定律=,因轨道Ⅱ的半径大于轨道Ⅲ的半长轴,所以在轨道Ⅱ上运行的周期大于在轨道Ⅲ上运行的周期,B错误;依据v=可知,在轨道Ⅱ上运行的线速度小于火星的第一宇宙速度,C错误;依据开普勒其次定律可知,近地点的线速度大于远地点的线速度,所以在轨道Ⅲ上,探测器运行到O点的线速度小于运行到Q点的线速度,D错误.答案:A随堂演练·自主检测1.解析:神舟十四号在轨道Ⅰ上从A点运动到B点,受到地球的引力渐渐减小,则加速度渐渐减小,A错误;神舟十四号在轨道Ⅰ上从A点运动到B点,即从远地点向近地点运动,由开普勒其次定律知,线速度减小,B正确;依据开普勒第三定律可知=k,因在轨道Ⅱ上运行的轨道半径大于神舟十四号在轨道Ⅰ上运行的半长轴,则组合体在轨道Ⅱ上运行的周期大于神舟十四号在轨道Ⅰ上运行的周期,C错误;组合体从轨道Ⅰ上的B点要加速才能进入轨道Ⅱ,则在轨道Ⅱ上运行的线速度大于神舟十四号在轨道Ⅰ上运行到B点时线速度,D错误.答案:B2.解析:随意两颗星之间的万有引力为F=G,每一颗星受到的合力为F1=F,由几何关系可知,它们的轨道半径为r=L,合力供应它们的向心力=m,联立解得v =,A错误;依据=ma,解得a=,故加速度与它们的质量有关,B错误;依据=m,解得T=,若距离L和每颗星的质量m都变为原来的2倍,则周期变为原来的2倍, C正确;依据v=可知,若距离L和每颗星的质量m都变为原来的2倍,则线速度不变,D错误.答案:C3.解析:由牛顿第三定律知,两个黑洞做圆周运动的向心力大小相等,它们的角速度ω相等,且有F n=mω2r可知,甲、乙两个黑洞做圆周运动的半径与质量成反比,由v=ωr 知,线速度之比为29∶36,A错误,B正确;设甲、乙两个黑洞质量分别为m1和m2,轨道半径分别为r1和r2,有=m1()2r1,=m2()2r2,联立可得=,随着甲、乙两个黑洞的间距缓慢减小,它们运行的周期也在减小,C正确;甲、乙两个黑洞做圆周运动的向心力大小相等,由牛顿其次定律a=可知,甲、乙两个黑洞的向心加速度大小a1∶a2=29∶36,D错误.答案:BC4.解析:探测器在P点从轨道Ⅱ变轨到轨道Ⅰ,须要在P点朝速度方向喷气,从而使探测器减速到达轨道Ⅰ,则探测器在轨道Ⅰ上P点的速度小于在轨道Ⅱ上P点的速度,A、C 错误;依据开普勒第三定律可知,探测器在轨道上运动时半长轴越大其运行的周期越大,故B正确;依据万有引力定律可得G=mω2R,依据ρ=可得M=ρπR3,联立解得ρ=,所以当轨道Ⅰ贴近火星表面,并且已知探测器在轨道Ⅰ上运动的角速度,可以推知火星的密度,故D正确.答案:BD5.解析:依据开普勒第三定律,卫星在轨道2上的周期大于在轨道3上的周期,A正确;卫星绕中心天体做匀速圆周运动,由万有引力供应向心力G=m=mω2r,解得v=,ω=,由公式可知,半径越大,速度和角速度越小,B正确,C错误;从轨道1到轨道2 ,卫星在P点做渐渐靠近圆心的运动,要实现这个运动必需使卫星所需向心力小于万有引力,所以应给卫星减速,所以在轨道1上经过P点时的速率大于在轨道2上经过P点时的速率,D错误.答案:AB。
双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用依照万有引力的规律,他们的运动规律也同样依照开普勒行星运动的三条基本规律。
双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力供应向心力为出发点的。
双星系统的引力作用依照牛顿第三定律: F F ,作用力的方向在双星间的连线上,角速度相等,1 2。
【例题 1】天文学家将相距较近、仅在相互的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很宽泛。
利用双星系统中两颗恒星的运动特色可计算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r ,试计算这个双星系统的总质量。
(引力常量为G)【剖析】:设两颗恒星的质量分别为m1、 m2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω 1、ω 2。
