专题 反比例函数与四边形
- 格式:doc
- 大小:98.00 KB
- 文档页数:2
2024年中考数学高频考点专题复习——反比例函数的实际应用1.如图,利用已有的一面长为的墙,用篱笆围一个面积为的矩形花圃.设的长为,的长为.(1)求y 关于x 的函数表达式和自变量x 的取值范围.(2)边和的长都是整数,若围成的矩形花圃的三边篱笆的总长不超过,试求出满足条件且用料最省的方案.2.通过实验研究发现:初中生在数学课上听课注意力指标数随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散,学生注意力指标数y 随时间x (分)变化的函数图象如图所示,当和时,图象是线段;当时,图象是双曲线的一部分,根据函数图象回答下列问题:(1)点A 的注意力指标数是 ;(2)当时,求注意力指标数y 随时间x (分)的函数解析式;(3)张老师在一节课上讲解一道数学综合题需要21分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标数都不低于36?请说明理由.5m 220m ABCD AB ()m x BC ()m y AB BC ABCD 20m 010x ≤<1020x ≤<2040x ≤≤010x ≤<3.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O 点,训练时要求A 、B 两船始终关于O 点对称.以O 为原点,建立如图所示的坐标系,x 轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线y =上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A 、B 两船恰好在直线y =x 上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为A( , )、B( , )和C( , );(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由.4.某气象研究中心观测到一场沙尘暴从发生到减弱的过程,开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y (千米/小时),时间x (小时)成反比例关系地慢慢减弱,结合风速与时间的图象,回答下列问题:(1)这场沙尘暴的最高风速是多少?最高风速维持了多长时间;(2)求出当x≥20时,风速y (千米/小时)与时间x (小时)之间的函数关系?(3)在这次沙尘暴的形成过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻是“危险时刻”.问这次风暴的整个过程中,“危险时刻”一共有多长时间?4x5.为了做好新冠疫情防控工作,某学校要求全校各班级每天对各班教室进行消毒.现有一种备选药物,根据测定,教室内每立方米空气中的药含量y (单位:mg )随时间x (单位:h )的变化情况如图所示,根据图中提供的信息,解决下面的问题.(1)如图反映的是那两个变量之间的关系?哪个是自变量?哪个是因变量?(2)什么时刻每立方米空气中药含量最多?此时药含量是多少?(3)在什么时间范围内,每立方米空气中药含量在增加?在什么时间范围内,每立方米空气中药含量在减少?(4)据测定,当空气中每立方米的药物含量降低到mg 以下时,才能保证对人身无害,若该校课间操时间为40分钟,据此判断,学校能否选用这种药物用于教室消毒?请说明理由.6.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400300250240200150125120销售量y(千克)30404850608096100观察表中数据,发现可以用反比例函数刻画这种海产品每天的销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?1167.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作.已知该品牌运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示: 第1天第2天第3天第4天售价x(元/双)150200250300销售量y(双)40302420(1)观察表中数据,x,y满足什么函数关系?写出用x表示y的函数表达式;(2)若商场计划每天的销售利润为3000元,则每双运动鞋的售价应定为多少元?8.心理学家研究发现,在一节45分钟的课中,学生的注意力随教师讲课的时间的变化而变化,开始学生的注意力逐渐增强,中间学生的注意力保持稳定的状态,随后开始分散,经实验学生的注意力指数y 随时间x(分钟)的变化规律如图所示.(1)一位教师为了达到最好的上课效果,准备课前复习,要求学生的注意力指数至少达到30时,开始上新课,问他应该复习多长时间?(2)如果(1)的这位教师本节新课内容需要22分钟,为了使学生的听课效果最好,问这位教师能否在学生听课效果最好时,讲完新课内容?9.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度 与时间 之间的函数关系,其中线段 ,表示恒温系统开启阶段,双曲线的一部分 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求 与 ( )的函数表达式;(2)若大棚内的温度低于 时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多长时间,才能使蔬菜避免受到伤害?10.某小组进行漂洗实验,每次漂洗的衣服量和添加洗衣粉量固定不变实验发现,当每次漂洗用水量v(升)一定时,衣服中残留的洗衣粉量y (克)与漂洗次数x (次)满足y=(k 为常数),已知当使用5升水,漂洗1次后,衣服中残留洗衣粉2克.(1)求k 的值.(2)如果每次用水5升,要求漂洗后残留的洗衣粉量小于0.8克,求至少漂洗多少次?(3)现将20升水等分成x 次(x>1)漂洗,要使残留的洗衣粉量降到0.5克,求每次漂洗用水多少升?()C y ︒()h x AB BC CD y x 1024x ≤≤10C ︒ 2.5kv x+11.汛期到来,山洪暴发,下表记录了某水库 内水位的变化情况,其中 表示时间(单位:), 表示水位高度(单位: ),当 ( )时,达到警戒水位,开始开闸放水. 02468101214161820141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据画出水位变化图象,并写出水位高出16米的时间 的取值范围 ▲ .(精确到0.1)(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到 .12.如图,直线与双曲线交于A ,两点,点A 的坐标为,点是双曲线第一象限分支上的一点,连结并延长交轴于点,且.(1)求的值,并直接写出点的坐标;(2)点是轴上的动点,连结,,求的最小值和点坐标;(3)是坐标轴上的点,是平面内一点,是否存在点,,使得四边形是矩形?若存20h x h y m 8x =h /h x /my x 6m 32y x =(0)ky k x=≠B (3)m -,C BC xD 2BC CD =k B G y GB GC GB GC +G P Q P Q ABPQ在,请求出所有符合条件的点的坐标;若不存在,请说明理由.13.泡茶需要将电热水壶中的水先烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x 的取值范围:(2)从水壶中的水烧开(100℃)降到90℃就可以泡茶,问从水烧开到泡茶需要等待多长时间?14.某种商品上市之初采用了大量的广告宣传,其销售量与上市的天数之间成正比,当广告停止后,销售量与上市的天数之间成反比(如图),现已知上市30天时,当日销售量为120万件.(1)写出该商品上市以后销售量y (万件)与时间x (天数)之间的表达式;(2)求上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数;(3)广告合同约定,当销售量不低于100万件,并且持续天数不少于12天时,广告设计师就可以拿到“特殊贡献奖”,那么本次广告策划,设计师能否拿到“特殊贡献奖”?P答案解析部分1.【答案】(1)解:由题意得:,,已有的一面墙长为,,,y 关于x 的函数表达式为(2)解:边和的长都是整数,且, 的值可以为4、5、10、20,围成的矩形花圃的三边篱笆的总长不超过,,的值可以为4、5,当时,,则,当时,,则,满足条件且用料最省的方案为,.2.【答案】(1)24(2)解:设线段(0≤x <10)∵,,∴{b =2410k +b =48 解之:{k =125b =24∴当0≤x <10时的函数解析式为(3)解:当时,代入和得 和∵,20xy =20y x∴=5m 205x∴≤4x ∴≥∴()204y x x=≥ AB BC ()204y x x=≥x ∴ ABCD 20m 220x y ∴+≤x ∴4x =5y =224513x y +=⨯+=5x =4y =225414x y +=⨯+=∴4m AB =5m BC =AB y kx b =+:(024)A ,(1048)B ,12245y x =+36y =12245y x =+960y x=15x =2803x =806552133-=>∴他能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标数都不低于36.3.【答案】(1)2;2;-2;-2;22 ;(2)解:作AD ⊥x 轴于D,连AC 、BC 和OC,∵A (2,2),∴∠AOD=45°,AO=2,∵C 在O 的东南45°方向上,∴∠AOC=45°+45°=90°,∵AO=BO ,∴AC=BC ,又∵∠BAC=60°,∴△ABC 为正三角形,∴AC=BC=AB=2AO=4,∴ ,由条件设教练船的速度为3m ,A、B 两船的速度都为4m ,则教练船所用时间为,A 、B 两船所用时间均为 = ,= , =,> ;∴教练船没有最先赶到.4.【答案】(1)解:0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,OC ==10~20时,风速不变,最高风速维持时间为20﹣10=10小时;答:这场沙尘暴的最高风速是32千米/时,最高风速维持了10小时(2)解:设y =, 将(20,32)代入,得32= ,解得k =640.所以当x≥20时,风速y (千米/小时)与时间x (小时)之间的函数关系为y =(3)解:∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米, ∴4.5时风速为10千米/时,将y =10代入y = ,得10=,解得x =64,64﹣4.5=59.5(小时).