2015浙江高考数学(理)试题下载_2015高考真题精编版
- 格式:doc
- 大小:424.01 KB
- 文档页数:4
2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1)B. (0,2]C. (1,2)D. [1,2]解析:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),答案:C.2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A. 8cm3B.12cm3C.D.解析:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.答案:C3.(5分)(2015•浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>0解析:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0. 答案:B4.(5分)(2015•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC. ∃n0∈N*,f(n0)∉N*且f(n0)>n0D. ∃n0∈N*,f(n0)∉N*或f(n0)>n解析:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,答案:D5.(5分)(2015•浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A.B.C.D.解析:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,答案:A6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立解析:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card(A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,答案:A7.(5分)(2015•浙江)存在函数f(x)满足,对任意x∈R都有()A.f(sin2x)=sinxB.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|解析:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.答案:D(2015•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,8.(5分)所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α解析:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在OE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,答案:B二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是,渐近线方程是. 解析:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.答案:2;y=±x(2015•浙江)已知函数f(x)=,则f(f(﹣3))= ,10.(6分)f(x)的最小值是.解析:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,f(x)=lg(x2+1)<lg2无最小值,故f(x)的最小值是.答案:0;.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.解析:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)答案:π;[kπ+,kπ+](k∈Z)12.(4分)(2015•浙江)若a=log43,则2a+2﹣a= .解析:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.答案:13.(4分)(2015•浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是 .解析:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.答案:14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.解析:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.答案:315.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0= ,y0= ,|= .解析:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2答案:1;2;2三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.解析:(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利用余弦定理可得cosC.可得sinC=,即可得出tanC=. (2)由=×=3,可得c,即可得出b.答案:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b= c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.17.(15分)(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.解析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.答案:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.解析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.答案:(1)由已知可得f(1)=1+a+b,f(-1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).解析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.答案:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点横坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.20.(15分)(2015•浙江)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).解析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.答案:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2015年普通高等学校招生全国统一考试数学试卷(浙江卷)一.选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中 只有一项是符合题目要求的。
