2018届高三文科数学一轮复习 抛物线
- 格式:ppt
- 大小:3.52 MB
- 文档页数:28
8.7.1 抛物线一、课标要求1.了解抛物线的定义几何图形和标准方程,以及它的简单几何性质.2.通过对抛物线的学习,进一步体会数形结合的思想.二、知识梳理1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离_____的点的轨迹.(2)焦点:________叫做抛物线的焦点.(3)准线:________叫做抛物线的准线.2.抛物线的标准方程和几何性质标准方程y2=2px(p>0)y2=−2px(p>0)x2=2py(p>0)x2=−2py(p>0)图形顶点对称轴焦点离心率准线方程范围开口方向三、典例探究例1 已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p= ( )A. 2B. 3C. 6D. 9变式:已知抛物线y2=8x在第一象限内的一点A到其焦点的距离为8,则点A的纵坐标为( )A. 2√3B. 6C. 4D. 4√3例2设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,若B(3,2),则|PB|+|PF|的最小值为 ______.变式:设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,若B(3,2),求点P到A(−1,1)的距离与点P到直线x=−1的距离之和的最小值.四、课堂练习1、平面中到点A(1,0)和直线x=−1的距离相等的点的轨迹方程为( )A. y2=2xB. y2=4xC. x2=2yD. x2=4y2、若抛物线x2=my上一点(t,2)到其焦点的距离等于4,则m= ( )A. 8B. 4C. 2D. 123、过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,若x1+x2=6,则|PQ|等于( )A. 9B. 8C. 7D. 64、已知△ABC的三个顶点都在抛物线T:y2=2px(p>0)上,C(2,−8),且抛物线的焦点F为△ABC的重心,则|AF|+|BF|= ( )A. 40B. 38C. 36D. 345、若F为抛物线C:y2=4x的焦点,点M(m,4)在C上,直线MF交C 的准线于点N,则|FN|= ( )A. 54B. 103C. 5D. 126、设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|= ( )A.2B. 2√2C. 3D. 3√2。
第三节 抛物线【考点点知】知己知彼,百战不殆抛物线是圆锥曲线中一种比较重要的曲线,新课标要求:掌握抛物线的定义、几何图形、标准方程及简单性质.所以复习时文理应不同对待,文科主要注重对基本知识、基本题目的复习,而理科还应加深理解,作适当的加深训练.考点一: 抛物线1.平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.方程y 2=±2px ,x 2=±2py (p >0)叫做抛物线的标准方程,有四种形式.3.抛物线y 2=2px (p >0)的焦点坐标是)0,2(p ,它的准线方程是2px -=,它的开口方向向右.4.抛物线y 2=-2px (p >0)的焦点坐标是)0,2(p-,它的准线方程是2p x =,它的开口方向向左.5.抛物线x 2=2py (p >0)的焦点坐标是)2,0(p ,它的准线方程是2py -=,它的开口方向向上.6.抛物线x 2=-2py (p >0)的焦点坐标是)2,0(p -,它的准线方程是2py =,它的开口方向向下.7.抛物线y 2=2px (p >0)上的点M (x 0,y 0)与焦点F 的距离|MF |=02x p+. 8.抛物线y 2=-2px (p >0)上的点M (x 0,y 0)与焦点F 的距离|MF |=02x p-. 9.抛物线x 2=2py (p >0)上的点M (x 0,y 0)与焦点F 的距离|MF |=02y p+. 10.抛物线x 2=-2py (p >0)上的点M (x 0,y 0)与焦点F 的距离|MF |=02y p-.考点二: 抛物线的几何性质1.已知抛物线的标准方程y 2=2px (p >0),则抛物线上的点(x ,y )的横坐标x 的取值范围是 x ≥0.2.抛物线的对称轴叫做抛物线的轴.抛物线和它的轴的交点叫做抛物线的顶点.抛物线上的点与焦点的距离和它的准线的距离的比叫做抛物线的离心率,其值为1.3.在抛物线y 2=2px (p >0)中,通过焦点而垂直于x 轴的直线与抛物线两交点的坐标分别为),2(),,2(p pp p -,连结这两点的线段叫做抛物线的通径,它的长为2p .【考题点评】分析原因,醍醐灌顶例 1.(基础·2006连云港二模)在平面直角坐标系xOy 中,直线l 的方程为1-=x ,l AM ⊥,垂足为M ,若12AO AM =+,则点A 的轨迹是 ( )A . 椭圆B .双曲线C .抛物线D .圆思路透析:作直线13:2l x =-,设点A 到直线13:2l x =-的距离为d , 由已知12AO AM =+,可得AO d =,即点A 的轨迹为抛物线,故应选C.点评:直接利用抛物线的定义可得结论.抛物线的定义,平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.例2.(基础·2007广东卷理科11)在平面直角坐标系xOy 中,有一定点A (2,1),若线段OA 的垂直平分线过抛物线22(0)y px p =>的焦点,则该抛物线的准线方程是 .思路透析:抛物线22y px = (0p >)的焦点坐标为(,02p ). ∵12OA k =, 线段OA 的中点坐标为(1, 12), 线段OA 的垂直平分线的斜率12OAk k =-=-, ∴线段OA 的垂直平分线方程为12(1)2y x -=--, 其与x 轴的交点坐标为5(,0)4, ∴524p =, 故抛物线的准线方程为524p x =-=-,即54x =-. 点评:本题考查了应用基本量法求抛物线的标准方程,考查了考生对圆锥曲线基础知识的基本方法的掌握.新高考圆锥曲线中档题的设置仍然集中于对圆锥曲线的标准方程的研究或对其简单的性质的探讨.部分考生将抛物线的焦点坐标设为(,0)p ,而使方程求解出现错误,属基础知识掌握不牢.对于圆锥曲线中的基本量、基本量的关系、特殊点的坐标要注意理解与记忆.例3.(综合·2007宁夏卷理科6文科7)已知抛物线22(0)y px p =>的焦点为F , 点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132x x x =+, 则有( ) A.123FP FP FP +=B.222123FP FP FP +=C.2132FP FP FP =+ D.2213FP FP FP =·思路透析:如图所示,由抛物线的定义可得,112233||,||,||222p p pFP x FP x FP x =+=+=+ ∵1322x x x +=,∴121212||||22p p FP FP x x x x p +=+++=++332()2||2px FP =+=, 故应选C.点评:部分考生忽视了抛物线的定义在解题中的应用,而直接利用两点间的距离求解与转化,另外对于命题的结论缺乏猜想意识,转化不成功而随意选择一个结论.对于圆锥曲线中涉及焦点弦或焦半径等问题,一定要首先联想应用定义法求解,将线段的长度运算转化为一维的坐标运算,降低运算量.例4.(综合·2007山东卷理科13文科9)设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60,则OA 为( )A .214pB .2C .6p D .1336p 思路透析:如右图所示,过点A 作AA 1⊥l 于点A 1,则AA 1=AF,∴点A 的横坐标1||||22A p p x AA FA =-=-,又FA与x 轴正半轴夹角为600,∴点A 的横坐标0||||cos602A F p FA x x FA +=+=,∴||||22p p FA FA +-= ,解之得||2FA p =,则点A 的坐标为A 00(||cos 60,||sin 60)2p FA FA +, 即A(32p ),∴||2OA p == . 故应选B.点评:不少考生将直线FA 的方程求出,代入抛物线方程,求得了两个交点A,忽视了对向量夹角位置关系的判断.处理抛物线焦半径时要注意抛物线定义的巧妙应用,从中几何图形中去挖掘几何量的定值与定点位置关系研究.例5.(创新探究·2007黄冈模)已知直线L 过坐标原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上,若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程..