故沙尘暴的风速从开始形成过程中的10千米/小时到最后减弱过程中的10千米/小时,共经过59.5小时.答:这次风暴的整个过程中,“危险时刻”一共经过59.5小时.5.【答案】(1)解:图象反应的是时间x 和每立方米空气中的药含量y 之间的关系;自变量为时间x ;因变量为每立方米空气中的药含量y ;(2)解:从函数图象可得:当x=h 时,空气中药含量最多,最多为1mg ;(3)解:从图象可得:当0<x<h 时,每立方米空气中药含量在增加;当x≥h 时,每立方米空气中药含量在减少(4)解:不能选用这种药物消毒,理由如下:由图象可得,当x=1时,y=,∴,∴学校不能选用这种药物用于教室消毒.6.【答案】(1)解:设 , ∵当x=400时y=30,∴k=400×30=12000,kxk 20640x640x640x151515116116048405⎛⎫-⨯=> ⎪⎝⎭ky x=∴函数解析式为 .(2)解:2104-(30+40+48+50+60+80+96+100)=1600.即8天试销后,余下的海产品还有1 600千克.当x=150时, =80.1600÷80=20(天).答:余下的这些海产品预计再用20天可以全部售出.(3)解:1600-80×15=400(千克),设新确定的价格为每千克x 元. ,解得:x≤60,答:新确定的价格最高不超过60元/千克才能完成销售任务.7.【答案】(1)解:由表中数据得: ∴∴y 是x 的反比例函数,故所求函数关系式为 (2)解:由题意得: 把 代入得: 解得: 经检验, 是原方程的根;∴单价应定为240元8.【答案】(1)解:设DA 的函数关系式为y=kx+b (x≠0),∵y=kx+b 过(0,20),(10,40),∴{b =2010k +b =40,∴{b =20k =2,∴y=2x+20(0≤x≤10);当y=30时,30=2x+20,∴x=5;答:他应该复习5分钟;12000y x=12000150y =120002400x⨯≥6000xy =6000y x=6000y x =()1203000x y -=6000y x =()60001203000x x-=240x =240x =(2)解:设BC 的函数关系式(k 1≠0)(21≤x≤45),∵过B (21,40),∴,∴K 1=840,∴(21≤x≤45),当x=30时,,28﹣5=23,∵23>22,∴这位老师能在学生听课效果最好时讲完新课内容.9.【答案】(1)解:当 时,设 把 代入 得: 所以: (2)解:当 时,经检验: 是原方程的解,且符合题意,所以恒温系统最多可以关闭 小时,才能使蔬菜避免受到伤害.10.【答案】(1)解:∵使用5升水,漂洗1次后,衣服中残留洗衣粉2克,∴v=5,x=1,y=2,∴2=,∴k=-0.1.(2)解:∵v=5,∴y=, ∵反比例函数y=,在x>0的范围内y 随x 的增大而减少,∴当y<0.8时,漂洗的次数x>2.5,∴至少漂洗3次,衣服中残留的洗衣粉量小于0.8克.(3)解:由(1)得y=, 1k y x =14021k =840y x=8402830y ==1024x ≤≤k y x=()1020,k y x =,1020200k =⨯=,200.y x=10y =20010x =,20x ∴=,20x =201010∴-=,105 2.51k +0.15 2.52x x-⨯+=2x 0.1 2.5v x-+∴xy=-0.1v+2.5,即x 2y=-0.1vx+2.5x ,∵将20升水等分成x 次,∴vx=20,∴x 2y=-2+2.5x ,∵y=0.5,∴0.5x 2=-2+2.5x ,即x 2-5x+4=0,∴x 1=4,x 2=1(舍去,x >1),∴当x=4时,每次漂洗用水v=20÷4=5升.答:每次漂洗用水5升.11.【答案】(1)解:在平面直角坐标系中,根据表格中的数据水位变化图象如图所示,;4≤x <8.8(2)解:观察图象当0<x <8时,y 与x 可能是一次函数关系:设y=kx+b ,把(0,14),(8,18)代入得 {b =148k +b =18 解得: {k =12b =14 , y 与x 的关系式为: ,经验证(2,15),(4,16),(6,17)都满足 因此放水前y 与x 的关系式为: (0<x <8).观察图象当x >8时,y 与x 就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144.1142y x =+1142y x =+1142y x =+因此放水后y 与x 的关系最符合反比例函数,关系式为:设 ,则 ,y 与x 的关系式为: .( )所以开闸放水前和放水后最符合表中数据的函数解析式为: (0<x <8)和 .( )(3)解:当y=6时, ,解得: , 因此预计24h 水位达到6m.12.【答案】(1)解:将点A 的坐标为代入直线中,得,解得:,,,B 的坐标为(2)解:如图,作轴于点E ,轴于点F ,则,,,,, ,,,,k y x =144k =144=y x8x ≥1142y x =+144=y x 8x ≥1446=x24x =()-3A m ,32y x =332m =﹣-2m =()2-3A ∴-,=-2(3)=6k ∴⨯-()23,BE x ⊥CF x ⊥BE CF BE CF DCF DBE ∴ ∽DC CF DB BE∴=2BC CD = 13DC CF DB BE ∴==()23B ,3BE ∴=1CF ∴=,作点B 关于y 轴的对称点,连接交y 轴于点G ,则即为的最小值,,设的解析式为,,,解得: ,解析式为,当时,,;(3)解:存在.理由如下:当点P 在x 轴上时,如图,设点 的坐标为 ,过点B 作轴于点M ,四边形是矩形,,()61C ∴,B 'B C 'B C 'BG GC +()()2361B C -' ,,,B C ∴=='=BG GC B C '∴+B C 'y kx b =+()()2361B C -' ,,,3216k b k b =-+⎧⎨=+⎩1452k b ⎧=-⎪⎪⎨⎪=⎪⎩∴B C '1542y x =-+0x =52y =502G ⎛⎫∴ ⎪⎝⎭,1P ()0a ,BM x ⊥ 11ABPQ 190OBP ∴∠=︒,,,,,,,,,经检验符合题意,∴点 的坐标为;当点P 在y 轴上时,过点B 作轴于点N ,如图2,设点 的坐标为,四边形是矩形,,,,,,,经检验符合题意,∴点的坐标为,1==90OMB OBP ∴∠∠︒1=BOM POB ∠∠1OBM OPB ∴ ∽1OB OM OP OB ∴=()23B ,OB ∴==2OM ==132a ∴=1P 1302⎛⎫ ⎪⎝⎭,BN y ⊥2P ()0b , 22ABP Q 290OBP ∴∠=︒2==90ONB P BO ∠∠︒ 2BON P OB ∠=∠2BON P OB ∴ ∽2OB ON OP OB∴==133b ∴=2P 1303⎛⎫⎪⎝⎭,综上所述,点P 的坐标为或.13.【答案】(1)解:停止加热 分钟后,设 , 由题意得: , 解得: ,, 当 时,解得: ,当 时, ,点坐标为 , 点坐标为 , 当加热烧水时,设 ,由题意将 点坐标 代入上式得 , 解得: ,当加热烧水时,函数关系式为 ;当停止加热时 与 的函数关系式为 ; ;(2)解:把 代入 ,得 , 因此从水壶中的水烧开 降到 可以泡茶需要等待 分钟.14.【答案】(1)解:根据题意可知:当时,设y 与x 的函数解析式为,∴,解得:,∴;当时,设y 与x 的函数解析式为,∴,解得:1302⎛⎫ ⎪⎝⎭,1303⎛⎫ ⎪⎝⎭,1k y x =5018k =900k =900y x∴=100y =9x =20y =45x =C ∴()9100,B ∴()8100,20y ax =+B ()8100,100820a =+10a =∴()102008y x x =+≤≤y x 100(89)y x =<≤900(945)y x x =<≤90y =900y x=10x =()100℃90℃1082-=030x ≤≤1y k x =112030k =14k =()4030y x x =≤≤30x ≥2k y x =212030k =23600k =∴综上所述,该商品上市以后销售量y (万件)与时间x (天数)之间的表达式为:;.(2)解:当时,令,解得:,∴,∴销量不到36万件的天数为8天;当时,令,解得: (不符合题意),∴上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数为8天;(3)解:当时,令,解得:∴,∴销量超过100万件的天数为6天,当时,令,解得:∴,销量超过100万件的天数为6天,综上所述,销售量不低于100万件,并且持续天数为12天,广告设计师可以拿到“特殊贡献奖”.()360030y x x=≥()4030y x x =≤≤()360030y x x=≥030x ≤≤436x <9x <09x ≤<30x ≥360036x<100x >030x ≤≤4100x ≥25x ≥2530x ≤≤30x ≥3600100x≥36x ≤3036x ≤≤。
专题11反比例函数及其应用(65题)一、单选题1(2023·浙江·统考中考真题)如果100N的压力F作用于物体上,产生的压强P要大于1000Pa,则下列关于物体受力面积S m2的说法正确的是()A.S小于0.1m2B.S大于0.1m2C.S小于10m2D.S大于10m22(2023·内蒙古通辽·统考中考真题)已知点A x1,y1,B x2,y2在反比例函数y=-2x的图像上,且x1<0<x2,则下列结论一定正确的是()A.y1+y2<0B.y1+y2>0C.y1-y2<0D.y1-y2>03(2023·湖北宜昌·统考中考真题)某反比例函数图象上四个点的坐标分别为-3,y1,-2,3,1,y2, 2,y3,则,y1,y2,y3的大小关系为()A.y2<y1<y3B.y3<y2<y1C.y2<y3<y1D.y1<y3<y24(2023·浙江嘉兴·统考中考真题)已知点A-2,y1,B-1,y2,C1,y3均在反比例函数y=3x的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y15(2023·云南·统考中考真题)若点A1,3是反比例函数y=kx(k≠0)图象上一点,则常数k的值为()A.3B.-3C.32D.-326(2023·湖南永州·统考中考真题)已知点M2,a在反比例函数y=kx的图象上,其中a,k为常数,且k>0﹐则点M一定在()A.第一象限B.第二象限C.第三象限D.