1.已知集合{}2|20P x x x =-≥,{}|12Q x x =<≤,则()R PQ =ð( )(A )[)0,1 (B )(]0,2 (C )()1,2 (D )[]1,2 2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )(A )38cm (B )312cm (C )3323cm (D )3403cm 3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等比数列,则( ) (A )10a d >,0n dS >(B )10a d <,0n dS < (C )10a d >,0n dS < (D )10a d <,0n dS >4.命题“n N +∀∈,()f n N +∈且()f n n ≤”的否定形式是( )(A )n N +∀∈,()f n N +∈且()f n n > (B )n N +∀∈,()f n N +∈或()f n n >(C )0n N +∃∈,()0f n N +∈且()00f n n > (D )0n N +∃∈,()0f n N +∈或()00f n n >5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( ) (A )||1||1BF AF --(B )22||1||1BF AF -- (C )||1||1BF AF ++ (D )22||1||1BF AF ++6.设,A B 是有限集,定义()()(),d A B card AB card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“(),0d A B >”的充分必要条件;命题②:对任意有限集,,A B C ,()()(),,,d A C d A B d B C ≤+。
2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1) B.(0,2]C.(1,2) D.[1,2]2.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.D.3.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0 4.(5分)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0 D.∃n0∈N*,f(n0)∉N*或f(n0)>n0 5.(5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A.B.C.D.6.(5分)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)存在函数f(x)满足,对任意x∈R都有()A.f(sin2x)=sinx B.f(sin2x)=x2+x C.f(x2+1)=|x+1| D.f(x2+2x)=|x+1| 8.(5分)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线﹣y2=1的焦距是,渐近线方程是.10.(6分)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)若a=log43,则2a+2﹣a=.13.(4分)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,=1(x0,y0∈R),则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1<≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1) B.(0,2]C.(1,2) D.[1,2]【分析】求出P中不等式的解集确定出P,求出P补集与Q的交集即可.【解答】解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.D.【分析】判断几何体的形状,利用三视图的数据,求几何体的体积即可.【解答】解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形高为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.3.(5分)(2015•浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0【分析】由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.【解答】解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.4.(5分)(2015•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0 D.∃n0∈N*,f(n0)∉N*或f(n0)>n0【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.5.(5分)(2015•浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF 与△ACF的面积之比是()A.B.C.D.【分析】根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.【解答】解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于D,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立【分析】命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.【解答】解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card (A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B 成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B ∩C)=[card(A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A7.(5分)(2015•浙江)存在函数f(x)满足,对任意x∈R都有()A.f(sin2x)=sinx B.f(sin2x)=x2+x C.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|【分析】利用x取特殊值,通过函数的定义判断正误即可.【解答】解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令x+1=t,则f(x2+2x)=|x+1|,化为f(t2﹣1)=|t|;令t2﹣1=x,则t=±;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.8.