思路透析: 由题意设抛物线C 的方程为y 2=2px (p >0),且x 轴和y 轴不是所求直线,又L 过原点,因而可设L 的方程为y =kx (k ≠0),设A ′B ′分别是A 、B 关于L 的对称点.A ′(x ′,y ′)关于y =kx 对称于A (-1,0)则12,11(22111222+-+-'⇒⎪⎪⎩⎪⎪⎨⎧'-=⋅-'-=+''k k k k A y k x k x y同理B ′[1)1(8,116222+-+k k k k ] 又A ′、B ′在抛物线C 上,所以(122+-k k )2=2p ·1122+-k k由此知k ≠1,即p =1242-k k , [1)1(842--k k ]2=2p ·1162+k k ,由此得p =k k k )1()1(2222+-,从而k k k k k )1()1(21222242+-=-,整理得k 2-k -1=0 所以251,25121-=+=k k , ⎪⎪⎩⎪⎪⎨⎧=+=5522511p k ⎪⎪⎩⎪⎪⎨⎧<-=-=)(05522512舍p k 所以直线l 方程为y =251+x ,抛物线方程为y 2=554x . 点评:本题考查根据所给条件选择适当的坐标系,求曲线方程的解析几何的基本思想,考查了抛物线的概念和性质、曲线和方程的关系以及综合运用知识的能力.例6.(创新探究·2007湖北理,19)在平面直角坐标系xOy 中,过定点C (0,p )作直线与抛物线x 2=2px (p >0)相交于A 、B 两点.(Ⅰ)若点N 是点C 关于坐标原点O 的对称点, 求△ANB 面积的最小值;(Ⅱ)是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.思路透析:解法1:(Ⅰ)依题意,点N 的坐标为N (0,-p ),可设A (x 1,y 1),B (x 2,y 2),直线AB的方程为y =kx +p ,与x 2=2py 联立得⎩⎨⎧+==.22p kx y py x 消去y 得x 2-2pkx -2p 2=0.由韦达定理得x 1+x 2=2pk ,x 1x 2=-2p 2. 于是21221x x p S S S ACN BCN ABN -⋅=+=∆∆∆ =21221214)(x x x x p x x p -+=-=.228422222+=+k p p k p p222min 0p S k ABN ==∴∆)时,(当.(Ⅱ)假设满足条件的直线l 存在,其方程为y =a ,AC 的中点为为直与AC t O ,'径的圆相交于点P 、Q ,PQ 的中点为H ,则)点的坐标为(2,2,11py x O PQ H O +'⊥' 2121)(2121p y x AC P O -+==' =22121p y +. ,221211p y a p y a H O --=+-=' 222H O P O PH '-'=∴=21221)2(41)(41p y a p y ---+ =),()2(1a p a y pa -+-22)2(PH PQ =∴=.)()2(42⎥⎦⎤⎢⎣⎡-+-a p a y p a令02=-p a ,得p PQ pa ==此时,2为定值,故满足条件的直线l 存在,其方程为2p y =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得22222122122128414)(11p k p k x x x x k x x k AB +⋅+=-+⋅+=-+==.21222+⋅+k k p 又由点到直线的距离公式得212kp d +=.从而,,2212212212122222+=+⋅+⋅+⋅=⋅⋅=∆k p k pk k p AB d S ABN .22max 02p S k ABN ==∴∆)时,(当 得⎪⎩⎪⎨⎧=-+=+-.0tan 2222,0θaz y a x a ay ax (Ⅱ)假设满足条件的直线t 存在,其方程为y=a ,则以AC 为直径的圆的方程为,0))(())(0(11=-----y y p y x x x 将直线方程y=a 代入得).(1)2(4))((4,0))((121112a p a y p a y a p a x y a p a x x x -+⎥⎦⎤⎢⎣⎡-=---∆=----=则 设直线l 与以AC 为直径的圆的交点为P (x 2,y 2),Q (x 4,y 4),则有.)()2(2)()2(41143a p a y p a a p a y p a x x PQ -+-=⎥⎦⎤⎢⎣⎡-+-=-=令p PQ pa p a ===-此时得,2,02为定值,故满足条件的直线l 存在,其方程为2p y =.即抛物线的通径所在的直线.点评:本题以直线与抛物线的位置关系为背景, 将解析几何中的各数学思想方法交汇在一起, 属于思想方法的交汇, 其解题方法的多样性是本题的一大特色, 其每一问均有超过三种以上的解法, 且每一问题在难度上逐渐递进, 从多方位多角度考察了考生分析问题解决问题的能力,解析过程中注意参数的合理转化, 简化了运算的过程及计算量,也体现了设而不求的解几思想.【画龙点睛】探索规律,豁然开朗 1.规律总结:(1)求抛物线方程时,若由已知条件可知曲线是抛物线,一般用待定系数法;若由已知条件可知曲线的动点的规律,一般用轨迹法.(2)凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算.(3)抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.(4)求抛物线方程时,要依据题设条件,弄清抛物线的对称轴和开口方向,正确地选择抛物线标准方程.在解题中,抛物线上的点、焦点、准线三者通常与抛物线的定义相联系,所以要注意相互转化.2.学以致用:(1)抛物线y =x 2的准线方程是A. 4y +1=0B. 4x +1=0C. 2y +1=0D. 2x +1=0(2)抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( ) A .43B .75C .85D .3(3)在平面直角坐标系xOy 中,有一定点A (2,1),若线段OA 的垂直平分线过抛物线22(0)y px p =>的焦点,则该抛物线的准线方程是 .(4)已知抛物线y 2=4x 的一条弦AB ,A(x 1, y 1), B(x 2, y 2), AB 所在直线与y 轴交点坐标为(0,2)则2111y y += . 答案:(1)D 解析:121,,41024p p y y =∴=-=-∴+=,选D. (2)A 解析:设抛物线2y x =-上任意一点为2(,)x x -,则点到直线4380x y +-=的距离d=22|348|5x x -+=当2433x d ==最小值时,, 故应选A. (3)54x =-解析:抛物线22y px = (0p >)的焦点坐标为(,02p ).∵12OA k =, 线段OA 的中点坐标为(1, 12), 线段OA 的垂直平分线的斜率12OAk k =-=-, ∴线段OA 的垂直平分线方程为12(1)2y x -=--, 其与x 轴的交点坐标为5(,0)4, ∴524p =, 故抛物线的准线方程为524p x =-=-,即54x =-. (4)12解析:设直线AB 的方程为(2)x m y =- , 代入抛物线方程24y x =可得2480y my m -+= , 由点A 、B 的坐标分别为1122(,),(,)A x y B x y , 可得121212114182y y m y y y y m ++=== . 3.易错分析:(1)运算正确率太低, 这是考生在解解析几何问题中常出现的问题, 即会而不对. (2)抛物线中的焦点坐标与准线方程求解过程中常误求出二倍关系;(3)定点与定值问题总体思路不能定位,引入参变量过多,没有求简意识,使问题复杂化. (4)解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质.【能力训练】学练结合,融会贯通一、选择题:1.若抛物线24x y =-上一点M 到焦点F 的距离为1,则点M 的横坐标为( ) A .78-B .98-C .1716-D .1516- 2.在抛物线y 2=2px 上,横坐标为4的点到焦点的距离为5,则p 的值为 ( ) A.21B.1C.2D.4 3.过抛物线)0(2>=a ax y 的焦点F 作一直线交抛物线于A 、B 两点,若线段AF 、BF 的长分别为m 、n ,则mnnm +等于 ( )A .2aB .4aC .a 21 D .a4 4.抛物线24y x =的焦点为F ,准线为l ,经过Fx 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则△AKF 的面积是A .4 B. C. D .85.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0 ,则FA FB FC ++=( )A .9B .6C .4D .36.