第四象限7(2023·天津·统考中考真题)若点A x1,-2,B x2,1,C(x3,2)都在反比例函数y=-2x的图象上,则x1,x2,x3的大小关系是()A.x3<x2<x1B.x2<x1<x3C.x1<x3<x2D.x2<x3<x18(2023·湖北随州·统考中考真题)已知蓄电池的电压为定值,使用某蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则当电阻为6Ω时,电流为()A.3AB.4AC.6AD.8A9(2023·山西·统考中考真题)已知A(-2,a),B(-1,b),C(3,c)都在反比例函数y=4x的图象上,则a、b、c的关系是()A.a<b<cB.b<a<cC.c<b<aD.c<a<b10(2023·吉林长春·统考中考真题)如图,在平面直角坐标系中,点A、B在函数y=kx(k>0,x>0)的图象上,分别以A、B为圆心,1为半径作圆,当⊙A与x轴相切、⊙B与y轴相切时,连结AB,AB= 32,则k的值为()A.3B.32C.4D.611(2023·湖北·统考中考真题)在反比例函数y=4-kx的图象上有两点A x1,y1,B x2,y2,当x1<0<x2时,有y1<y2,则k的取值范围是()A.k<0B.k>0C.k<4D.k>412(2023·湖南·统考中考真题)如图,平面直角坐标系中,O是坐标原点,点A是反比例函数y=k xk≠0图像上的一点,过点A分别作AM⊥x轴于点M,AN⊥y轴于直N,若四边形AMON的面积为2.则k的值是()A.2B.-2C.1D.-113(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,△OAB三个顶点的坐标分别为O(0,0), A(23,0),B(3,1),△OA B与△OAB关于直线OB对称,反比例函数y=kx(k>0,x>0)的图象与A B 交于点C.若A C=BC,则k的值为()A.23B.332C.3D.3214(2023·湖南怀化·统考中考真题)如图,反比例函数y =kx(k >0)的图象与过点(-1,0)的直线AB 相交于A 、B 两点.已知点A 的坐标为(1,3),点C 为x 轴上任意一点.如果S △ABC =9,那么点C 的坐标为()A.(-3,0)B.(5,0)C.(-3,0)或(5,0)D.(3,0)或(-5,0)15(2023·湖南·统考中考真题)如图,矩形OABC 的顶点B 和正方形ADEF 的顶点E 都在反比例函数y =kxk ≠0 的图像上,点B 的坐标为2,4 ,则点E 的坐标为()A.4,4B.2,2C.2,4D.4,216(2023·广西·统考中考真题)如图,过y =kx(x >0)的图象上点A ,分别作x 轴,y 轴的平行线交y =-1x的图象于B ,D 两点,以AB ,AD 为邻边的矩形ABCD 被坐标轴分割成四个小矩形,面积分别记为S 1,S 2,S 3,S 4,若S 2+S 3+S 4=52,则k 的值为()A.4B.3C.2D.117(2023·福建·统考中考真题)如图,正方形四个顶点分别位于两个反比例函数y=3x和y=nx的图象的四个分支上,则实数n的值为()A.-3B.-13C.13D.318(2023·湖南张家界·统考中考真题)如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,点D在AB上,且AD=14AB,反比例函数y=kxk>0的图象经过点D及矩形OABC的对称中心M,连接OD,OM,DM.若△ODM的面积为3,则k的值为()A.2B.3C.4D.519(2023·黑龙江·统考中考真题)如图,△ABC是等腰三角形,AB过原点O,底边BC∥x轴,双曲线y=kx过A,B两点,过点C作CD∥y轴交双曲线于点D,若S△BCD=12,则k的值是()A.-6B.-12C.-92D.-920(2023·黑龙江绥化·统考中考真题)在平面直角坐标系中,点A 在y 轴的正半轴上,AC 平行于x 轴,点B ,C 的横坐标都是3,BC =2,点D 在AC 上,且其横坐标为1,若反比例函数y =kx(x >0)的图像经过点B ,D ,则k 的值是()A.1B.2C.3D.3221(2023·四川宜宾·统考中考真题)如图,在平面直角坐标系xOy 中,点A 、B 分别在y ,x 轴上,BC ⊥x 轴.点M 、N 分别在线段BC 、AC 上,BM =CM ,NC =2AN ,反比例函数y =kxx >0 的图象经过M 、N 两点,P 为x 正半轴上一点,且OP :BP =1:4,△APN 的面积为3,则k 的值为()A.454B.458C.14425D.7225二、填空题22(2023·广东·统考中考真题)某蓄电池的电压为48V ,使用此蓄电池时,电流I (单位:A )与电阻R (单位:Ω)的函数表达式为I =48R,当R =12Ω时,I 的值为A .23(2023·四川成都·统考中考真题)若点A -3,y 1 ,B -1,y 2 都在反比例函数y =6x的图象上,则y 1y 2(填“>”或“<”).24(2023·浙江温州·统考中考真题)在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对汽缸壁所产生的压强P (kPa )与汽缸内气体的体积V (mL )成反比例,P 关于V 的函数图象如图所示.若压强由75kPa 加压到100kPa ,则气体体积压缩了mL .25(2023·河北·统考中考真题)如图,已知点A (3,3),B (3,1),反比例函数y =kx(k ≠0)图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:.26(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,直线y 1=k 1x +b 与双曲线y 2=k 2x(其中k 1⋅k 2≠0)相交于A -2,3 ,B m ,-2 两点,过点B 作BP ∥x 轴,交y 轴于点P ,则△ABP 的面积是.27(2023·新疆·统考中考真题)如图,在平面直角坐标系中,△OAB 为直角三角形,∠A =90°,∠AOB =30°,OB =4.若反比例函数y =kxk ≠0 的图象经过OA 的中点C ,交AB 于点D ,则k =.28(2023·浙江绍兴·统考中考真题)如图,在平面直角坐标系xOy 中,函数y =kx(k 为大于0的常数,x >0)图象上的两点A x 1,y 1 ,B x 2,y 2 ,满足x 2=2x 1.△ABC 的边AC ∥x 轴,边BC ∥y 轴,若△OAB 的面积为6,则△ABC 的面积是.29(2023·山东烟台·统考中考真题)如图,在直角坐标系中,⊙A 与x 轴相切于点B ,CB 为⊙A 的直径,点C 在函数y =kx(k >0,x >0)的图象上,D 为y 轴上一点,△ACD 的面积为6,则k 的值为.30(2023·山东枣庄·统考中考真题)如图,在反比例函数y =8x(x >0)的图象上有P 1,P 2,P 3,⋯P 2024等点,它们的横坐标依次为1,2,3,⋯,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,⋯,S 2023,则S 1+S 2+S 3+⋯+S 2023=.31(2023·四川内江·统考中考真题)如图,在平面直角坐标系中,O 为坐标原点,MN 垂直于x 轴,以MN 为对称轴作△ODE 的轴对称图形,对称轴MN 与线段DE 相交于点F ,点D 的对应点B 恰好落在反比例函数y =kx(x <0)的图象上,点O 、E 的对应点分别是点C 、A .若点A 为OE 的中点,且S △EAF =14,则k 的值为.32(2023·黑龙江齐齐哈尔·统考中考真题)如图,点A 在反比例函数y =kxk ≠0 图像的一支上,点B 在反比例函数y =-k2x图像的一支上,点C ,D 在x 轴上,若四边形ABCD 是面积为9的正方形,则实数k 的值为.33(2023·广东深圳·统考中考真题)如图,Rt △OAB 与Rt △OBC 位于平面直角坐标系中,∠AOB =∠BOC =30°,BA ⊥OA ,CB ⊥OB ,若AB =3,反比例函数y =kxk ≠0 恰好经过点C ,则k =.34(2023·江苏连云港·统考中考真题)如图,矩形OABC 的顶点A 在反比例函数y =kx(x <0)的图像上,顶点B 、C 在第一象限,对角线AC ∥x 轴,交y 轴于点D .若矩形OABC 的面积是6,cos ∠OAC =23,则k =.35(2023·浙江宁波·统考中考真题)如图,点A,B分别在函数y=ax(a>0)图象的两支上(A在第一象限),连接AB交x轴于点C.点D,E在函数y=bx(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连接DE,BE.若AC=2BC,△ABE的面积为9,四边形ABDE的面积为14,则a-b的值为,a的值为.36(2023·湖北荆州·统考中考真题)如图,点A2,2在双曲线y=kx(x>0)上,将直线OA向上平移若干个单位长度交y轴于点B,交双曲线于点C.若BC=2,则点C的坐标是.三、解答题37(2023·浙江杭州·统考中考真题)在直角坐标系中,已知k1k2≠0,设函数y1=k1x与函数y2=k2x-2+5的图象交于点A和点B.已知点A的横坐标是2,点B的纵坐标是-4.(1)求k1,k2的值.(2)过点A作y轴的垂线,过点B作x轴的垂线,在第二象限交于点C;过点A作x轴的垂线,过点B作y 轴的垂线,在第四象限交于点D.求证:直线CD经过原点.38(2023·湖南常德·统考中考真题)如图所示,一次函数y1=-x+m与反比例函数y2=kx相交于点A和点B3,-1.(1)求m的值和反比例函数解析式;(2)当y1>y2时,求x的取值范围.39(2023·湖南·统考中考真题)如图,点A的坐标是-3,0,点B的坐标是(0,4),点C为OB中点,将△ABC绕着点B逆时针旋转90°得到△A BC .(1)反比例函数y=kx的图像经过点C,求该反比例函数的表达式;(2)一次函数图像经过A、A 两点,求该一次函数的表达式.40(2023·四川自贡·统考中考真题)如图,点A 2,4 在反比例函数y 1=mx图象上.一次函数y 2=kx +b 的图象经过点A ,分别交x 轴,y 轴于点B ,C ,且△OAC 与△OBC 的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y 1≥y 2时,x 的取值范围.41(2023·四川泸州·统考中考真题)如图,在平面直角坐标系xOy 中,直线l :y =kx +2与x ,y 轴分别相交于点A ,B ,与反比例函数y =mxx >0 的图象相交于点C ,已知OA =1,点C 的横坐标为2.(1)求k ,m 的值;(2)平行于y 轴的动直线与l 和反比例函数的图象分别交于点D ,E ,若以B ,D ,E ,O 为顶点的四边形为平行四边形,求点D 的坐标.42(2023·四川南充·统考中考真题)如图,一次函数图象与反比例函数图象交于点A-1,6,B3a ,a-3,与x轴交于点C,与y轴交于点D.(1)求反比例函数与一次函数的解析式;(2)点M在x轴上,若S△OAM=S△OAB,求点M的坐标.43(2023·四川宜宾·统考中考真题)如图,在平面直角坐标系xOy中,等腰直角三角形ABC的直角顶点C3,0,顶点A、B6,m恰好落在反比例函数y=kx第一象限的图象上.(1)分别求反比例函数的表达式和直线AB所对应的一次函数的表达式;(2)在x轴上是否存在一点P,使△ABP周长的值最小.