(5分)(2015•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD 折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α【分析】解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.【解答】解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线﹣y2=1的焦距是2,渐近线方程是y=±x.【分析】确定双曲线中的几何量,即可求出焦距、渐近线方程.【解答】解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.10.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣3))=0,f(x)的最小值是.【分析】根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x ≥1时,f(x)=,当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解【解答】解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,f(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是π,单调递减区间是[kπ+,kπ+](k∈Z).【分析】由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.【解答】解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)12.(4分)(2015•浙江)若a=log43,则2a+2﹣a=.【分析】直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.【解答】解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.【分析】连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.【解答】解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是3.【分析】根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.【解答】解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2x+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2x+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,=1(x0,y0∈R),则x0=1,y0=2,|=2.【分析】由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得.【解答】解:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故==2故答案为:1;2;2三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.【分析】(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.【解答】解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.17.(15分)(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.【分析】(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.【解答】(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.【分析】(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.【解答】解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|=|a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2,得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,﹣2≤≤2,易知(|a|+|b|)max=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).【分析】(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S=,再利用均值△OAB不等式即可得出.【解答】解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点横坐标为n,∴S==|n|•=,△OAB由均值不等式可得:n2(m2﹣n2+2)=,∴S=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,△AOB解得m=,取得最大值为.当且仅当m=时,S△AOB20.(15分)(2015•浙江)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1<≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).【分析】(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得>1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=a1﹣a n+1,对a n+1=a n﹣a n2两边同除以a n+1a n采用的范围,从而得出结论.累积法可求出a n+1﹣a n=﹣a n2≤0,即a n+1≤a n,【解答】证明:(1)由题意可知:a n+1故a n≤,1≤.由a n=(1﹣a n﹣1)a n﹣1得a n=(1﹣a n﹣1)(1﹣a n﹣2)…(1﹣a1)a1>0.所以0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴>1,∴==≤2,∴1<≤2(n∈N*),综上所述,1<≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1,①由a n=a n﹣a n2两边同除以a n+1a n得,和1≤≤2,+1得1≤≤2,累加得1+1+...1≤+﹣+...+﹣≤2+2+ (2)所以n≤﹣≤2n,≤(n∈N*)②,因此≤a n+1由①②得≤(n∈N*).。