已知点P 是抛物线2y = 2x 上的动点,点p 在y 轴上的射影是M ,点A 的坐标是⎪⎭⎫⎝⎛4,27A ,则PA + PM 的最小值是 ( ) A .211 B .4 C .29 D .5二、填空题:7.过抛物线y 2=4x 的焦点F 作垂直于x 轴的直线,交抛物线于A 、B 两点,则以F 为圆心、AB 为直径的圆方程是________________.8.设P 为抛物线y 2=x 上一点,且P 到此抛物线的准线的距离为d,当P 点到直线x-y+2=0的距离最小时,d 的值等于__________________.9.直线y =x -1被抛物线y 2=4x 截得线段的中点坐标是___________. 10.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号)三、解答题:11.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (Ⅰ)过点(-3,2);(Ⅱ)焦点在直线x -2y -4=0上.12.在平面直角坐标系中,O 为坐标原点,点F TM P 、、、满足(1,0),(O F O T t ==- ,,,//FM MT PM FT PT OF =⊥(Ⅰ)当t 变化时,求点P 的轨迹C 的方程(Ⅱ)若过点F 的直线交曲线C 于A B 、两点,求证:直线TA TF TB 、、的斜率依次成等差数列13.已知抛物线x 2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明FM →·AB →为定值;(Ⅱ)设△ABM 的面积为S ,写出S =f (λ)的表达式,并求S 的最小值.14.已知抛物线)0(22>=p px y 的焦点为F ,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M.(Ⅰ)求抛物线方程;(Ⅱ)过M 作FA MN ⊥,垂足为N ,求点N 的坐标;(Ⅲ)以M 为圆心,MB 为半径作圆M ,当)0,(m K 是x 轴上一动点时,讨论直线AK 与圆M 的位置关系.【能力训练】参考答案一、选择题:1. D2. C3. D4. C5. B6. C二、填空题:7. (x -1)2+y 2=4 8.12 9. (3,2) 10. ②⑤ 三、解答题:11.解析:(Ⅰ)设所求的抛物线方程为y 2=-2px 或x 2=2py (p >0),∵过点(-3,2),∴4=-2p (-3)或9=2p ·2.∴p =32或p =49. ∴所求的抛物线方程为y 2=-34x 或x 2=29y ,前者的准线方程是x =31,后者的准线方程是y =-89. (Ⅱ)令x =0得y =-2,令y =0得x =4,∴抛物线的焦点为(4,0)或(0,-2).当焦点为(4,0)时,2p =4, ∴p =8,此时抛物线方程y 2=16x ; 焦点为(0,-2)时,2p =2, ∴p =4,此时抛物线方程为x 2=-8y .∴所求的抛物线的方程为y 2=16x 或x 2=-8y ,对应的准线方程分别是x =-4,y =2.12.解析:(I )设点P 的坐标为(,)x y ,由FM MT = ,得点M 是线段FT 的中点,则(0,)2t M ,(,)2t PM x y =-- , 又(2,),FT OT OF t =-=- (1,)PT x t y =--- ,由PM FT ⊥ , 得2()02t x t y +-=, ① 由//PT OF ,得(1)0()10,x t y t y --⨯+-⨯=∴= ②由①②消去t ,得24y x =即为所求点P 的轨迹C 的方程(II )证明:设直线,,TA TF TB 的斜率依次为12,,k k k ,并记11(,)A x y ,22(,)B x y , 则2t k =- 设直线AB 方程为1x my =+ 241y x x my ⎧=⎨=+⎩,得2440y my --=, 12124,4y y m y y +=⎧∴⎨⋅=-⎩ 2222121212()2168y y y y y y m ∴+=+-=+,1212121y t y t k k x t x --∴+=+++2221122212()(1)()(1)44(1)(1)44y y y t y t y y -++-+=++ 2212121212222212124()4()16()324()16y y y y t y y y y t y y y y +-+++-=+++2t k =-= 12,,k k k ∴成等差数列13.解析:(Ⅰ)由已知条件,得F (0,1),λ>0.设A (x 1,y 1),B (x 2,y 2).由AF →=λFB →,即得 (-x 1,1-y )=λ(x 2,y 2-1), ⎩⎪⎨⎪⎧-x 1=λx 2 ①1-y 1=λ(y 2-1) ② 将①式两边平方并把y 1=14x 12,y 2=14x 22代入得 y 1=λ2y 2 ③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-4λy 2=-4, 抛物线方程为y =14x 2,求导得y ′=12x . 所以过抛物线上A 、B 两点的切线方程分别是y =12x 1(x -x 1)+y 1,y =12x 2(x -x 2)+y 2,即y =12x 1x -14x 12,y =12x 2x -14x 22. 解出两条切线的交点M 的坐标为(x 1+x 22,x 1x 24)=(x 1+x 22,-1). 所以FM →·AB →=(x 1+x 22,-2)·(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0 所以FM →·AB →为定值,其值为0. ……7分(Ⅱ)由(Ⅰ)知在△ABM 中,FM ⊥AB ,因而S =12|AB ||FM |. |FM |=(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4 =y 1+y 2+12×(-4)+4=λ+1λ+2=λ+1λ. 因为|AF |、|BF |分别等于A 、B 到抛物线准线y =-1的距离,所以|AB |=|AF |+|BF |=y 1+y 2+2=λ+1λ+2=(λ+1λ)2. 于是S =12|AB ||FM |=(λ+1λ)3,由λ+1λ≥2知S ≥4,且当λ=1时,S 取得最小值4. 14.解析:(Ⅰ) 抛物线2y =2px 的准线为x =-2p ,于是4+2p =5, ∴p =2. ∴抛物线方程为2y =4x .(Ⅱ)∵点A 是坐标是(4,4), 由题意得B(0,4),M(0,2),又∵F(1,0), ∴k FA =34;MN ⊥FA, ∴k MN =-43, 则FA 的方程为y =34(x -1),MN 的方程为y -2=-43x ,解方程组得x =58,y =54,∴N 的坐标(58,54). (Ⅲ)由题意得, ,圆M.的圆心是点(0,2), 半径为2,当m =4时, 直线AK 的方程为x =4,此时,直线AK 与圆M 相离.当m ≠4时, 直线AK 的方程为y =m-44(x -m ),即为4x -(4-m ) y -4m =0, 圆心M(0,2)到直线AK 的距离d =2)4(1682-++m m ,令d >2,解得m >1 ∴当m >1时, AK 与圆M 相离; 当m =1时, AK 与圆M 相切; 当m <1时, AK 与圆M 相交.。
第五节 抛物线突破点一 抛物线的定义及其应用[基本知识]抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( ) (2)AB 为抛物线y 2=4x 的过焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,y 1y 2=-4,弦长|AB |=x 1+x 2+2.( )答案:(1)× (2)√ 二、填空题1.已知动点P 到定点(2,0)的距离和它到直线l :x =-2的距离相等,则点P 的轨迹方程为________.答案:y 2=8x2.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=________.答案:13.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为________.答案:54[全析考法]考法一 抛物线的定义及应用[例1] (1)(2019·赣州模拟)若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( )A .(0,0) B.⎝ ⎛⎭⎪⎫12,1 C .(1,2)D .(2,2)(2)(2019·襄阳测试)已知抛物线y =12x 2的焦点为F ,准线为l ,M 在l 上,线段MF 与抛物线交于点N ,若|MN |=2|NF |,则|MF |=( )A .2B .3 C. 2D. 3[解析] (1)过M 点作准线的垂线,垂足是N ,则|MF |+|MA |=|MN |+|MA |,当A ,M ,N 三点共线时,|MF |+|MA |取得最小值,此时M (2,2).