若存在,求出最小值;若不存在,请说明理由.44(2023·四川广安·统考中考真题)如图,一次函数y =kx +94(k 为常数,k ≠0)的图象与反比例函数y =mx(m 为常数,m ≠0)的图象在第一象限交于点A 1,n ,与x 轴交于点B -3,0 .(1)求一次函数和反比例函数的解析式.(2)点P 在x 轴上,△ABP 是以AB 为腰的等腰三角形,请直接写出点P 的坐标.45(2023·四川遂宁·统考中考真题)如图,一次函数y =k 1x +b 的图像与反比例函数y =k 2x的图像交于A -4,1 ,B m ,4 两点.(k 1,k 2,b 为常数)(1)求一次函数和反比例函数的解析式;(2)根据图像直接写出不等式k 1x +b >k2x的解集;(3)P 为y 轴上一点,若△PAB 的面积为3,求P 点的坐标.46(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,直线y=kx+b与x轴交于点A4,0,与y轴交于点B0,2,与反比例函数y=mx在第四象限内的图象交于点C6,a.(1)求反比例函数的表达式:(2)当kx+b>mx时,直接写出x的取值范围;(3)在双曲线y=mx上是否存在点P,使△ABP是以点A为直角顶点的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.47(2023·江西·统考中考真题)如图,已知直线y=x+b与反比例函数y=kx(x>0)的图象交于点A(2,3),与y轴交于点B,过点B作x轴的平行线交反比例函数y=kx(x>0)的图象于点C.(1)求直线AB和反比例函数图象的表达式;(2)求△ABC的面积.48(2023·四川乐山·统考中考真题)如图,一次函数y=kx+b的图象与反比例函数y=4x的图象交于点A m,4,与x轴交于点B,与y轴交于点C0,3.(1)求m的值和一次函数的表达式;(2)已知P为反比例函数y=4x图象上的一点,S△OBP=2S△OAC,求点P的坐标.49(2023·湖南岳阳·统考中考真题)如图,反比例函数y=kx(k为常数,k≠0)与正比例函数y=mx(m为常数,m≠0)的图像交于A1,2,B两点.(1)求反比例函数和正比例函数的表达式;(2)若y轴上有一点C0,n,△ABC的面积为4,求点C的坐标.3x相交于点A.(1)求点A的坐标.(2)分别以点O、A为圆心,大于OA一半的长为半径作圆弧,两弧相交于点B和点C,作直线BC,交x轴于点D.求线段OD的长.x交于点A4,n.将点A沿x轴正方向平移m个单位长度得到点B,D为x轴正半轴上的点,点B的横坐标大于点D的横坐标,连接BD,BD的中点C在反比例函数y=kx(x>0)的图象上.(1)求n,k的值;(2)当m为何值时,AB⋅OD的值最大?最大值是多少?52(2023·山东东营·统考中考真题)如图,在平面直角坐标系中,一次函数y=ax+b a<0与反比例函数y=kxk≠0交于A-m,3m,B4,-3两点,与y轴交于点C,连接OA,OB.(1)求反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)请根据图象直接写出不等式kx<ax+b的解集.53(2023·山东枣庄·统考中考真题)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=4x的图象交于A(m,1),B(-2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式kx+b<4x的解集;(3)设直线AB与x轴交于点C,若P(0,a)为y轴上的一动点,连接AP,CP,当△APC的面积为52时,求点P的坐标.54(2023·山东滨州·统考中考真题)如图,直线y =kx +b (k ,b 为常数)与双曲线y =m x(m 为常数)相交于A 2,a ,B -1,2 两点.(1)求直线y =kx +b 的解析式;(2)在双曲线y =m x上任取两点M x 1,y 1 和N x 2,y 2 ,若x 1<x 2,试确定y 1和y 2的大小关系,并写出判断过程;(3)请直接写出关于x 的不等式kx +b >m x的解集.55(2023·四川内江·统考中考真题)如图,在平面直角坐标系中,一次函数y =mx +n 与反比例函数y =k x的图象在第一象限内交于A a ,4 和B 4,2 两点,直线AB 与x 轴相交于点C ,连接OA .(1)求一次函数与反比例函数的表达式;(2)当x >0时,请结合函数图象,直接写出关于x 的不等式mx +n ≥k x的解集;(3)过点B 作BD 平行于x 轴,交OA 于点D ,求梯形OCBD 的面积.56(2023·湖南·统考中考真题)如图所示,在平面直角坐标系xOy中,四边形OABC为正方形,其中点A、C分别在x轴负半轴,y轴负半轴上,点B在第三象限内,点A t,0,点P1,2在函数y=k xk>0,x>0的图像上(1)求k的值;(2)连接BP、CP,记△BCP的面积为S,设T=2S-2t2,求T的最大值.57(2023·湖北十堰·统考中考真题)函数y=kx+a的图象可以由函数y=kx的图象左右平移得到.(1)将函数y=1x的图象向右平移4个单位得到函数y=1x+a的图象,则a=;(2)下列关于函数y=1x+a的性质:①图象关于点-a,0对称;②y随x的增大而减小;③图象关于直线y=-x+a对称;④y的取值范围为y≠0.其中说法正确的是(填写序号);(3)根据(1)中a的值,写出不等式1x+a >1x的解集:.58(2023·甘肃兰州·统考中考真题)如图,反比例函数y=kxx<0与一次函数y=-2x+m的图象交于点A-1,4,BC⊥y轴于点D,分别交反比例函数与一次函数的图象于点B,C.(1)求反比例函数y=kx与一次函数y=-2x+m的表达式;(2)当OD=1时,求线段BC的长.59(2023·湖北黄冈·统考中考真题)如图,一次函数y1=kx+b(k≠0)与函数为y2=mx(x>0)的图象交于A(4,1),B12,a两点.(1)求这两个函数的解析式;(2)根据图象,直接写出满足y1-y2>0时x的取值范围;(3)点P在线段AB上,过点P作x轴的垂线,垂足为M,交函数y2的图象于点Q,若△POQ面积为3,求点P的坐标.60(2023·四川·统考中考真题)如图,已知一次函数y=kx+6的图象与反比例函数y=mxm>0的图象交于A3,4,B两点,与x轴交于点C,将直线AB沿y轴向上平移3个单位长度后与反比例函数图象交于点D,E.(1)求k,m的值及C点坐标;(2)连接AD,CD,求△ACD的面积.61(2023·山东聊城·统考中考真题)如图,一次函数y=kx+b的图像与反比例函数y=mx的图像相交于A-1,4,B a,-1两点.(1)求反比例函数和一次函数的表达式;(2)点P n,0在x轴负半轴上,连接AP,过点B作BQ∥AP,交y=mx的图像于点Q,连接PQ.当BQ=AP时,若四边形APQB的面积为36,求n的值.62(2023·山东·统考中考真题)如图,正比例函数y1=12x和反比例函数y2=kx(x>0)的图像交于点A m,2.(1)求反比例函数的解析式;(2)将直线OA向上平移3个单位后,与y轴交于点B,与y2=kx(x>0)的图像交于点C,连接AB,AC,求△ABC的面积.63(2023·山东·统考中考真题)如图,已知坐标轴上两点A0,4,连接AB,过点B作BC⊥,B2,0AB,交反比例函数y=kx在第一象限的图象于点C(a,1).(1)求反比例函数y=kx和直线OC的表达式;(2)将直线OC向上平移32个单位,得到直线l,求直线l与反比例函数图象的交点坐标.64(2023·河南·统考中考真题)小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数y =k x 图象上的点A 3,1 和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA 长为半径作AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.65(2023·四川成都·统考中考真题)如图,在平面直角坐标系xOy中,直线y=-x+5与y轴交于点A,与反比例函数y=kx的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接PA,以P为位似中心画△PDE,使它与△PAB位似,相似比为m.若点D,E 恰好都落在反比例函数图象上,求点P的坐标及m的值.·31·。
反比例函数与平行四边形例2、(08威海市)如图3-1,点A (m ,m +1),B (m +3,m -1)都在反比例函数x k y =的图象上. (1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. 分析:点A (m ,m +1),B (m +3,m -1)都在反比例函数xk y =的图象上,所以有)1)(3()1(-+=+m m m m k =,解得12,3==k m 。
于是点A(3, 4), B(6, 2), 过A 、B两点分别作X 、Y 轴的垂线,垂足分别是M 、N,如图3-2,显然AM 和BN 互相平分,因此四边形ABMN 是平行四边形。
这个平行四边形恰是符合题意的四边形。
因为M (3,0),N (0,2),根据待定系数法可求出直线MN 的解析式为232+-=x y . 注意应用反比例函数的另一个表达形式)0(≠=k k xy 。
根据点的坐标在函数图象上,则点的坐标满足函数解析式。
如果直接把点的坐标代入解析式x k y =中,有m k m =+1和31+=-m k m ,由此求m 和k 容易出错。
反比例函数的另一个表达形式是)0(≠=k k xy 即两个变量的积一定。
据此得)1)(3()1(-+=+m m m m k =,求m ,k 的值就比较简单。
(2)以点A ,B ,M ,N 为顶点的四边形是平行四边形,同学们往往盲目的在坐标轴上寻找点M 和点N, 当我们由m 的值写出了点A 点B的坐标A(3, 4)、B(6, 2), 并且在坐标轴上标出对应的坐标时,不难发现AM 和BN 互相平分,由此M 和N 点的确定使人大有“踏破铁鞋无处觅,得来全不费工夫”的感觉,真爽。
点评: 本例题把反比例函数图象与性质与一元二次方程、平行四边形性质判定结合。