浙江卷(理)参考公式:球的表面积公式S=4πR2球的体积公式V=πR3其中R表示球的半径柱体的体积公式V=Sh其中S表示柱体的底面积,h表示柱体的高,锥体的体积公式V=Sh其中S表示锥体的底面积,h表示锥体的高,台体的体积公式V=h(S1++S2)其中S1,S2分别表示台体的上、下底面积,h表示台体的高第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015高考浙江卷,理1)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q等于( C )(A)[0,1) (B)(0,2] (C)(1,2) (D)[1,2]解析:因为P={x|x≥2或x≤0},所以∁R P={x|0<x<2},所以(∁R P)∩Q=(1,2).2.(2015高考浙江卷,理2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( C )(A)8 cm3(B)12 cm3 (C)cm3(D)cm3解析:该几何体是由棱长为2的正方体和底面边长为2,高为2的正四棱锥组合而成的几何体.故其体积为V=2×2×2+×2×2×2=(cm3).3.(2015高考浙江卷,理3)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则( B )(A)a1d>0,dS4>0 (B)a1d<0,dS4<0(C)a1d>0,dS4<0 (D)a1d<0,dS4>0解析:由=a3a8,得(a1+2d)(a1+7d)=(a1+3d)2,整理得d(5d+3a1)=0,又d≠0,所以a1=-d,则a1d=-d2<0,又因为S4=4a1+6d=-d,所以dS4=-d2<0,故选B.4.(2015高考浙江卷,理4)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是( D )(A)∀n∈N*, f(n)∉N*且f(n)>n(B)∀n∈N*, f(n)∉N*或f(n)>n(C)∃n0∈N*, f(n0)∉N*且f(n0)>n0(D)∃n0∈N*, f(n0)∉N*或f(n0)>n0解析:“f(n)∈N*且f(n)≤n”的否定为“f(n)∉N*或f(n)>n”,全称命题的否定为特称命题,故选D.5.(2015高考浙江卷,理5)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是( A )(A)(B)(C)(D)解析:由题可知抛物线的准线方程为x=-1.如图所示,过A作AA2⊥y轴于点A2,过B作BB2⊥y轴于点B2,则====.6.(2015高考浙江卷,理6)设A,B是有限集,定义:d(A,B)=card(A∪B)-card(A∩B),其中card(A)表示有限集A中元素的个数.命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C),下列说法正确的是( A )(A)命题①和命题②都成立(B)命题①和命题②都不成立(C)命题①成立,命题②不成立(D)命题①不成立,命题②成立解析:对于命题①,若A≠B,则card(A∪B)>card(A∩B),从而有d(A,B)>0,即充分性成立.反之,若d(A,B)>0,则card(A∪B)>card(A∩B),可得A≠B,即必要性成立,故①正确.对于命题②,作韦恩图如图.其中m,n,p,q,a,b,c分别为相应部位元素个数,且均为非负整数.则card(A∪B)=a+b+m+n+p+q,card(A∩B)=m+q,所以d(A,B)=a+b+n+p.同理,d(B,C)=(b+c+m+n+p+q)-(p+q)=b+c+m+n,d(A,C)=(a+c+m+n+p+q)-(n+q)=a+c+m+p,所以d(A,B)+d(B,C)=a+2b+c+m+2n+p.所以d(A,B)+d(B,C)-d(A,C)=2b+2n≥0,即d(A,C)≤d(A,B)+d(B,C).故②正确.故选A.7.(2015高考浙江卷,理7)存在函数f(x)满足:对于任意x∈R都有( D )(A)f(sin 2x)=sin x (B)f(sin 2x)=x2+x(C)f(x2+1)=|x+1| (D)f(x2+2x)=|x+1|解析:对于A,令x=0,得f(0)=0;令x=,得f(0)=1,这与函数的定义不符,故A错,在B中,令x=0,得f(0)=0;令x=,得f(0)=+,与函数的定义不符,故B错.在C中,令x=1,得f(2)=2;令x=-1,得f(2)=0,与函数的定义不符,故C错.在D中,变形为f(|x+1|2-1)=|x+1|,令|x+1|2-1=t,得t≥-1,|x+1|=,从而有f(t)=,显然这个函数关系在定义域(-1,+∞)上是成立的,选D.8.(2015高考浙江卷,理8)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A'CD,所成二面角A'CD B的平面角为α,则( B )(A)∠A'DB≤α(B)∠A'DB≥α(C)∠A'CB≤α(D)∠A'CB≥α解析:法一若CD⊥AB,则∠A'DB为二面角A'CD B的平面角,即∠A'DB=α.若CD与AB不垂直,如图在△ABC中,过A作CD的垂线交线段CD或CD的延长线于点O,交BC于E,连结A'O,则∠A'OE为二面角A'CD B的平面角,即∠A'OE=α,因为AO=A'O,所以∠A'AO=,又A'D=AD,所以∠A'AD=∠A'DB.而∠A'AO是直线A'A与平面ABC所成的角,由线面角的性质知∠A'AO<∠A'AD,则有α<∠A'DB,综合有∠A'DB≥α,故选B.法二若CA≠CB,则当α=π时,∠A'CB<π,排除D;当α=0时,∠A'CB>0,∠A'DB>0,排除A、C,故选B.第Ⅱ卷(非选择题共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(2015高考浙江卷,理9)双曲线-y2=1的焦距是,渐近线方程是.解析:双曲线-y2=1中,a=,b=1,所以2c=2=2.其渐近线方程为y=±x,即y=±x,也就是y=±x.答案:2y=±x10.(2015高考浙江卷,理10)已知函数f(x)=则f(f(-3))= ,f(x)的最小值是.解析:因为-3<1,所以f(-3)=lg[(-3)2+1]=lg 10=1,所以f(f(-3))=f(1)=1+-3=0.当x≥1时,f(x)=x+-3≥2-3(当且仅当x=时,取“=”),当x<1时,x2+1≥1,所以f(x)=lg(x2+1)≥0,又因为2-3<0,所以f(x)min=2-3.答案:0 2-311.(2015高考浙江卷,理11)函数f(x)=sin2x+sin xcos x+1的最小正周期是,单调递减区间是 .解析:f(x)=sin2x+sin xcos x+1=+sin 2x+1=(sin 2x-cos 2x)+=sin2x-+.易知最小正周期T==π.当+2kπ≤2x-≤π+2kπ(k∈Z),即+kπ≤x≤+kπ(k∈Z)时,f(x)单调递减,所以f(x)的单调递减区间为π+kπ,π+kπ(k∈Z).答案:ππ+kπ,π+kπ(k∈Z)12.(2015高考浙江卷,理12)若a=log43,则2a+2-a= .解析:因为a=log43=log2,所以2a+2-a=+=+=.答案:13.(2015高考浙江卷,理13)如图,在三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.解析:如图所示,连结ND,取ND的中点E,连结ME,CE,则ME∥AN,则异面直线AN,CM所成的角即为∠EMC.