(2)如图,过N 作准线的垂线NH ,垂足为H .根据抛物线的定义可知|NH |=|NF |,在Rt △NHM 中,|NM |=2|NH |,则∠NMH =45°.在△MFK 中,∠FMK =45°,所以|MF |=2|FK |.而|FK |=1.所以|MF |= 2.故选C.[答案] (1)D (2)C [方法技巧]利用抛物线的定义解决问题时,应灵活地进行抛物线上的点到焦点距离与其到准线距离间的等价转化.“看到准线应该想到焦点,看到焦点应该想到准线”,这是解决抛物线距离有关问题的有效途径.考法二 焦点弦问题焦点弦的常用结论以抛物线y 2=2px (p >0)为例,设AB 是抛物线的过焦点的一条弦(焦点弦),F 是抛物线的焦点,A (x 1,y 1),B (x 2,y 2),A ,B 在准线上的射影为A 1,B 1,则有以下结论:(1)x 1x 2=p 24,y 1y 2=-p 2;(2)|AB |=x 1+x 2+p =2psin 2θ(其中θ为直线AB 的倾斜角),抛物线的通径长为2p ,通径是最短的焦点弦;(3)1|AF |+1|BF |=2p为定值; (4)以AB 为直径的圆与抛物线的准线相切; (5)以AF (或BF )为直径的圆与y 轴相切;(6)以A 1B 1为直径的圆与直线AB 相切,切点为F ,∠A 1FB 1=90°; (7)A ,O ,B 1三点共线,B ,O ,A 1三点也共线.[例2] (2019·长沙四校联考)过抛物线C :y 2=4x 的焦点F 的直线l 与抛物线C 交于P ,Q 两点,与抛物线的准线交于点M ,且FM ―→=3FP ―→,则|FP ―→|=( )A.32B.23C.43D.34[解析] 如图,不妨设Q 点在第一象限,过P 作PN 垂直于抛物线的准线,垂足为N , 由抛物线定义可知|PF |=|PN |, 又因为FM ―→=3FP ―→, 所以PM ―→=2FP ―→,所以|PM |=2|PF |=2|PN |, 在Rt △PNM 中,cos ∠MPN =|PN ||PM |=12, 由抛物线焦点弦的性质可知|PF ―→|=p 1+cos ∠MPN =21+12=43.故选C.[答案] C [方法技巧]焦点弦问题的求解策略解决焦点弦问题的关键是“设而不求”方法的应用,解题时,设出直线与抛物线两交点的坐标,根据抛物线的方程正确表示出焦点弦长,再利用已知条件求解.[集训冲关]1.[考法一]若抛物线y 2=4x 上一点P 到其焦点F 的距离为2,O 为坐标原点,则△OFP 的面积为( )A.12 B .1 C.32D .2解析:选B 设P (x P ,y P ),由题意可得抛物线的焦点为F (1,0),准线方程为x =-1,又点P 到焦点F 的距离为2,∴由抛物线的定义知点P 到准线的距离为2,∴x P +1=2,得x P =1,代入抛物线方程得|y P |=2,∴△OFP 的面积为S =12·|OF |·|y P |=12×1×2=1.故选B.2.[考法二]已知AB 是抛物线y 2=2x 的一条焦点弦,|AB |=4,则AB 中点C 的横坐标是( )A.2B.12C.32D.52解析:选C 设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =4, 又p =1,∴x 1+x 2=3,∴点C 的横坐标是x 1+x 22=32.故选C.3.[考法一]已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是________.解析:依题意,由点M 向抛物线x 2=4y 的准线l :y =-1引垂线,垂足为M 1(图略),则有|MA |+|MF |=|MA |+|MM 1|,结合图形可知|MA |+|MM 1|的最小值等于圆心C (-1,5)到y =-1的距离再减去圆C 的半径,即等于6-1=5,因此|MA |+|MF |的最小值是5.答案:5突破点二 抛物线的标准方程及性质[基本知识][基本能力]一、判断题(对的打“√”,错的打“×”)(1)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a4,0,准线方程是x =-a4.( )(2)抛物线既是中心对称图形,又是轴对称图形.( )(3)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( ) 答案:(1)× (2)× (3)× 二、填空题1.已知抛物线的对称轴为x 轴,顶点在原点,焦点在直线2x -4y +11=0上,则此抛物线的方程是________.答案:y 2=-22x2.抛物线y =ax 2的准线方程是y =1,则a 的值为________. 答案:-143.已知F 是抛物线x 2=8y 的焦点,若抛物线上的点A 到x 轴的距离为5,则|AF |=________.答案:7[全析考法]考法一 求抛物线的标准方程[例1] (1)(2019·河南中原名校联考)抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为( )A .y 2=6x B .y 2=8x C .y 2=16xD .y 2=15x 2(2)(2019·江西协作体联考)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5.若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8x B .y 2=2x 或y 2=8x C .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x[解析] (1)设M (x ,y ),因为|OF |=p2,|MF |=4|OF |,所以|MF |=2p ,由抛物线定义知x +p 2=2p ,所以x =32p ,所以y =±3p ,又△MFO 的面积为43,所以12×p 2×3p =43,解得p =4(p =-4舍去).所以抛物线的方程为y 2=8x .(2)由已知得抛物线的焦点F ⎝ ⎛⎭⎪⎫p 2,0,设点A (0,2),抛物线上点M (x 0,y 0),则AF ―→=⎝ ⎛⎭⎪⎫p 2,-2,AM ―→=⎝ ⎛⎭⎪⎫y 202p ,y 0-2.由已知得AF ―→·AM ―→=0,即y 20-8y 0+16=0,因而y 0=4,M ⎝ ⎛⎭⎪⎫8p ,4.由|MF |=5得, ⎝ ⎛⎭⎪⎫8p -p 22+16=5,又p >0,解得p =2或p =8,故选C. [答案] (1)B (2)C [方法技巧]求抛物线方程的3个注意点(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种.(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系. (3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.考法二 抛物线的几何性质[例2] (1)(2019·兰州双基过关考试)抛物线y 2=2px (p >0)上横坐标为6的点到此抛物线焦点的距离为10,则该抛物线的焦点到准线的距离为( )A .4B .8C .16D .32(2)(2018·赣州二模)抛物线C :y 2=2px (p >0)的焦点为F ,A 是抛物线上一点,若A 到F 的距离是A 到y 轴距离的两倍,且三角形OAF 的面积为1,O 为坐标原点,则p 的值为( )A .1B .2C .3D .4[解析] (1)设抛物线的准线方程为x =-p2(p >0),如图,则根据抛物线的性质有|PF |=p2+6=10,解得p =8,所以抛物线的焦点到准线的距离为8. (2)不妨设A (x 0,y 0)在第一象限,由题意可知⎩⎪⎨⎪⎧ x 0+p2=2x 0,S △OAF=12·p2·y 0=1,即⎩⎪⎨⎪⎧x 0=p2,y 0=4p ,∴A ⎝ ⎛⎭⎪⎫p 2,4p ,又∵点A 在抛物线y 2=2px 上,∴16p 2=2p ×p 2,即p 4=16,又∵p >0,∴p =2,故选B. [答案] (1)B (2)B [方法技巧]用抛物线几何性质的技巧涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题.[集训冲关]1.[考法一]顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是( )A .y 2=-x B .x 2=-8yC .y 2=-8x 或x 2=-y D .y 2=-x 或x 2=-8y解析:选D 设抛物线为y 2=mx ,代入点P (-4,-2),解得m =-1,则抛物线方程为y 2=-x ;设抛物线为x 2=ny ,代入点P (-4,-2),解得n =-8,则抛物线方程为x 2=-8y .2.[考法二]已知抛物线C :y 2=4x 的焦点为F ,点A (0,-3).若线段FA 与抛物线C 相交于点M ,则|MF |=( )A.43B.53C.23D.33解析:选A 由题意,F (1,0),|AF |=2,设|MF |=d ,则M 到准线的距离为d ,M 的横坐标为d -1,由三角形相似,可得d -11=2-d2,所以d =43,故选A. 3.[考法一、二]已知A 是抛物线y 2=2px (p >0)上一点,F 是抛物线的焦点,O 为坐标原点,当|AF |=4时,∠OFA =120°,则抛物线的准线方程是( )A .x =-1B .y =-1C .x =-2D .y =-2解析:选A 过A 向准线作垂线,设垂足为B ,准线与x 轴的交点为D .因为∠OFA =120°,所以△ABF 为等边三角形,∠DBF =30°,从而p =|DF |=2,因此抛物线的准线方程为x =-1.选A.。