2021年九年级数学中考复习专题:反比例函数综合(考察坐标、取值范围、面积等)(四)1.如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A 在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.2.如图1,A(1,0)、B(0,2),双曲线y=(x>0)(1)若将线段AB绕A点顺时针旋转90°后B的对应点恰好落在双曲线y=(x>0)上①则k的值为;②将直线AB平移与双曲线y=(x>0)交于E、F,EF的中点为M(a,b),求的值;(2)将直线AB平移与双曲线y=(x>0)交于E、F,连接AE.若AB⊥AE,且EF =2AB,如图2,直接写出k的值.3.如图1,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点.(1)求∠OCD的度数;(2)如图2,连接OQ、OP,当∠DOQ=∠OCD﹣∠POC时,求此时m的值;(3)如图3,点A,点B分别在x轴和y轴正半轴上的动点.再以OA、OB为邻边作矩形OAMB.若点M恰好在函数y=(m为常数,m>1,x>0)的图象上,且四边形BAPQ为平行四边形,求此时OA、OB的长度.4.如图,在四边形ABCD中,AB=BC=5,AD=DC=8,对角线BD=3+4,点B在y轴上,BD与x轴平行,点C在x轴上.(1)求∠ADC的度数.(2)点P在对角线BD上,点Q在四边形ABCD内且在点P的右边,连接AP、PQ、QC,已知AP=AQ,∠APQ=60°,设BP=m.①求CQ的长(用含m的代数式表示);②若某一反比例函数图象同时经过点A、Q,求m的值.5.已知一次函数y1=kx+n(n<0)和反比例函数y2=(m>0,x>0).(1)如图1,若n=﹣2,且函数y1、y2的图象都经过点A(3,4).①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=(x>0)的图象相交于点C.①若k=2,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m﹣n的值;②过点B作x轴的平行线与函数y1的图象相交于点E.当m﹣n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.6.如图,四边形OABC为矩形,点B坐标为(4,2),A,C分别在x轴,y轴上,点F 在第一象限内,OF的长度不变,且反比例函数y=经过点F.(1)如图1,当F在直线y=x上时,函数图象过点B,求线段OF的长.(2)如图2,若OF从(1)中位置绕点O逆时针旋转,反比例函数图象与BC,AB相交,交点分别为D,E,连结OD,DE,OE.①求证:CD=2AE.②若AE+CD=DE,求k.③设点F的坐标为(a,b),当△ODE为等腰三角形时,求(a+b)2的值.7.如图,二次函数与反比例函数的图象有公共点A(﹣2,5),▱ABCD的顶点B(﹣5,p)在双曲线上,C、D两点在抛物线上(点C在y轴负半轴,点D在x轴正半轴)(1)求直线AB的表达式及C、D两点的坐标;(2)第四象限的抛物线上是否存在点E,使得四边形ACED的面积最大,若存在,求出点E的坐标和面积的最大值,不存在,说明理由.8.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0)、D(﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.9.如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m >0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.10.如图,点P在曲线上,PA⊥x轴于点A,点B在y轴正半轴上,PA=PB,OA、OB的长是方程t2﹣8t+12=0的两个实数根,且OA>OB,点C是线段PB延长线上的一个动点,△ABC的外接圆⊙M与y轴的另一个交点是D.(1)填空:OA=;OB=;k=;(2)设点Q是⊙M上一动点,若圆心M在y轴上且点P、Q之间的距离达到最大值,则点Q的坐标是;(3)试问:在点C运动的过程中,BD﹣BC的值是否为定值?若是,请求出该定值;若不是,请给出合理的解释.参考答案1.解:(1)∵△ADC与△ABC关于AC所在的直线对称,∴CD=BC=2,∠ACD=∠ACB=30°,如图1,过点D作DE⊥BC于点E,∵∠DCE=60°,∴,∵OC=2,∴OE=3,∴;(2)设OC=m,则OE=m+1,OB=m+2在Rt△ABC中,∠ACB=30°,BC=2,∴,∴,∵A,D在同一反比例函数上,∴,解得:m=1,∴OC=1;(3)由(2)得:∴,∵四边形A1B1C1D1由四边形ABCD平移得到,∴,∵D1在反比例函数上,∴同理:,,∴,∴,∵x P=x A=﹣3,P在反比例函数上,∴,①若P为直角顶点,则A1P⊥DP,过点P作l1⊥y轴,过点A1作A1F⊥l1,过点D作DG⊥l1,则△A1PF∽△PDG,,解得:;②若D为直角顶点,则A1D⊥DP,过点D作l2⊥x轴,过点A1作A1H⊥l2,则△A1DH∽△DPG,,,解得:k=0(舍),综上:存在.2.解:(1)设旋转后点B的对应点为点C,过点C作CD⊥x轴于点D,如图所示∵∠BAC=90°,∴∠BAO+∠CAD=90°,∵∠BAO+∠ABO=90°,∴∠ABO=∠CAD,在△OAB和△DCA中,,∴△OAB≌△DCA(AAS),∴CD=OA=1,AD=OB=2,∴OD=OA+AD=3,∴C(3,1),把C(3,1)代入y=中,得k=3,故答案为:3;(2)直线AB表达式中的k值为﹣2,AB∥EF,则直线EF表达式中的k值为﹣2,设点E(m,n),mn=3,直线EF的表达式为:y=﹣2x+t,将点E坐标代入上式并解得,直线EF的表达式为y=﹣2x+2m+n,将直线EF表达式与反比例函数表达式联立并整理得:2x2﹣(2m+n)x+3=0,x1+x2=,x1x2=,则点F(n,),则a=(),b=(n+),===2;(3)故点E作EH⊥x轴交于点H,由(1)知:△ABO∽△EHA,∴,设EH=m,则AH=2m,则点E(2m+1,m),且k=m(2m+1)=2m2+m,直线AB表达式中的k值为﹣2,AB∥EF,则直线EF表达式中的k值为﹣2,设直线EF的表达式为:y=﹣2x+b,将点E坐标代入并求解得:b=5m+2,故直线EF的表达式为:y=﹣2x+5m+2,将上式与反比例函数表达式联立并整理得:2x2﹣(5m+2)x+3=0,用韦达定理解得:x F+x E=,则x F=,则点F(m,4m+2),则EF==2AB=2×,整理得:3m2+4m﹣4=0,解得:m=或﹣2(舍去负值),k=m(2m+1)=2m2+m=.3.解:(1)设直线PQ的解析式为y=kx+b,则有,解得,∴y=﹣x+m+1,令x=0,得到y=m+1,∴D(0,m+1),令y=0,得到x=m+1,∴C(m+1,0),∴OC=OD,∵∠COD=90°,∴∠OCD=45°.(2)如图2,过Q作QM⊥y轴于M,过P作PN⊥OC于N,过O作OH⊥CD于H,∵P(m,1)和Q(1,m),∴MQ=PN=1,OM=ON=m,∵∠OMQ=∠ONP=90°,∴△OMQ≌△ONP(SAS),∴OQ=OP,∠DOQ=∠POC,∵∠DOQ=∠OCD﹣∠POC,∠OCD=45°,∴∠DOQ=∠POC=∠QOH=∠POH=22.5°,∴MQ=QH=PH=PN=1,∵∠OCD=∠ODC=45°,∴△DMQ和△CNP都是等腰直角三角形,∴DQ=PC=,∵OC=OD=m+1,∴CD=OC=,∵CD=DQ+PQ+PC,∴=2+2,∴m=+1;(3)如图3,∵四边形BAPQ为平行四边形,∴AB∥PQ,AB=PQ,∴∠OAB=45°,∵∠AOB=90°,∴OA=OB,∴矩形OAMB是正方形,∵点M恰好在函数y=(m为常数,m>1,x>0)的图象上,∴M(,),即OA=OB=,∵AB=PQ,∴,解得:m=或(舍),∴OA=OB====.4.解:(1)连接AC交BD于点H,∵AB=BC,AD=DC,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BH是等腰三角形ABC的高,即BH⊥AC,即BD是AC的中垂线,设HD=x,则BH=4+3﹣x,AH2=AB2﹣BH2=AD2﹣DH2,即82﹣x2=52﹣(3+4﹣x)2,解得:x=,cos∠ADB===,故∠ADB=30°BD是AC的中垂线,则∠ADB=30°=∠CDB,故∠ADC=2∠ADB=60°;(2)①连接AQ、QD、PC,∵∠APQ=60°,AP=AQ,∴△APQ为等边三角形,故∠PAQ=60°=∠PAC+∠HAQ,同理△ACD是边长为8的等边三角形,∴∠CAD=60°=∠HAQ+∠QAD,∴∠PAC=∠QAD,而AP=AQ,AD=AC,∴△ACP≌△ADQ(SAS),∵BD是AC的中垂线,故PA=PC,则△ACP为等腰三角形,∴△AQD也为等腰三角形,即AQ=QD,而AC=CD(△ACD为等边三角形),CQ=CQ,∴△ACQ≌△DCQ(SSS),故∠ACQ=∠DCQ,在△CAD中,延长CQ交AD于点K,∵AC=CD,则CK⊥AD,∴∠AKQ=90°∵∠AKQ=90°=∠AHP,∠QAK=∠PAH,PA=AQ,∴△AKQ≌△QHP(AAS),∴QK=PH,过点D作DR⊥x轴交于点R,BD∥x轴,故∠BDC=∠DCR=30°,DR=CD=8×=4=CH=OB,而BC=5,故OC=3=BH,故点C(3,0),PH=BH=BP=3﹣m=QK,在等边三角形ACD中,AD边上的高CK=CD sin∠CDA=8×sin60°=4,则CQ=CK﹣QK=4﹣3+m;②过点Q分别作x、y轴的垂线,垂足为M、N,∵AK是等边三角形CDA的高,则∠KCD=30°,而∠DCR=30°,故∠QCR=60°,QM=CQ sin∠QCM=CQ sin60°=CQ,CM=CQ,故点Q(3+CQ,CQ),点C(3,0),CH=4,故点A(3,8),反比例函数图象同时经过点A、Q,则3×8=(3+CQ)×CQ,而CQ=4﹣3+m,即m2+24m+39﹣96=0,解得:m=﹣4(不合题意值已舍去).5.解:(1)①将点A的坐标代入一次函数表达式并解得:k=2,将点A的坐标代入反比例函数得:m=3×4=12;②由图象可以看出x>3时,y1>y2;(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),则BD=|2+n﹣m|,BC=m﹣n,DC=2+n﹣n=2则BD=BC或BD=DC或BC=CD,即:|2+n﹣m|=m﹣n或|2+n﹣m|=2或m﹣n=2,即:m﹣n=1或0或2或4,当m﹣n=0时,m=n与题意不符,点D不能在C的下方,即BC=CD也不存在,n+2>n,当B、D重合时,m﹣n=2成立,故m﹣n=1或4或2;②点E的横坐标为:,当点E在点B左侧时,d=BC+BE=m﹣n+(1﹣)=1+(m﹣n)(1﹣),m﹣n的值取不大于1的任意数时,d始终是一个定值,当1﹣=0时,此时k=1,从而d=1.当点E在点B右侧时,同理BC+BE=(m﹣n)(1+)﹣1,当1+=0,k=﹣1时,(不合题意舍去)故k=1,d=1.6.解:(1)∵F在直线y=x上∴设F(m,m)∵y=经过点B(2,4).∴k=8.∵F(m,m)在反比例函数的图象上,∴m2=8∴m=2(负值已舍去).∴由两点间的距离公式可知:OF==4.(2)①∵函数y=的图象经过点D,E∴OC•CD=OA•AE=k.∵OC=2,OA=4,∴CD=2AE.