由题可知CN=1,AN=2,所以ME=,又CM=2,DN=2,NE=,所以CE=,则cos∠CME===.答案:14.(2015高考浙江卷,理14)若实数x,y满足x2+y2≤1,则|2x+y-2|+|6-x-3y|的最小值是.解析:因为x2+y2≤1,所以6-x-3y>0,令t=|2x+y-2|+|6-x-3y|,当2x+y-2≥0时,t=x-2y+4.点(x,y)可取区域Ⅰ内的点(含边界).通过作图可知,当直线t=x-2y+4过点A,时,t取最小值,所以t min=-+4=3.当2x+y-2<0时,t=8-3x-4y,点(x,y)可取区域Ⅱ内的点(不含线段AB).通过作图可知,此时t>8-3×-4×=3.综上,t min=3,即|2x+y-2|+|6-x-3y|的最小值是3.答案:315.(2015高考浙江卷,理15)已知e1,e2是空间单位向量,e1·e2=,若空间向量b满足b·e1=2,b·e2=,且对于任意x,y∈R,|b-(xe1+y e2)|≥|b-(x0e1+y0e2)|=1(x0,y0∈R),则x0= ,y0= ,|b|= .解析:法一因为e1,e2是单位向量,e1·e2=,所以cos <e1,e2>=,又因为0°≤<e1,e2>≤180°,所以<e1,e2>=60°.不妨把e1,e2放到空间直角坐标系O xyz的平面xOy中,设e1=(1,0,0),则e2=,,0,再设=b=(m,n,r),由b·e1=2,b·e2=,得m=2,n=,则b=(2,,r).而xe1+ye2是平面xOy上任一向量,由|b-(xe1+ye2)|≥1知点B(2,,r)到平面xOy的距离为1,故可得r=1,则b=(2,,1),所以|b|=2.又由|b-(xe1+ye2)|≥|b-(x0e1+y0e2)|=1知x0e1+y0e2=(2,,0),解得x0=1,y0=2.法二由题意可令b=x0e1+y0e2+e3,其中e3⊥e i,i=1,2,由b·e1=2得x0+=2,由b·e2=得+y0=,解得x0=1,y0=2,所以|b|==2.答案:1 2 2三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分14分)(2015高考浙江卷,理16)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2-a2=c2.(1)求tan C的值;(2)若△ABC的面积为3,求b的值.解:(1)由b2-a2=c2及正弦定理得sin2B-=sin2C,所以-cos 2B=sin2C.又由A=,即B+C=π,得-cos 2B=sin 2C=2sin Ccos C,解得tan C=2.(2)由tan C=2,C∈(0,π),得sin C=,cos C=.又因为sin B=sin(A+C)=sin+C,所以sin B=.由正弦定理得c=b,又因为A=,bcsin A=3,所以bc=6,故b=3.17.(本小题满分15分)(2015高考浙江卷,理17)如图,在三棱柱ABC A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1BD B1的平面角的余弦值.(1)证明:设E为BC的中点,由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以A1AED为平行四边形.故A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)解:法一作A1F⊥BD且A1F∩BD=F,连结B1F.由AE=EB=,∠A1EA=∠A1EB=90°,得A1B=A1A=4.由A1D=B1D,A1B=B1B,得△A1DB与△B1DB全等.由A1F⊥BD,得B1F⊥BD,因此∠A1FB1为二面角A1BD B1的平面角.由A1D=,A1B=4,∠DA1B=90°,得BD=3,A1F=B1F=.由余弦定理得cos∠A1FB1=-.法二以CB的中点E为原点,分别以射线EA,EB为x,y轴的正半轴,建立空间直角坐标系E xyz,如图所示.由题意知各点坐标如下:A1(0,0,),B(0,,0),D(-,0,),B1(-,,).因此=(0,,-),=(-,-,),=(0,,0).设平面A1BD的法向量为m=(x1,y1,z1),平面B1BD的法向量为n=(x2,y2,z2).由即可取m=(0,,1).由即可取n=(,0,1),于是|cos<m,n>|==.由题意可知,所求二面角的平面角是钝角,故二面角A1BD B1的平面角的余弦值为-.18.(本小题满分15分)(2015高考浙江卷,理18)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[-1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.(1)证明:由f(x)=x+2+b-,得对称轴为直线x=-.由|a|≥2,得-≥1,故f(x)在[-1,1]上单调,所以M(a,b)=max{|f(1)|,|f(-1)|}.当a≥2时,由f(1)-f(-1)=2a≥4,得max{f(-1),-f(-1)}≥2,即M(a,b)≥2.当a≤-2时,由f(-1)-f(1)=-2a≥4,得max{f(-1),-f(1)}≥2,即M(a,b)≥2.综上,当|a|≥2时,M(a,b)≥2.(2)解:由M(a,b)≤2得|1+a+b|=|f(1)|≤2,|1-a+b|=|f(-1)|≤2,故|a+b|≤3,|a-b|≤3,由|a|+|b|=得|a|+|b|≤3.当a=2,b=-1时,|a|+|b|=3,且|x2+2x-1|在[-1,1]上的最大值为2,即M(2,-1)=2.所以|a|+|b|的最大值为3.19.(本小题满分15分)(2015高考浙江卷,理19)已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).解:(1)由题意知m≠0,可设直线AB的方程为y=-x+b.由消去y,得+x2-x+b2-1=0.因为直线y=-x+b与椭圆+y2=1有两个不同的交点,所以Δ=-2b2+2+>0,①将线段AB中点M,代入直线方程y=mx+,解得b=-.②由①②得m<-或m>.(2)令t=∈-,0∪0,,则|AB|=·,且O到直线AB的距离为d=.设△AOB的面积为S(t),所以S(t)=|AB|·d=≤.当且仅当t2=时,等号成立.故△AOB面积的最大值为.20.(本小题满分15分)(2015高考浙江卷,理20)已知数列{a n}满足a1=且a n+1=a n-(n∈N*).(1)证明:1≤≤2(n∈N*);(2)设数列{}的前n项和为S n,证明:≤≤(n∈N*).证明:(1)由题意得a n+1-a n=-≤0,即a n+1≤a n,故a n≤.由a n=(1-a n-1)a n-1得a n=(1-a n-1)(1-a n-2)…(1-a1)a1>0.由0<a n≤得==∈(1,2],即1≤≤2.(2)由题意得=a n-a n+1,所以S n=a1-a n+1.①由-=和1≤≤2得1≤-≤2,所以n≤-≤2n,因此≤a n+1≤(n∈N*).②由①②得≤≤(n∈N*).。