第七讲 抛物线知识梳理·双基自测 知识梳理知识点一 抛物线的定义 抛物线需要满足以下三个条件: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离__相等__; (3)定点F 与定直线l 的关系为__点F ∉l __. 知识点二 抛物线的标准方程与几何性质标准 方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝⎛⎭⎫p 2,0 F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p 2 离心率 e =__1__ 准线 方程 __x =-p 2____x =p 2____y =-p 2____y =p 2__范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 向上 向下 焦半径 (其中P (x 0,y 0)) |PF |=__x 0+p2__|PF |=__-x 0+p2__|PF |=__y 0+p2__|PF |=__-y 0+p2__重要结论抛物线焦点弦的处理规律直线AB 过抛物线y 2=2px (p >0)的焦点F ,交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如图.(1)y 1y 2=-p 2,x 1x 2=p 24. (2)|AB |=x 1+x 2+p ,x 1+x 2≥2x 1x 2=p ,即当x 1=x 2时,弦长最短为2p . (3)1|AF |+1|BF |=2p. (4)弦长AB =2psin 2α(α为AB 的倾斜角).(5)以AB 为直径的圆与准线相切.(6)焦点F 对A ,B 在准线上射影的张角为90°. (7)A 、O 、D 三点共线;B 、O 、C 三点共线.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a4.( × ) (3)抛物线既是中心对称图形,又是轴对称图形.( × ) (4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝⎛⎭⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( √ )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ )题组二 走进教材2.(必修2P 69例4)(2021·甘肃张掖诊断)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( B )A .9B .8C .7D .6[解析] 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.3.(2021·河南郑州名校调研)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( B ) A .-1716B .-1516C .716D .1516[解析] 由抛物线的方程y =-4x 2,可得标准方程为x 2=-14y ,则焦点坐标为F ⎝⎛⎭⎫0,-116,准线方程为y =116,设M (x 0,y 0),则由抛物线的定义可得-y 0+116=1,解得y 0=-1516.故选B . 题组三 走向高考4.(2019·课标全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( D ) A .2 B .3 C .4D .8[解析] ∵抛物线y 2=2px (p >0)的焦点坐标为⎝⎛⎭⎫p 2,0, ∴椭圆x 23p +y 2p =1的一个焦点为⎝⎛⎭⎫p 2,0, ∴3p -p =p 24,∴p =8.故选D .5.(2020·新课标Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( C )A .2B .3C .6D .9[解析] A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,因为抛物线上的点到焦点的距离和到准线的距离相等,故有:9+p2=12⇒p =6;故选C .考点突破·互动探究考点一 抛物线的定义及应用——多维探究 角度1 轨迹问题例1 (1)动圆与定圆A :(x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是( D ) A .直线 B .椭圆 C .双曲线D .抛物线[解析] 设动圆的圆心为C ,则C 到定圆A :(x +2)2+y 2=1的圆心的距离等于r +1,而动圆的圆心到直线x =1的距离等于r ,所以动圆到直线x =2距离为r +1,即动圆圆心到定点(-2,0)和定直线x =2的距离相等,根据抛物线的定义知,动圆的圆心轨迹为抛物线,所以答案为D .角度2 到焦点与到定点距离之和最小问题(2)①(2021·河北保定七校联考)已知M是抛物线x2=4y上一点,F为其焦点,C为圆(x+1)2+(y-2)2=1的圆心,则|MF|+|MC|的最小值为(B)A.2 B.3C.4 D.5②(2021·山西运城联考)已知抛物线C:x2=8y的焦点为F,O为原点,点P是抛物线C的准线上的一动点,点A在抛物线C上,且|AF|=4,则|P A|+|PO|的最小值为(B)A.4 2 B.213C.313 D.4 6[解析]①设抛物线x2=4y的准线方程为l:y=-1,C为圆(x+1)2+(y-2)2=1的圆心,所以C的坐标为(-1,2),过M作l的垂线,垂足为E,根据抛物线的定义可知|MF|=|ME|,所以问题求|MF|+|MC|的最小值,就转化为求|ME|+|MC|的最小值,由平面几何的知识可知,当C,M,E在一条直线上时,此时CE⊥l,|ME|+|MC|有最小值,最小值为|CE|=2-(-1)=3,故选B.②由抛物线的定义知|AF|=y A+p2=y A+2=4,∴y A=2,代入x2=8y,得x A=±4,不妨取A(4,2),又O关于准线y=-2的对称点为O′(0,-4),∴|P A|+|PO|=|P A|+|PO′|≥|AO′|=(-4-2)2+(0-4)2=213,当且仅当A、P、O′共线时取等号,故选B.[引申]本例(2)①中,(ⅰ)|MC|-|MF|的最大值为__2__;最小值为__-2__;(ⅱ)若N为⊙C上任一点,则|MF|+|MN|的最小值为__2__.角度3到准线与到定点距离之和最小问题(3)已知圆C:x2+y2+6x+8y+21=0,抛物线y2=8x的准线为l,设抛物线上任意一点P到直线l的距离为d,则d+|PC|的最小值为(A)A.41 B.7C.6 D.9[解析]由题意得圆的方程为(x+3)2+(y+4)2=4,圆心C的坐标为(-3,-4).由抛物线定义知,当d+|PC |最小时为圆心与抛物线焦点间的距离,即d +|PC |=(-3-2)2+(-4)2=41.角度4 到两定直线的距离之和最小问题(4)(2021·北京人大附中测试)点P 在曲线y 2=4x 上,过P 分别作直线x =-1及y =x +3的垂线,垂足分别为G ,H ,则|PG |+|PH |的最小值为( B )A .322B .2 2C .322+1D .2+2[解析] 由题可知x =-1是抛物线的准线,焦点F (1,0),由抛物线的性质可知|PG |=|PF |,∴|PG |+|PH |=|PF |+|PH |≤|FH |=|1-0+3|2=22,当且仅当H 、P 、F 三点共线时取等号,∴|PG |+|PH |的最小值为22.故选B .名师点拨利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线. (2)距离问题:涉及抛物线上的点到焦点的距离和到准线的距离问题时,注意在解题中利用两者之间的关系进行相互转化.(3)看到准线想焦点,看到焦点想准线,这是解决抛物线焦点弦有关问题的重要途径. 