②由①得:CD=2AE∴可设:CD=2n,AE=n∴DE=CD+AE=3n,BD=4﹣2n,BE=2﹣n在Rt△EBD,由勾股定理得:DE2=BD2+BE2,∴9n2=(4﹣2n)2+(2﹣n)2.解得n=,∴k=4n=6﹣10.③CD=2c,AE=c当OD=DE时,22+4c2=(4﹣2c)2+(2﹣c)2,∴c=10﹣2,∴k=4c=40﹣8.(a+b)2=a2+b2+2ab=16+2k=96﹣16.当若OE=DE时,16+c2=(4﹣2c)2+(2﹣c)2,∴c=.∴k=4c=10﹣2.∴(a+b)2=a2+b2+2ab=16+2k=36﹣4.当OE=OD时,4+4c2=16+c2,解得c=2.此时点D与点E重合,故此种情况不存在.综上所述,(a+b)2的值为96﹣16或36﹣4.7.解:(1)设反比例函数的解析式为y=.∵它图象经过点A(﹣2,5)和点B(﹣5,p),∴5=,∴k=﹣10,∴反比例函数的解析式为y=﹣,∴P=﹣=2,∴点B的坐标为(﹣5,2),设直线AB的表达式为y=mx+n,则,∴,∴直线AB的表达式为y=x+7.由▱ABCD中,AB∥CD,设CD的表达式为y=x+c,∴C(0,c),D(﹣c,0),∵CD=AB,∴CD2=AB2,∴c2+c2=(﹣5+2)2+(2﹣5)2,∴c=﹣3,∴点C、D的坐标分别是(0,﹣3)、(3,0).(2)设二次函数的解析式为y=ax2+bx﹣3,,∴,∴二次函数的解析式为y=x2﹣2x﹣3,假设第四象限的抛物线上存在点E,使得△CDE的面积最大.设E(k,k2﹣2k﹣3),则F(k,k﹣3),过点E作x轴的垂线交CD于点F,则S△CDE=S△EFC+S△EFD=•EF•OD=•[(k﹣3)﹣(k2﹣2k﹣3)]=﹣(k2﹣3k)=﹣(k﹣)2+,所以,当k=时,△CDE的面积最大值为,此时点E的坐标为(,﹣).∵A(﹣2,5),C(0,﹣3),D(3,0),∴△ACD的面积为定值,∵直线AD的解析式为y=﹣x+3,∴直线AD交y轴于K(0,3),∴S△ACD=S△ACK+S△CKD=×6×2+×6×3=15,∴四边形ACED的面积的最大值为15+=.8.解:(1)过点B、D分别作BE⊥x轴、DF⊥x轴交于点E、F,∵∠DAF+∠BAE=90°,∠DAF+∠FDA=90°,∴∠FDA=∠BAE,又∠DFA=∠AEB=90°,AD=AB,∴△DFA≌△AEB(AAS),∴DF=AE=3,BE=AF=1,∴点B坐标为(﹣3,1),故答案为(﹣3,1);(2)t秒后,点D′(﹣7+2t,3)、B′(﹣3+2t,1),则k=(﹣7+2t)×3=(﹣3+2t)×1,解得:t=,则k=6,则点D′(2,3)、B′(6,1);(3)存在,理由:设:点Q(m,n),点P(0,s),mn=6,①当BD为平行四边形一条边时,图示平行四边形B′D′QP,点B′向左平移4个单位、向上平移2个单位得到点D′,同理点Q(m,n)向左平移4个单位、向上平移2个单位为(m﹣4,n+2)得到点P (0,s),即:m﹣4=0,n+2=s,mn=6,解得:m=4,n=,s=,故点Q(4,)、点P(0,);②当BD为平行四边形对角线时,图示平行四边形D′Q′B′P′,B′、D′中点坐标为(4,2),该中点也是P′Q′的中点,即:4=,=2,mm=6,解得:m=8,n=,s=,故点Q′(8,)、P′(0,);故点Q的坐标为:Q(4,)或(8,),点P的坐标为P(0,)(0,).9.解:(1)将点O、B的坐标代入一次函数表达式:y=kx得:4=2k,解得:k=2,故一次函数表达式为:y=2x,(2)①过点B作BM⊥OA,则∠OCH=∠QPA=∠OAB=∠ABM=α,则tanα=,sinα=,∵OB=AB,则OM=AM=2,则点A(4,0),设:AP=a,则OC=a,在△APQ中,sin∠APQ===sinα=,同理PQ==2t,则PA=a=t,OC=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t2﹣4t,②∵4>0,∴T有最小值,当t=时,T取得最小值,而点C(t,2t),故:m=t×2t=.10.解:(1)t2﹣8t+12=0,解得:t=2或6,∵OA、OB的长是方程t2﹣8t+12=0的两个实数根,且OA>OB,即OA=6,OB=2,即点A、B的坐标为(﹣6,0)、(0,2),设点P(﹣6,),由PA=PB得:36+(2+)2=()2,解得:k=﹣60,故点P(﹣6,10),故答案为:6,2,﹣60;(2)当PQ过圆心M时,点P、Q之间的距离达到最大值,tan∠ACO=,线段AB中点的坐标为(﹣3,1),则过AB的中点与直线AB垂直的直线PQ的表达式为:y=mx+n=﹣3x+n,将点(﹣3,1)的坐标代入上式并解得:n=﹣8,即点M的坐标为(0,﹣8),则圆的半径r=MB=2+8=10=MQ,过点Q作QG⊥y轴于点G,tan∠QMG=tan∠HMP===,则sin∠QMG=故GQ=MQ sin∠QMG=,MG=3,故点Q(,﹣8﹣3);故答案为:(,﹣8﹣3).(3)是定值,理由:延长PA交圆M于E,过点E作EH⊥BD于H,连接CE,DE,∵PA=PB,∴∠PAB=∠PBA,∵四边形ABCE是圆的内接四边形,∴∠PAB=∠PCE,∠PBA=∠PEC,∴∠PEC=∠PCE,∴PE=PC,∴AE=BC,∵AO⊥BD,EH⊥BD,PA⊥OA,∴四边形AOHE是矩形,∴AO=EH,AE=OH=BC,∵PA∥BD,∴=,∴,∴∠ABD=∠BDE,且∠AOB=∠EHD=90°,AO=EH,∴△AOB≌△EHD(AAS)∴OB=DH=2,∴BD﹣BC=BD﹣OH=OB+DH=4.。
反比例函数中的平行四边形问题1、如图,在平面直角坐标系中,反比例函数y=的图象过等边三角形BOC的顶点B,OC=2,点A在反比例函数图象上,连接AC、AO.(1)求反比例函数解析式;(2)若四边形ACBO的面积为3,求点A的坐标.解:(1)作BD⊥OC于D,如图,∵△BOC为等边三角形,∴OD=CD=OC=1,∴BD=OD=,∴B(﹣1,﹣),把B(﹣1,﹣)代入y=得k=﹣1×(﹣)=,∴反比例函数解析式为y=;(2)设A(t,),∵四边形ACBO的面积为3,∴×2×+×2×=3,解得t=,∴A点坐标为(,2).2、如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.解:(1)∵AB=6,点B的坐标为(﹣6,0),∴点A(﹣12,0),如图1,过点D作DE⊥x轴于点D,则ED=AD sin∠DAB=8×=4,同理AE=4,故点D(﹣8,4),则点C(﹣2,4),由中点公式得,点M(﹣4,2);(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),∵点D′M′都在函数上,∴(a﹣8)×4=(a﹣4)×2,解得:a=12,则k=(12﹣8)×4=16,故反比例函数的表达式为=;(3)由(2)知,点M′的坐标为(8,2),点B′、C′的坐标分别为(6,0)、(10,4),设点P(m,2),点Q(s,t);①当B′C′是矩形的边时,如图2,求解的矩形为矩形B′C′PQ和矩形B′C′Q′P′,过点C′作C′H⊥l交于点H,C′H=4﹣2=2,直线B′C′的倾斜角为60°,则∠M′PC′=30°,PH=C′H÷tan∠M′PC′=2=6,故点P的坐标为(16,2),由题意得:点P、Q′关于点C′对称,由中点公式得,点Q的坐标为(12,﹣4);同理点Q、Q′关于点M′对称,由中点公式得,点Q′(4,6);故点Q的坐标为:(12,﹣4)或(4,6);②当B′C′是矩形的对角线时,∵B′C′的中点即为PQ的中点,且PQ=B′C′,∴,解得:,,故点Q的坐标为(4,2)或(12,2);综上,点Q的坐标为:(12,﹣4)或(4,6)或(4,2)或(12,2).3、如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,4).反比例函数y=(x>0)的图象经过点D,点P是一次函数y=kx+4﹣4k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+4﹣4k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+4﹣4k(k≠0),当随x的增大而增大时,确定点P横坐标的取值范围(不必写过程).解:(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(4,1),C(4,4),∴BC⊥x轴,AD=BC=3,而A点坐标为(1,0),∴点D的坐标为(1,3).∵反比例函数y=(x>0)的函数图象经过点D(1,3),∴3=,∴m=3,∴反比例函数的解析式为y=;(2)当x=4时,y=kx+4﹣4k=4k+4﹣4k=4,∴一次函数y=kx+4﹣4k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,∵一次函数y=kx+4﹣4k(k≠0)过C点,并且y随x的增大而增大时,∴k>0,P点的纵坐标要小于4,横坐标大于4,当纵坐标小于4时,∵y=,∴<4,解得:a>,则a的范围为a>1或a<.4、小亮在研究矩形的面积S与矩形的边长x,y之间的关系时,得到如表数据:x0.51 1.5234612y126■32 1.510.5结果发现一个数据被墨水涂黑了,(1)被墨水涂黑的数据为;(2)y与x的函数关系式为,且y随x的增大而;(3)如图是小亮画出的y关于x的函数图象,点B、E均在该函数的图象上,其中矩形OABC的面积记为S1,矩形ODEF的面积记为S2,请判断S1与S2的大小关系,并说明理由;(4)在(3)的条件下,DE交BC于点G,反比例函数y=的图象经过点G交AB于点H,连接OG、OH,则四边形OGBH的面积为.解:(1)从表格可以看出xy=6,∴墨水盖住的数据是6÷1.5=4;故答案为4;(2)由xy=6,得到y=,y随x的增大而减少;故答案为y=;减少;(3)S1=OA•OC=k=6,S2=OD•OF=k=6,∴S1=S2;=OA•OB=6,S△OCG=OD•OG=×2=1,S△OCG=OA•OH=×2=1,(4)∵S四边形OCBA=S四边形OCBA﹣S△OCG﹣S△OAH=6﹣1﹣1=4;∴S四边形OGBH故答案为4;5、如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.