数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至2页,非选择题部分3至6页.满分150分,考试时间120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上作答一律无效. 参考公式:球的表面积公式锥体的体积公式24S R π= 13V Sh =球的体积公式其中S 表示锥体的底面积,h 表示锥体的高 334V R π=台体的体积公式其中R 表示球的半径121(S )3V h S =+柱体的体积公式 其中1S ,2S 分别表示台体的上、下底面积, V Sh =h 表示台体的高其中S 表示柱体的底面积,h 表示柱体的高选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合22{|}=0P x x -≥,{}12|Q x x =<≤,则R ()P Q =ð ( ) A .[0,1)B .(0,2]C .(1,2)D .[1,2]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A .8 cm 3 B .12 cm 3 C .323 cm 3 D .403cm 3 3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S .若3a ,4a ,8a 成等比数列,则 ( )A .10a d >,40dS >B .10a d <,40dS <C .10a d >,40dS <D .10a d <,40dS >4.命题“*n ∀∈N ,()*f n ∈N 且)(f n n ≤”的否定形式是( )A .*n ∀∈N ,()*f n ∉N 且)(f n n >B .*n ∀∈N ,()*f n ∉N 或)(f n n >C .0*n ∃∈N ,0()*f n ∉N 且00)(f n n >D .0*n ∃∈N ,0()*f n ∉N 或00)(f n n >5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有 三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF △与A CF △的面积之比是( )A .||1||1BF AF --B .22||1||1BF AF -- C .||1||1BF AF ++ D .22||1||1BF AF ++ 6.设A ,B 是有限集,定义:((,))()d A B card AB card AB =-,其中()card A 表示有限集A 中元素的个数.( )命题①:对任意有限集A ,B ,“A B ≠”是“(,)0d A B >”的充分必要条件; 命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C +≤. A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立 7.存在函数()f x 满足:对任意x ∈R 都有( )A .(sin 2)sin f x x =B .2(sin 2)f x x x =+C .2(1)|1|f x x +=+D .2(2)|1|f x x x +=+8.如图,已知ABC △,D 是AB 的中点,沿直线CD 将ACD △翻折成A CD '△,所成二面角A CDB '--的平面角为α,则( )A .A DB α∠'≤ B .A DB α∠'≥C .A CB α∠'≤D .A CB α∠'≥非选择题部分(共110分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.把答案填在题中的横线上.9.双曲线2212x y -=的焦距是 ,渐近线方程是 .10.已知函数223, 1,()lg(1),1,x x x f x x x ⎧+-⎪⎪=⎨⎪+⎪⎩≥<,则(())3f f =- ,)(f x 的最小值是 .11.函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 . 12.若4log 3a =,则22a a +=- .13.如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .14.若实数x ,y 满足221x y +≤,则22|||6|3x y x y +-+--的最小值是 .15.已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意,x y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0= ,y 0= , |b |= .三、解答题:本大题共5小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤.16.(本小题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知π4A =,22212b ac -=. (Ⅰ)求tan C 的值;(Ⅱ)若ABC △的面积为3,求b 的值.17.(本小题满分15分)姓名________________ 准考证号_____________数学试卷 第4页(共18页) 数学试卷 第5页(共18页) 数学试卷 第6页(共18页)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 是11B C 的中点.(Ⅰ)证明:1A D ⊥平面1A BC ;(Ⅱ)求二面角11A BD B --的平面角的余弦值.18.(本小题满分15分)已知函数2()(,)f x x ax b a b =++∈R ,记(,)M a b 是|()|f x 在区间[]1,1-上的最大值. (Ⅰ)证明:当||2a ≥时,(,)2M a b ≥;(Ⅱ)当a ,b 满足(,)2M a b ≤时,求||||a b +的最大值.19.(本小题满分15分) 已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称. (Ⅰ)求实数m 的取值范围;(Ⅱ)求AOB △面积的最大值(O 为坐标原点).20.(本小题满分15分)已知数列{}n a 满足112a =且21*)(n n n a a a n +-=∈N . (Ⅰ)证明:112(*)nn a n a +∈N ≤≤; (Ⅱ)设数列2{}na 的前n 项和为n S ,证明:11()2(2)2(1)*n S n n n n ∈++N ≤≤.数学试卷 第7页(共18页) 数学试卷 第8页(共18页) 数学试卷 第9页(共18页)2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)答案解析)(1,2)Q =,求出P 补集与【考点】抛物线的标准方程及其性质 6.【答案】A【解析】命题①显然正确,通过下面文氏图亦可知(,)d A C 表示的区域不大于(,)(,)d A B d B C +的区域,故命题②也正确,故选A .第6题图【提示】①命题根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的。
2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中 只有一项是符合题目要求的。