〔变式训练1〕(1)(角度1)到定点A (0,2)的距离比到定直线l :y =-1大1的动点P 的轨迹方程为__x 2=8y __. (2)(角度1)(2021·吉林省吉林市调研)已知抛物线y 2=4x 的焦点F ,点A (4,3),P 为抛物线上一点,且P 不在直线AF 上,则△P AF 周长取最小值时,线段PF 的长为( B )A .1B .134C .5D .214(3)(角度2)(2021·山西大学附中模拟)已知点Q (22,0)及抛物线y =x 24上一动点P (x ,y ),则y +|PQ |的最小值是__2__.(4)(角度3)(2021·上海虹口区二模)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和l 2的距离之和的最小值为( C )A .3716B .115C .2D .74[解析] (1)由题意知P 到A 的距离等于其到直线y =-2的距离,故P 的轨迹是以A 为焦点,直线y =-2为准线的抛物线,所以其方程为x 2=8y .(2)求△P AF 周长的最小值,即求|P A |+|PF |的最小值,设点P 在准线上的射影为D ,根据抛物线的定义,可知|PF |=|PD |,因此,|P A |+|PF |的最小值,即|P A |+|PD |的最小值.根据平面几何知识,可得当D ,P ,A 三点共线时|P A |+|PD |最小,此时P (94,3),且|PF |=94+1=134,故选B .(3)抛物线y =x 24即x 2=4y ,其焦点坐标为F (0,1),准线方程为y =-1.因为点Q 的坐标为(22,0),所以|FQ |=(22)2+12=3.过点P 作准线的垂线PH ,交x 轴于点D ,如图所示.结合抛物线的定义,有y +|PQ |=|PD |+|PQ |=|PH |+|PQ |-1=|PF |+|PQ |-1≥|FQ |-1=3-1=2,即y +|PQ |的最小值是2.(4)直线l 2:x =-1是抛物线y 2=4x 的准线,抛物线y 2=4x 的焦点为F (1,0),则点P 到直线l 2:x =-1的距离等于PF ,过点F 作直线l 1:4x -3y +6=0的垂线,和抛物线的交点就是点P ,所以点P 到直线l 1:4x -3y +6=0的距离和到直线l 2:x =-1的距离之和的最小值就是点F (1,0)到直线l 1:4x -3y +6=0的距离,所以最小值为|4-0+6|32+42=2,故选C .考点二 抛物线的标准方程——自主练透例2 (1)过点P (-3,2)的抛物线的标准方程为__y 2=-43x 或x 2=92y __.(2)焦点在直线x -2y -4=0上的抛物线的标准方程为__y 2=16x 或x 2=-8y __,准线方程为__x =-4或y =2__.(3)如图,过抛物线y 2=2px (p >0)的焦点F 的直线依次交抛物线及准线于点A ,B ,C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程为( B )A .y 2=32xB .y 2=3xC .y 2=92xD .y 2=9x[解析] (1)设所求抛物线的方程为y 2=-2px (p >0)或x 2=2py (p >0). ∵过点(-3,2),∴4=-2p ·(-3)或9=2p ·2. ∴p =23或p =94.∴所求抛物线的标准方程为y 2=-43x 或x 2=92y .(2)令x =0,得y =-2,令y =0,得x =4. ∴抛物线的焦点为(4,0)或(0,-2). 当焦点为(4,0)时,p2=4,∴p =8,此时抛物线方程为y 2=16x ; 当焦点为(0,-2)时,p2=2,∴p =4,此时抛物线方程为x 2=-8y .∴所求的抛物线的标准方程为y 2=16x 或x 2=-8y , 对应的准线方程分别是x =-4,y =2.(3)如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得|BC |=2a ,由定义得|BD |=a ,故∠BCD =30°. 在直角三角形ACE 中,∵|AE |=|AF |=3,|AC |=3+3a ,2|AE |=|AC |, ∴3+3a =6,从而得a =1.∵BD ∥FG ,∴|BD ||FG |=|BC ||FC |,即1p =23,求得p =32,因此抛物线的方程为y 2=3x .名师点拨求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,若焦点位置确定,因为未知数只有p ,所以只需一个条件确定p 值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.一般焦点在x 轴上的抛物线的方程可设为y 2=ax (a ≠0);焦点在y 轴上的抛物线的方程可设为x 2=ay (a ≠0).〔变式训练2〕(1)(2021·重庆沙坪坝区模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,过点(p,0)且垂直于x 轴的直线与抛物线C 在第一象限内的交点为A ,若|AF |=1,则抛物线C 的方程为( A )A .y 2=43xB .y 2=2xC .y 2=3xD .y 2=4x(2)(2021·安徽蚌埠一中期中)已知抛物线的顶点在原点,焦点在y 轴上,其上的点P (m ,-3)到焦点的距离为5,则抛物线方程为( D )A .x 2=8yB .x 2=4yC .x 2=-4yD .x 2=-8y[解析] (1)由题意知x A =p ,又|AF |=x A +p 2=3p 2=1,∴p =23,∴抛物线C 的方程为y 2=43x ,故选A .(2)由题意可知抛物线的焦点在y 轴负半轴上,故设其方程为x 2=-2py (p >0),所以3+p2=5,即p =4,所以所求抛物线方程为x 2=-8y ,故选D .考点三 抛物线的几何性质——师生共研例3 (1)(2021·广西四校联考)已知抛物线y 2=2px (p >0)上横坐标为4的点到此抛物线焦点的距离为9,则该抛物线的焦点到准线的距离为( C )A .4B .9C .10D .18(2)(2021·四川眉山模拟)点F 为抛物线C :y 2=2px (p >0)的焦点,过F 的直线交抛物线C 于A ,B 两点(点A 在第一象限),过A 、B 分别作抛物线C 的准线的垂线段,垂足分别为M 、N ,若|MF |=4,|NF |=3,则直线AB 的斜率为( D )A .1B .724C .2D .247[解析] (1)抛物线y 2=2px 的焦点为⎝⎛⎭⎫p 2,0,准线方程为x =-p 2.由题意可得4+p2=9,解得p =10,所以该抛物线的焦点到准线的距离为10.故选C .(2)由抛物线定义知|AM |=|AF |,|BN |=|BF |,∴∠AFM +∠BFM =360°-∠MAF -∠NBF2=90°,∴∠MFN =90°, 又|MF |=4,|NF |=3, ∴|MN |=5,∴p =|KF |=|MF |·|NF ||MN |=125, 又∠AFM =∠AMF =∠MFK ,∴k AB =tan(180°-2∠MFK )=-2tan ∠MFK 1-tan 2∠MFK =-831-⎝⎛⎭⎫432=247.故选D .名师点拨在解决与抛物线的性质有关的问题时,要注意利用几何图形形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.〔变式训练3〕(1)(2021·广东茂名五校联考)设抛物线y 2=2px (p >0)的焦点为F (1,0),过焦点的直线交抛物线于A 、B 两点,若|AF |=4|BF |,则|AB |=__254__.(2)(2021·湖北荆州模拟)从抛物线y 2=4x 在第一象限内的一点P 引抛物线准线的垂线,垂足为M ,且|PM |=9,设抛物线的焦点为F ,则直线PF 的斜率为( C )A .627B .1827C .427D .227[解析] (1)∵p2=1,∴p =2,不妨设直线AB 方程为x =my +1, A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=4x x =my +1,得y 2-4my -4=0, ∴y 1y 2=-4,又|AF |=4|BF |,∴y 1=-4y 2, ∴y 2=-1,从而x 2=14,∴|BF |=1+14=54,∴|AB |=5|BF |=254.(2)设P (x 0,y 0),由抛物线y 2=4x , 可知其焦点F 的坐标为(1,0), 故|PM |=x 0+1=9,解得x 0=8, 故P 点坐标为(8,42), 所以k PF =0-421-8=427.故选C .