解:(1)∵AB=6,点B的坐标为(﹣6,0),∴点A(﹣12,0),如图1,过点D作DE⊥x轴于点D,则ED=AD sin∠DAB=8×=4,同理AE=4,故点D(﹣8,4),则点C(﹣2,4),由中点公式得,点M(﹣4,2);(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),∵点D′M′都在函数上,∴(a﹣8)×4=(a﹣4)×2,解得:a=12,则k=(12﹣8)×4=16,故反比例函数的表达式为=;(3)由(2)知,点M ′的坐标为(8,2),点B ′、C ′的坐标分别为(6,0)、(10,4),设点P (m ,2),点Q (s ,t );①当B ′C ′是矩形的边时,如图2,求解的矩形为矩形B ′C ′PQ 和矩形B ′C ′Q ′P ′,过点C ′作C ′H ⊥l 交于点H ,C ′H =4﹣2=2,直线B ′C ′的倾斜角为60°,则∠M ′PC ′=30°,PH =C ′H ÷tan ∠M ′PC ′=2=6,故点P 的坐标为(16,2),由题意得:点P 、Q ′关于点C ′对称,由中点公式得,点Q 的坐标为(12,﹣4);同理点Q 、Q ′关于点M ′对称,由中点公式得,点Q ′(4,6);故点Q 的坐标为:(12,﹣4)或(4,6);②当B ′C ′是矩形的对角线时,∵B ′C ′的中点即为PQ 的中点,且PQ =B ′C ′,∴,解得:,,故点Q 的坐标为(4,2)或(12,2);综上,点Q的坐标为:(12,﹣4)或(4,6)或(4,2)或(12,2).6、已知,在直角坐标系中,平行四边形OABC的顶点A,C坐标分别为A(2,0),C(﹣1,2),反比例函数y=的图象经过点B(m≠0)(1)求出反比例函数的解析式(2)将▱OABC沿着x轴翻折,点C落在点D处,作出点D并判断点D是否在反比例函数y=的图象上(3)在x轴是否存在一点P使△OCP为等腰三角形?若存在,写出点P的坐标;若不存在,请说明理由.解:(1)分别过点C、B作x轴的垂线,垂足分别为:E、F,∵四边形OABC为平行四边形,则∠COE=∠BAF,CO=AB,∴Rt△COE≌Rt△BAF,∴AF=OE=1,故点B(1,2),故m=2,则反比例函数表达式为:y=;(2)翻折后点D的坐标为:(﹣1,﹣2),∵(﹣1)•(﹣2)=2,∴D在反比例函数y=的图象上;(3)当OP=OC时,点P(,0);当OC=PC时,点P(﹣2,0);当OP=PC时,设点P(m,0),则m2+(m+1)2+4,解得:m=﹣2.5;综上,点P的坐标为:(,0)或(﹣2,0)或(﹣2.5,0).7、如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,4).反比例函数y=(x>0)的图象经过点D,点P是一次函数y=kx+4﹣4k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+4﹣4k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+4﹣4k(k≠0),当随x的增大而增大时,确定点P横坐标的取值范围(不必写过程).解:(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(4,1),C(4,4),∴BC⊥x轴,AD=BC=3,而A点坐标为(1,0),∴点D的坐标为(1,3).∵反比例函数y=(x>0)的函数图象经过点D(1,3),∴3=,∴m=3,∴反比例函数的解析式为y=;(2)当x=4时,y=kx+4﹣4k=4k+4﹣4k=4,∴一次函数y=kx+4﹣4k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,∵一次函数y=kx+4﹣4k(k≠0)过C点,并且y随x的增大而增大时,∴k>0,P点的纵坐标要小于4,横坐标大于4,当纵坐标小于4时,∵y=,∴<4,解得:a>,则a的范围为a>1或a<.8、如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB.过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,则的值为.解:过点A作AH⊥x轴,垂足为H,AH交OC于点M,如图,∵OA=AB,AH⊥OB,∴OH=BH=OB,设OH=BH=a,则A(a,),C(2a,),∵AH∥BC,∴MH=BC=,∴AM=AH﹣MH=﹣=,∵AM∥BC,∴△ADM∽△BDC,∴==.9、如图,点A(1,3)为双曲线上的一点,连接AO并延长与双曲线在第三象限交于点B,M为y轴正半轴上一点,连接MA并延长与双曲线交于点N,连接BM、BN,已知△MBN的面积为,则点N 的坐标为.解:连接ON,∵点A(1,3)为双曲线上,∴k=3,即:y=;由双曲线的对称性可知:OA=OB,=S△MAO,S△NBO=S△NAO,∴S△MBO=S△BMN=,∴S△MON设点M(0,m),N(n,),∴mn=,即,mn=,①设直线AM的关系式为y=kx+b,将M(0,m)A(1,3)代入得,b=m,k=3﹣m,∴直线AM的关系式为y=(3﹣m)x+m,把N(n,)代入得,=(3﹣m)×n+m,②由①和②解得,n=,当n=时,=,∴N(,),故答案为:(,).10、如图,等边△OAB的边AB与y轴交于点C,点A是反比例函数y=(x>0)的图象上一点,且BC=2AC,则等边△OAB的边长为.解:设点A(a,),等边三角形的边长为b,过点A作x轴的平行线交y轴于点M,过点B作y轴的平行线交AM的延长线于点E,过点O作ON⊥AB 与点N,则AN=AB=b,ON=b,∵AN=b,AC=b,∴CN=AN﹣AC=b,∵CM∥BE,∴=,即=,则AE=3a,∵∠OCN=∠ACM=∠ABE,∴△ONC∽△AEB,∴=,即=,解得:BE=a,AB2=AE2+BE2,则b2=9a2+a2=a2,∵点A(a,),∴AB2=a2+=a2,解得:a2=3,b=2,故答案为2.11、如图,直线y=mx﹣1交y轴于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣(x<0)上,D点在双曲线y=(x>0)上,则k的值为.解:∵A(﹣1,a)在双曲线y=﹣(x<0)上,∴a=2,∴A(﹣1,2),∵点B在直线y=mx﹣1上,∴B(0,﹣1),∴AB==,∵四边形ABCD是正方形,∴BC=AB=,设C(n,0),∴=,∴n=﹣3(舍)或n=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),∵D点在双曲线y=(x>0)上,∴k=2×3=6,故答案为:6.12、如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转α度,tanα=,交反比例函数图象于点C,则点C的坐标为.解:如图,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△AEF∽△FDB,∵tanα=,∴==,∴设BD=a,则EF=2a,∵点A(2,3)和点B(0,2),∴DF=2﹣2a,OD=OB﹣BD=2﹣a,∴AE=2DF=4﹣4a,∵AE+OD=3,∴4﹣4a+2﹣a=3,解得a=,∴F(,),设直线AF的解析式为y=kx+b,则,解得,∴y=x+,∵点A在反比例函数y=的图象上,∴y=,解方程组,可得或,∴C(﹣,﹣),故答案为(﹣,﹣).13、如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为.解:作AD⊥x轴于D,CE⊥x轴于E,连接OC,如图,∵AB过原点,∴点A与点B关于原点对称,∴OA=OB,∵△CAB为等腰三角形,∴OC⊥AB,∴∠ACB=120°,∴∠CAB=30°,∴OA=OC,∵∠AOD+∠COE=90°,∠AOD+∠OAD=90°,∴∠OAD=∠COE,∴Rt△AOD∽Rt△OCE,∴=()2=()2=3,=×|﹣6|=3,而S△OAD=1,∴S△OCE即|k|=1,而k>0,∴k=2.14、以矩形OABC的顶点O为坐标原点建立平面直角坐标系,使点A、C分别在x、y轴的正半轴上,双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,过OC边上一点F,把△BCF沿直线BF 翻折,使点C落在矩形内部的一点C′处,且C′E∥BC,若点C′的坐标为(2,4),则tan∠CBF的值为.解:连接OD、OE.设BC=BC′=m,则EC′=m﹣2.∵CD=BD,==S矩形ABCD,∴S△CDO==S△CDO=S矩形ABCD,∵S△AOE∴AE=EB,∵C′(2,4),∴AE=EB=4,在Rt△BEC′中,∵BC′2=BE2+EC′2,∴m2=42+(m﹣2)2,∴m=5,∴E(5,4),∴B(5,8),则BC=5,延长EC′交y轴于G,则EG⊥y轴,∴C′G=2,CG=4,∴在Rt△FGC′中,C′F2=C′G2+FG2,即(4﹣FG)2=22+FG2,∴FG=,∴CF=4﹣=,∴tan∠CBF===.故答案是:.15、如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为;解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(﹣4,0),∴OA=4,∵AB=5,∴OB==3,在△ABO和△BCE中,,∴△ABO≌△BCE(AAS),∴OA=BE=4,CE=OB=3,∴OE=BE﹣OB=4﹣3=1,∴点C的坐标为(3,1),∵反比例函数y=(k≠0)的图象过点C,∴k=xy=3×1=3,∴反比例函数的表达式为y=.故答案为:y=.16、如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,=S△ABD+S△ADC+S△ODC,∵S梯形OBAC∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.17、如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是.解:作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,由直线y=﹣x+2可知A点坐标为(2,0),B点坐标为(0,2),OA=OB=2,∴△AOB为等腰直角三角形,∴AB=2,∴EF=AB=,∴△DEF为等腰直角三角形,∴FD=DE=EF=1,设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故答案为.。
一次函数与反比例函数的综合四边形1,如图12,四边形ABCD 是平行四边形,点(10)(31)(33)A B C ,,,,,.反比例函数(0)my x x=>的图象经过点D ,点P 是一次函数33(0)y kx k k =+-≠的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数33(0)y kx k k =+-≠的图象一定过点C ;(3)对于一次函数33(0)y kx k k =+-≠,当y x 随的增大而增大时,确定点P 横坐标的取值范围(不必写出过程). 2,看图说故事。