1.已知集合2{20},{12}P x x x Q x x =-≥=<≤,则()R P Q =ð ( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A.38cm B. 312cm C.3323cm D. 3403cm3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等 比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <>4.命题“**,()n N f n N ∀∈∈ 且()nf n n ≤的否定形式是( )A. **,()n N f n N ∀∈∉,且()f n n > B. **,()n N f n N ∀∈∉或()f n n > C. **00,()n N f n N ∃∈∉且00()f n n > D. **00,()n N f n N ∃∈∉或00()f n n > 5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++6.设,A B 是有限集,定义:(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C ≤+, A. 命题①和命题②都成立 B. 命题①和命题②都不成立 C. 命题①成立,命题②不成立 D. 命题①不成立,命题②成立 7.存在函数()f x 满足,对于任意x R ∈都有( ) A. (sin 2)sin f x x = B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+8.如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆翻折成A CD '∆,所成二面角A CDB '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. 'ACB α∠≥二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2015年浙江省高考数学试卷(理科)及答案解析版一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)22.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()D3.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,**5.(5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()C D6.(5分)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;8.(5分)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线=1的焦距是,渐近线方程是.10.(6分)已知函数f(x)=,则f(f(﹣3))=,f (x)的最小值是.11.(6分)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)若a=log43,则2a+2﹣a=.13.(4分)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)22.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()D+3.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,成等比数列,得.,∴∴=**5.(5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()C D根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.==,6.(5分)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;x=t=∴=8.(5分)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线=1的焦距是2,渐近线方程是y=±x.解:双曲线,c=,渐近线方程是±;±10.(6分)已知函数f(x)=,则f(f(﹣3))=0,f(x)的最小值是.,=)的最小值是;11.(6分)函数f(x)=sin2x+sinxcosx+1的最小正周期是π,单调递减区间是[kπ+,kπ+](k∈Z).sin),易得最小正周期,解不等式+﹣可得函数的单调递减区间.(sin2x+1sin),T==≤+≤,+],]12.(4分)若a=log43,则2a+2﹣a=.,+=故答案为:13.(4分)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.,=EN MC=2EC===.故答案为:.14.(4分)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是3.,)处取得最小值,)处取得最小值x=y=15.(6分)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=1,y0=2,|=2.由题意和数量积的运算可得<•,不妨设=(,,,,由已知可解(,|﹣(|)(x+)(由模长公式可得解:∵=|||><>,•>,不妨设(,,,=n=2,,解得n=,∴=,∵﹣()(﹣∴|﹣(|﹣x()()(,故=2三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.由余弦定理可得:=可得sinC=,即可得出tanC=)由=×A=,由余弦定理可得:bc=.∴=.∴c.可得﹣cosC=.==2)∵×c=2∴=317.(15分)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.•==0AC=2,=)(,,,﹣,,﹣,,,(﹣,﹣)(﹣,=∵•又∵•的法向量为,得,得=的法向量为,得,得=,,>=,的平面角的余弦值为﹣.18.(15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.﹣,所以或≥||2a|19.(15分)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).y=mx+可得=,代入椭圆方程,可得,则×+n=上,∴+∴2,∴===,AOB=,又∵取得最大值为20.(15分)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).≤可得通过利用数学归纳法可证明(≥(﹣,∴=,∴∴≤)由已知,=a++=下面证明:≥(﹣,+=,﹣=≤∴≤,均有≥∴=≥,(。
2015年普通高等学校招生全国统一考试(浙江卷)
数学(理科)
一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中 只有一项是符合题目要求的。
1、已知集合2
{20},{12}P x x x Q x x =-≥=<≤,则()
R P Q =ð ( )
A.[0,1)
B. (0,2]
C. (1,2)
D. [1,2]
2、某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )
A.3
8cm B. 3
12cm C.