考点四 直线与抛物线的综合问题——师生共研例4 (1)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 212-y 24=1的一个焦点重合,直线y =x -4与抛物线交于A ,B 两点,则|AB |等于( B )A .28B .32C .20D .40(2)(2021·陕西师大附中期中)已知抛物线y 2=4x 的一条弦AB 恰好以P (1,1)为中点,则弦AB 所在直线的方程是( B )A .y =x -1B .y =2x -1C .y =-x +2D .y =-2x +3(3)(2021·湖南五市十校联考)已知抛物线C :y 2=2px (p >0),直线y =x -1与C 相交所得的长为8. ①求p 的值;②过原点O 的直线l 与抛物线C 交于M 点,与直线x =-1交于H 点,过点H 作y 轴的垂线交抛物线C 于N 点,求证:直线MN 过定点. [解析] (1)双曲线x 212-y 24=1的焦点坐标为(±4,0),故抛物线的焦点F 的坐标为(4,0).因此p =8,故抛物线方程为y 2=16x ,易知直线y =x -4过抛物线的焦点.设A 、B 两点坐标分别为(x 1,y 1),(x 2,y 2).由⎩⎪⎨⎪⎧y 2=16x ,y =x -4,可得x 2-24x +16=0,故x 1+x 2=24. 故|AB |=x 1+x 2+p =24+8=32.故选B .(2)设A (x 1,y 1),B (x 2,y 2),∴y 1+y 2=2,由⎩⎪⎨⎪⎧y 21=4x 1y 22=4x 2,知k AB =y 1-y 2x 1-x 2=4y 1+y 2=2, ∴AB 的方程为y -1=2(x -1),即2x -y -1=0,故选B .(3)①由⎩⎪⎨⎪⎧y 2=2px y =x -1,消x 可得y 2-2py -2p =0,∴y 1+y 2=2p ,y 1y 2=-2p ,∴弦长为1+12·(y 1+y 2)2-4y 1y 2=2·4p 2+8p =8,解得p =2或p =-4(舍去),∴p =2,②由①可得y 2= 4x ,设M ⎝⎛⎭⎫14y 20,y 0, ∴直线OM 的方程y =4y 0x , 当x =-1时,∴y H =-4y 0, 代入抛物线方程y 2=4x ,可得x N =4y 20, ∴N ⎝⎛⎭⎫4y 20,-4y 0, ∴直线MN 的斜率k =y 0+4y 0y 204-4y 20=4y 0y 20-4, 直线MN 的方程为y -y 0=4y 0y 20-4⎝⎛⎭⎫x -14y 20,整理可得y =4y 0y 20-4(x -1), 故直线MN 过点(1,0).名师点拨(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要将两方程联立,消元,用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率问题一般用“点差法”求解.〔变式训练4〕(1)(2021·甘肃诊断)直线l 过抛物线y 2=2px (p >0)的焦点,且交抛物线于A ,B 两点,交其准线于C 点,已知|AF |=4,CB →=3BF →,则p =( C )A .2B .43C .83D .4(2)(2021·安徽皖南八校模拟)已知抛物线C :y 2=2px (p >0)的焦点F 到直线x -y +1=0的距离为2. ①求抛物线C 的方程;②过点F 的直线l 与C 交于A ,B 两点,交y 轴于点P .若|AB →|=3|BP →|,求直线l 的方程.[解析] (1)过A ,B 分别作准线的垂线交准线于E ,D 两点,设|BF |=a ,根据抛物线的性质可知,|BD |=a ,|AE |=4,根据平行线段比例可知|BD ||AE |=|CB ||AC |, 即a 4=3a 3a +a +4,解得a =2, 又|BD ||GF |=|BC ||CF |,即a p =3a 4a, 解得p =43a =83,故选C .(2)①由抛物线C :y 2=2px (p >0),可得焦点F ⎝⎛⎭⎫p 2,0,因为焦点到x -y +1=0的距离为2,即⎪⎪⎪⎪p 2+12=2,解得p =2,所以抛物线C 的方程y 2=4x .②由①知焦点F (1,0),设直线l :y =k (x -1),A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,整理得 k 2x 2-(2k 2+4)x +k 2=0,所以x 1+x 2=2+4k2, ① x 1x 2=1,②又由|AB →|=3|BP →|,得AB →=3BP →,可得x 1=4x 2,③ 由②③,可得x 1=2,x 2=12, 代入①,可得2+4k 2=52,解得k =±22, 所以直线l 的方程为22x - y -22=0或22x +y -22=0.名师讲坛·素养提升巧解抛物线的切线问题例5 (1)抛物线C 1:x 2=2py (p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( D )A .316B .38C .233D .433(2)(2019·新课标Ⅲ,节选)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .证明:直线AB 过定点.[解析] (1)抛物线C 1:x 2=2py (p >0)的焦点坐标为⎝⎛⎭⎫0,p 2,双曲线x 23-y 2=1的右焦点坐标为(2,0),两点连线的方程为y =-p 4(x -2),联立⎩⎨⎧ y =-p 4(x -2),y =12p x 2,得2x 2+p 2x -2p 2=0.设点M 的横坐标为m ,易知在M 点处切线的斜率存在,则在点M 处切线的斜率为y ′⎪⎪⎪⎪x =m =⎝⎛⎭⎫12p x 2′x=m =m p. 又双曲线x 23-y 2=1的渐近线方程为x 3±y =0,其与切线平行,所以m p =33,即m =33p ,代入2x 2+p 2x -2p 2=0,得p =433或p =0(舍去). (2)设D ⎝⎛⎭⎫t ,-12,A (x 1,y 1),则x 21=2y 1,由于y ′=x , ∴切线DA 的斜率为x 1,故y 1+12x 1-t=x 1, 整理得:2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0.故直线AB 的方程为2tx -2y +1=0,即y -12=tx . ∴直线AB 过定点⎝⎛⎭⎫0,12.名师点拨利用导数工具解决抛物线的切线问题,使问题变得巧妙而简单,若用判别式解决抛物线的切线问题,计算量大,易出错.注意:直线与抛物线只有一个公共点是直线与抛物线相切的必要不充分条件,过抛物线外一点与抛物线只有一个公共点的直线有0条或3条;过抛物线上一点和抛物线只有一个公共点的直线有2条.〔变式训练5〕(1)已知抛物线C :y 2=2px (p >0),过点M ⎝⎛⎭⎫-p 2,0作C 的切线,则切线的斜率为__±1__. (2)已知抛物线x 2=8y ,过点P (b,4)作该抛物线的切线P A ,PB ,切点为A ,B ,若直线AB 恒过定点,则该定点为( C )A .(4,0)B .(3,2)C .(0,-4)D .(4,1)[解析] (1)设斜率为k ,则切线为y =k ⎝⎛⎭⎫x +p 2代入y 2=2px 中得k 2x 2+p (k 2-2)x +k 2p 24=0. Δ=0,即p 2(k 2-2)2-4·k 2·k 2p 24=0.解得k 2=1,∴k =±1.(2)设A ,B 的坐标为(x 1,y 1),(x 2,y 2),∵y =x 28,y ′=x4,∴P A ,PB 的方程y -y 1=x 14(x -x 1),y -y 2=x 24(x -x 2),由y 1=x 218,y 2=x 228,可得y =x 14x -y 1,y =x 24x -y 2,∵切线P A ,PB 都过点P (b,4),∴4=x 14×b -y 1,4=x 24×b -y 2,故可知过A ,B 两点的直线方程为4=b4x -y ,当x =0时,y =-4,∴直线AB 恒过定点(0,-4).故选C .。