依照题意有1 2 ①r1 r2 r ②依照万有引力定律和牛顿定律,有G m1m2 m1w12 r1 ③r 2G m1m2 m1 w22 r1 ④r 2联立以上各式解得m2 r⑤r1m2m1依照解速度与周期的关系知1 2 2⑥T联立③⑤⑥式解得m1 m24 2 3r T 2 G【例题 2】奇异的黑洞是近代引力理论所预知的一种特别天体,探望黑洞的方案之一是观察双星系统的运动规律.天文学家观察河外星系大麦哲伦云时,发现了 LMCX3 双星系统,它由可见星A 和不可以见的暗星 B 组成,两星视为质点,不考虑其他天体的影响.A 、 B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-2 所示 .引力常量为 G,由观测可以获取可见星 A 的速率 v 和运行周期 T.(1) 可见星 A 所受暗星 B 的引力 F a 可等效为位于 O 点处质量为 m ′的星体 (视为质点 )对它的引力,设 A 和 B 的质量分别为 m 1、 m 2,试求 m ′(用 m 1、 m 2 表示 ).(2) 求暗星 B 的质量 m 2 与可见星 A 的速率 v 、运行周期 T 和质量 m 1 之间的关系式;(3) 恒星演化到末期, 若是其质量大于太阳质量 m 的 2 倍,它将有可能成为黑洞 .若可见星 As的速率 v=2.7 ×105 m/s ,运行周期 T=4.7 π×410s ,质量 m 1=6m s ,试经过估计来判断暗星 B 有 可能是黑洞吗? (×10-11 N ·m 2/kg 2, m s =2.0 ×1030 kg )剖析:设 A 、 B 的圆轨道半径分别为,由题意知, A 、 B 做匀速圆周运动的角速度同样,设其为。
专题25双星和多星问题【知识梳理】 一、双星模型1.定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。
如图:2.特点(1)各自所需的向心力由彼此间的万有引力提供,即Gm 1m 2L 2= ,Gm 1m 2L 2= 。
(2)两颗星的周期、角速度 ,即T 1= ,ω1= 。
(3)两颗星的轨道半径与它们之间的距离关系为r 1+r 2= 。
(4)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2= 。
(5)双星的运动周期T = 。
(6)双星的总质量m 1+m 2= 。
二、多星模型1.定义:所研究星体的万有引力的 提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同。
2.常见的多星模型另外两星球对其万有引另外两星球对其万有引另外三星球对其万有引【专题练习】 一、单项选择题1.在两个黑洞合并过程中,由于彼此间的强大引力作用,会形成短时间的双星系统。
如图所示,黑洞A 、B 可视为质点,它们围绕连线上的O 点做匀速圆周运动,且AO 大于BO ,不考虑其他天体的影响。
下列说法正确的是( )A .黑洞A 的向心力大于B 的向心力 B .黑洞A 的线速度大于B 的线速度C .黑洞A 的质量大于B 的质量D .两黑洞之间的距离越大,A 的周期越小2.“慧眼”望远镜是中国第一颗空间X 射线天文卫星,既可以实现宽波段、大视场X 射线巡天又能够研究黑洞、中子星等高能天体。
在利用“慧眼”观测美丽的银河系时,发现某双黑洞间的距离为S ,只在彼此之间的万有引力作用下绕它们连线上的某点做匀速圆周运动,其运动周期为T ,引力常量为G ,则双黑洞总质量为( ) A .3224S GT πB .2234T GS πC .2324S GT πD .23243S GT π3.“双星”是宇宙中普遍存在的一种天体系统,这种系统之所以稳定的原因之一是系统的总动量守恒且总动量为0,如图所示,A 、B 两颗恒星构成双星系统,绕共同的圆心O 互相环绕做匀速圆周运动,距离不变,角速度相等,已知A 的动量大小为p ,A 、B 的总质量为M ,A 、B 轨道半径之比为k ,则B 的动能为( )A .()221kp k M+B .()212k p kM+C .()212k p kM-D .()221kp k M-4.中国科学家利用“慧眼”太空望远镜观测到了银河系的MaxiJ1820+070是一个由黑洞和恒星组成的双星系统,距离地球约10000光年。