3323cm D. 3
403
cm 3、已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等
比数列,则( )
A.10,0n a d dS >>
B. 10,0n a d dS <<
C. 10,0n a d dS ><
D. 10,0n a d dS <>
4、命题“**
,()n N f n N ∀∈∈ 且()f n n ≤的否定形式是( )
A. **,()n N f n N ∀∈∈且()f n n >
B. **
,()n N f n N ∀∈∈或()f n n >
C. **00,()n N f n N ∃∈∈且00()f n n >
D. **00,()n N f n N ∃∈∈或00()f n n > 5、如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )
A.
11BF AF -- B.
2
2
11
BF AF --
C. 11
BF AF ++ D.
22
1
1
BF AF ++
6.设,A B 是有限集,定义(,)()()d A B card A B card A B =-,其中
()card A 表示有限集A 中的元素个数, 命题①:对任意有限集,A B ,“A B ≠”是“ (,)0d A B >”的
充分必要
条件;
命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C ≤+,
A. 命题①和命题②都成立
B. 命题①和命题②都不成立
C. 命题①成立,命题②不成立
D. 命题①不成立,命题②成立 7、存在函数()f x 满足,对任意x R ∈都有( )
A. (sin 2)sin f x x =
B. 2(sin 2)f x x x =+
C. 2
(1)1f x x +=+ D. 2
(2)1f x x x +=+
8、如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--
的平面角为α,则( )
A. A DB α'∠≤
B. A DB α'∠≥
C. A CB α'∠≤
D. A CB α'∠≤
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
9、双曲线2
212
x y -=的焦距是 ,渐近线方程是 . 10、已知函数221,1
()2
lg(1),1x x f x x x ⎧
+-≥⎪=⎨⎪+<⎩
,则((3))f f -= ,()f x 的最小值是 . 11、函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 . 12、若2log 3a =,则22
a a
-+= .
13、如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点
,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值
是 .
14、若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .
15、已知12,e e 是空间单位向量,121
2
e e ⋅=
,若空间向量b 满足125
2,2
b e b e ⋅=⋅=
,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .
三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16、(本题满分14分) 在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知A=4
π,22b a -=122
c .
(I) 求tanC 的值; (II) 若ABC 的面积为7,求b 的值。
17、(本题满分15分)
如图,在三棱柱C AB -111C A B 中,∠BAC=.
90o ,AB=AC=2,1A A=4,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (I ) 证明:
1A D ⊥
平面11A B C ;
(II )
求二面角1A -BD-1B 的平面角的余弦值.
18、(本题满分15分)
已知函数f (x )=2
x +ax+b (a ,b ∈R ),记M (a ,b )是|f (x )|在区间[-1,1]上的最大值。
(I ) 证明:当|a|≥2时,M (a ,b )≥2; (II ) 当a ,b 满足M (a ,b )≤2,求|a|+|b|的最大值. 19、(本题满分15分)
已知椭圆
2
212
x y +=上两个不同的点A,B 关于直线y=mx+12对称. (I)
求实数m 的取值范围;
(II)
求AOB 面积的最大值(O 为坐标原点).
20、(本题满分15分) 已知数列{}n a 满足1a =12
且1n a +=n a -2n a (n ∈*N ) (I) 证明:11
2n
n a a +≤
≤(n ∈*N )
; (II) 设数列{}
2
n a 的前n 项和为n S ,证明
112(2)2(1)
n S n n n ≤≤++(n ∈*N ).。