高考数学一轮复习考点知识与题型讲解考点45 抛物线一.抛物线的定义平面内与一个定点F和一条定直线l(点F不在直线l上)的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l叫做抛物线的准线.二..抛物线的标准方程和几何性质O(0,0)三.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (或x )得到一个关于变量x (或y )的一元方程.例:由⎩⎪⎨⎪⎧Ax +By +C =0,Fx ,y =0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则:Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.考点题型分析考点题型一 抛物线的定义【例1】(2022·陕西宝鸡市·高三二模(文))设抛物线C :24x y =的焦点为F ,准线l 与y 轴的交点为M ,P 是C 上一点,若5PF =,则PM =( ) A 21B .5C .7D 41【答案】D【解析】如图所示,过P 作PQ 垂直l ,交l 于Q ,不妨设()0(,)P x y x >,根据抛物线定义得152pPF PQ y y ==+=+=, 所以y =4,所以x =4,即(4,4)P , 所以4QM =,所以PM ===故选:D 【举一反三】1.(2022·山东烟台市·高三一模)已知F 为抛物线2:8C y x =的焦点,直线l 与C 交于,A B 两点,若AB 中点的横坐标为4,则 AF BF +=( ) A .8 B .10 C .12 D .16【答案】C【解析】抛物线2:8C y x =的焦点为F ,直线l 与抛物线C 交于A ,B 两点,若AB 的中点的横坐标为4,设1(A x ,1)y ,2(B x ,2)y ,128x x +=, 则12||||8412AF BF x x p +=++=+=. 故选:C .2.(2022·内蒙古高三月考(文))点F 为抛物线24y x =的焦点,点(2,1)A ,点P 为物线上与直线AF 不共线的一点,则APF 周长的最小值为( )A .3B .3C .4D .【答案】B【解析】根据题意,焦点()1,0F ,准线方程为:1x =-,过点P 作准线的垂线,垂足为P',过点A 作准线的垂线,垂足为'A ,且与抛物线交于点0P ,作出图像如图,故AF =由抛物线的定义得:'PF PP =,则APF 周长为:''C PF PA PP PA AA =+=+≥ 当且仅当点P 在点0P 处时,等号成立;因为'3AA =,'3C PF PA AA +≥=所以APF 周长的最小值为:3. 故选:B.3.(2022·全国高三专题练习(文))已知抛物线214y x =上的动点P 到直线l ∶3y =-的距离为d ,A 点坐标为(2,0),则||PA d +的最小值等于( )A .4B .2C .D .3+【答案】B【解析】如图所示,抛物线214y x =化为24x y =,可得焦点()0,1F ,准线方程为1y =-, 可得动点P 到直线l ∶3y =-的距离为22d PE PF =+=+,又由PF PA FA +≥=22PA d PA PF +=++≥.所以PA d 的最小值等于2.故选: B.4.(2022·浙江杭州市·学军中学)已知拋物线2y mx =的焦点坐标F 为()2,0,则m 的值为___________;若点P 在抛物线上,点()5,3,A 则PA PF +的最小值为___________. 【答案】8 7【解析】拋物线2y mx =的焦点坐标F 为()2,0,则24m=,解得8m =; 抛物线28y x =的准线方程为2x =-,过P 作直线2x =-的垂线,垂足为C ,PA PF PA PC AC +=+≥,当,,A P C 三点共线时,PA PF +取得最小值,且()527AC =--=故答案为:8;7.考点题型二 抛物线的标准方程【例2-1】(2022·全国单元测试)顶点在原点,关于y 轴对称,并且经过点M (-4,5)的抛物线方程为( )A .y 2=165x B .y 2=-165x C .x 2=165yD .x 2=-165y【答案】C【解析】由题设知,抛物线开口向上,设方程为x 2=2py (p >0),将(-4,5)代入得8,5p =所以,抛物线方程为2165x y =.故选:C . 【例2-2】(2022·浙江)已知抛物线C 的焦点()1,0F ,则拋物线C 的标准方程为___________,焦点到准线的距离为___________. 【答案】24y x =2【解析】根据抛物线C 的焦点()1,0F ,设抛物线方程22y px =,12p=,则2p =, 故抛物线方程24y x =;抛物线中,焦点到准线的距离为p ,2p =,即距离为2.故答案为:24y x =;2. 【举一反三】1.(2022·全国课时练习)以x 轴为对称轴的抛物线的通径(过焦点且与对称轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( ) A .28y x =B .28y x =- C .28y x =或28y x =-D .28x y =或28xy【答案】C【解析】设抛物线方程为22y px =或22y px =-, 依题意得2p x =,代入22y px =或22y px =-得y p =, 22=8y p ∴=,4p =.∴抛物线方程为28y x =或28y x =-,故选:C.2.(2022·山东德州市·高二期末)抛物线2y ax =的焦点是直线4810x y +-=与坐标轴的交点,则该抛物线的准线方程是( ) A .14x =-B .18y =C .18y =-D .14x =【答案】C【解析】由2y ax =可知抛物线开口向上或向下, 4810x y +-=,令10,8=∴=x y ,焦点坐标为11(0,),828∴=p 准线为18y =-故选:C3.(2022·绵阳南山中学实验学校(文))顶点在原点,对称轴是y 轴,并且顶点与焦点的距离等于3的抛物线的标准方程是( ) A .23x y =± B .26y x =± C .212x y =± D .26x y =±【答案】C【解析】由抛物线的顶点在原点,对称轴是y 轴,设抛物线的方程为22(0)x my m =≠, 因为顶点与焦点的距离等于3,可得32m=,解得12m =±, 所以所求抛物线的方程为212x y =±.故选:C.4(2022·广东湛江市·高三一模)已知抛物线C :x 2=-2py (p >0)的焦点为F ,点M 是C 上的一点,M 到直线y =2p 的距离是M 到C 的准线距离的2倍,且|MF |=6,则p =( ) A .4 B .6C .8D .10【答案】A 【解析】设()00,M x y ,则0026262p y p y -=⨯⎧⎪⎨-=⎪⎩,解得4p =故选:A考点题型三 抛物线的几何性质【例3】(2022·江苏省天一中学高三二模)过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,则|AB |=________.【答案】8【解析】抛物线y 2=4x 中,2p =,焦点F (1,0),而直线AB 过焦点F (1,0),故根据抛物线定义可知121262822p p p AB AF FB x x x x ⎛⎫⎛⎫=+=+++++ ⎪ ⎪⎝⎭⎝⎭+===.故答案为:8.【举一反三】1.(2022·四川遂宁市·高三二模(文))若过抛物线C :24y x =的焦点且斜率为2的直线与C 交于A ,B 两点,则线段AB 的长为( )A .3.B .4C .5D .6【答案】C【解析】抛物线C :24y x =的焦点(1,0)F 所以直线AB 的方程为22y x =-, 设()11,A x y ,()22,B x y ,由2224y x y x=-⎧⎨=⎩,消去y 并整理得2310x x -+=, 所以123x x +=,1225AB x x =++=. 故选:C.2.(2022·广西玉林市·高三其他模拟(理))已知抛物线2:2(0)C x py p =>的焦点在直线10x y +-=上,又经过抛物线C 的焦点且倾斜角为60︒的直线交抛物线C 于A 、B 两点,则||AB =( ) A .12 B .14 C .16 D .18【答案】C【解析】因为直线10x y +-=与y 轴的交点为(0,1),所以抛物线2:2(0)C x py p =>的焦点坐标为(0,1),设(0,1)F ,抛物线方程为24x y =, 所以过焦点且倾斜角为60︒的直线方程为1y =+, 设1122(,),(,)A x y B x y ,由241x y y ⎧=⎪⎨=+⎪⎩,得21410y y -+=, 所以1214y y +=,所以12||14216AB y y p =++=+=, 故选:C3.(2022·商丘市第一高级中学)设F 为抛物线22(0)y px p =>的焦点,过F 作倾斜角为60︒的直线与该抛物线交于,A B 两点,且3,OA OB O ⋅=-为坐标原点,则AOB 的面积为( )ABCD【答案】A【解析】由题意得焦点坐标为(,0)2p,则直线的方程为)2py x =-,设1122(,),(,)A x y B x y ,直线与曲线联立2)22p y x y px ⎧=-⎪⎨⎪=⎩,可得2233504x px p -+=,222325431604p p p ∆=-⨯⨯=>,212125,34p p x x x x +==,2212121212))3()2224p p p p y y x x x x x x p ⎡⎤=--=-++=-⎢⎥⎣⎦又221212()34p x x y y p OA OB +⋅=+-==-,解得24p =,又0p >,所以2p =,所以1251633p AB x x p p =++=+=,直线方程为y =0y --=,所以原点O0y -=的距离d ==所以AOB的面积1116223S AB d =⨯⨯=⨯=. 故选:A.。