请你编一个故事,使故事情境中出现的一对变量x 、y 满足图示的函数关系式,要求:①指出x 和y 的含义;②利用图中数据说明这对变量变化过程的实际意义,其中需设计“速度”这个量3,如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数(k ≠0)在第一象限内的图象经过点D 、E ,且tan ∠BOA=.(1)求边AB 的长;(2)求反比例函数的解析式和n 的值;(3)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正半轴交于点H 、G ,求线段OG 的长.4.如图5,双曲线)0(>=k xky 与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线,已知点P 坐标为(1,3),则图中阴影部分的面积为 .5,如图9,在平面直角坐标系中,直线l :y =-2x +b (b ≥0)的位置随b 的不同取值而变化. (1)已知⊙M 的圆心坐标为(4,2),半径为2.当b = 时,直线l :y =-2x +b (b ≥0)经过圆心M : 当b = 时,直线l :y = -2x +b (b ≥0)与OM 相切:(2)若把⊙M 换成矩形ABCD ,其三个顶点坐标分别为:A (2,0)、BC 6,O )、C (6,2). 设直线l 扫过矩形ABCD 的面积为S ,当b 由小到大变化时,请求出S 与b 的函数关系式,6,如图,在平面直角坐标系中有Rt △ABC ,∠A =90°,AB =AC ,A (-2,0)、B (0,1)、C (d ,2)。
专题4:反比例函数与几何图形结合方法点睛反比例函数与几何图形结合常涉及以下几个方面:1.求反比例函数与一次函数的解析式:(1)找到或求出反比例函数图象上一点的坐标,利用待定系数法求解;(2)找到或求出一次函数图象上两点的坐标,再利用待定系数法求解.注:当已知一次函数与反比例数函数图象上的一个交点A的坐标及交点B的横(纵)坐标,确定两个函数的解析式时,先利用点A的坐标求得反比例函数解析式,再由反比例函数解析式求得点B的坐标,再利用A,B两点的坐标确定一次函数解析式.2、(1)给出图形面积求点的坐标:根据解析式用只含一个参数的代数式表示该点的坐标,列出关于该图形面积的等式进行求解.(2)点的存在性问题:涉及线段和面积的关系,图形的判定等,对这类题应观察图形,结合问题,建立数学模型,按照题意列出等量关系式进行求解.典例分析例1:(2022达州中考)如图,一次函数1y x =+与反比例函数k y x=的图象相交于(,2)A m ,B 两点,分别连接OA ,OB .(1)求这个反比例函数的表达式;(2)求AOB 的面积;(3)在平面内是否存在一点P ,使以点O ,B ,A ,P 为顶点的四边形为平行四边形?若存在,请直接写出点P专题过关1.(2022西宁中考)如图,正比例函数4y x =与反比例函数()0k y x x=>的图象交于点(),4A a ,点B 在反比例函数图象上,连接AB ,过点B 作BC x ⊥轴于点()2,0C .(1)求反比例函数解析式;(2)点D 在第一象限,且以A ,B ,C ,D 为顶点的四边形是平行四边形,请直接写出....点D 的坐标.2.(2022绵阳中考)如图,一次函数1y k x b =+与反比例函数2k y x=在第一象限交于(2,8)M 、N 两点,NA 垂直x 轴于点A ,O 为坐标原点,四边形OANM 的面积为38.(1)求反比例函数及一次函数的解析式;(2)点P 是反比例函数第三象限内的图象上一动点,请简要描述使PMN 的面积最小时点P 的位置(不需证明),并求出点P 的坐标和PMN3.(2022眉山中考)已知直线y x =与反比例函数k y x=的图象在第一象限交于点(2,)M a .(1)求反比例函数的解析式;(2)如图,将直线y x =向上平移b 个单位后与k y x=的图象交于点(1,)A m 和点(,1)B n -,求b 的值;(3)在(2)的条件下,设直线AB 与x 轴、y 轴分别交于点C ,D ,求证:AOD BOC ≌△△.4.(2022衡阳中考)如图,反比例函数myx=的图象与一次函数y kx b=+的图象相交于()3,1A,()1,B n-两点.(1)求反比例函数和一次函数的关系式;(2)设直线AB交y轴于点C,点M,N分别在反比例函数和一次函数图象上,若四边形OCNM是平行四边形,求点M的坐标.A,B两点.5.(2022常德中考)如图,已知正比例函数1y x=与反比例函数2y的图象交于()2,2y y<时x的取值范围;(1)求2y的解析式并直接写出12(2)以AB为一条对角线作菱形,它的周长为,在此菱形的四条边中任选一条,求其所在直线的解析式.6.(2022绥化中考)在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点,且与反比例函数22k y x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式;(2)当21y y >时,求x 的取值范围;(3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.7.(2022大庆中考)已知反比例函数k y x =和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)k y x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.8.(2022湘潭中考)已知()3,0A 、()0,4B 是平面直角坐标系中两点,连接AB .(1)如图①,点P 在线段AB 上,以点P 为圆心的圆与两条坐标轴都相切,求过点P 的反比例函数表达式;(2)如图②,点N 是线段OB 上一点,连接AN ,将AON 沿AN 翻折,使得点O 与线段AB 上的点M 重合,求经过A 、N 两点的一次函数表达式.9.(2022成都中考)如图,在平面直角坐标系xOy 中,一次函数26y x =-+的图象与反比例函数ky x=的图象相交于(),4A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P 是第三象限内的反比例函数图象上一点,ABPQ 是完美筝形时,求P ,Q 两点的坐标.10.(2022河南西华二模)如图,反比例函数(0)my x x=>的图象与一次函数y kx b =+的图象交于(14)B ,和(1)C n ,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象直接写出不等式(0)mkx b x x+> 的解集;(3)将直线BC 向下平移5个单位长度得到直线l ,已知点P ,Q 分别为x 轴、直线l 上的动点,当PC PQ +的值最小时,请直接写出点P 的坐标.11.(2022河南西华一模)在平面直角坐标系xOy 中,函数()0ky x x=>的图象经过点()2,3A ,()6,B a ,直线l :y =mx +n 经过A ,B 两点,直线l 分别交x 轴,y 轴于D ,C 两点.(1)求反比例函数与一次函数的解析式;(2)在y 轴上是否存在一点E ,使得以A ,C ,E 为顶点的三角形与△CDO 相似?若存在,请求出点E 的坐标;若不存在,请说明理由.12.(2022河南长垣一模)如图,在平面直角坐标系中,直线y x =与反比例函数1y x=(x >0)的图象交于点A ,将直线y x =沿y 轴向上平移k 个单位长度,交y 轴于点B ,交反比例函数图象于点C ,且13BC OA =.AD ⊥y 轴于点D 、CE ⊥y 于点E .(1)求证:△BCE ∽△OAD ;(2)求点A 和点C 的坐标;(3)求k 值.13.(2022河南虞城二模)如图,点A 为直线y =3x 上位于第一象限的一个动点,过点A 作AB ⊥x 轴于点B ,将点B 向右平移2个单位长度到点C ,以AB ,BC 为边构造矩形ABCD ,经过点A 的反比例函数()0ky x x=>的图象交CD 于点M .(1)若B(1,0),求点M 的坐标;(2)连接AM ,当AM ⊥OA 时,求点A 的坐标.14.(2022河南商城二模)如图,一次函数2y x =与反比例函数(0)ky k x=>的图象交于点A ,B ,点P 在以点(2,0)C -为圆心,1为半径的C 上,Q 是AP 的中点,OQ 长的最大值为32时.(1)试确定反比例函数ky x=的表达式.(2)C 与x 轴在点C 的左侧交于点M ,请直接写出劣弧MP 的长是___________.(sin 310.52︒≈,sin 400.64︒≈,sin530.8︒≈.)15.(2022新乡二模)如图,在平面直角坐标系中,正比例函数为11y k x =和反比例函数22k y x=图像交于A ,B 两点,矩形OAEC 的边EC 交x 轴于点D ,AD ⊥x 轴,点D 的坐标为(2,0),且AE=ED .(1)求这两个函数的解析式;(2)点P 为y 轴上的一个动点,当PE-PA 的值最大时,求点P 的坐标.16.(2022河南西平一模)如图,一次函数11y k x b =+经过点()4,0A ,()0,4B ,与反比例函数()220k y x x=>的图象交于点()1,C n ,D 两点.(1)求反比例函数和一次函数的解析式;(2)结合函数图象,直接写出当210k k x b x<+≤时x 的取值范围;(3)点P 在x 轴上,是否存在PCD 是以CD 为腰的等腰三角形,若存在,请直接写出点P 的坐标;若不存在,说明理由.17.(2022河南天一大联考)如图,一次函数y =k 1x+b 的图象与反比例函数y 2k x=的图象交于点A (m ,2),B (﹣1,4),与y 轴交于点C ,连接OA ,OB .(1)求反比例函数和一次函数的解析式;(2)求△OAB 的面积;(3)若点P 在y 轴上,且BP 12=OA ,请直接写出点P 的坐标.18.(2022河南实验中学一模)如图,在矩形OABC中,AB=2,BC=4,D是AB边的中点,反比例函数yk x(x>0)的图象经过点D,与BC边交于点E.(1)求反比例函数的表达式及点E的坐标;(2)若点P在y轴上,当△PDE的周长最小时,求出此时点P的坐标.19.(2022河南虞城二模)如图,一次函数142y x=-+交反比例函数(0)ky xx=>于A,B两点,过点A作AC x⊥轴于点C,AOC△的面积为3.(1)求反比例函数的解析式;(2)D为y轴上一个动点,当DA DB+有最小值时,求点D的坐标.20.(2022河南夏邑一模)在平面直角坐标系xOy 中,函数(0)k y x x=>的图象经过点(2,3),(6,)A B a ,直线:l y mx n =+经过A ,B 两点.(1)求反比例函数与一次函数的解析式,并在下面的平面直角坐标系中描绘出一次函数的大致图象.(2)当直线l 向下平移b 个单位时,与(0)k y x x=>的图象有唯一交点,求b 的值.(3)若直线AB 分别交x 轴,y 轴于D ,C 两点,在y 轴上是否存在一点Q ,使得ACQ 与CDO 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.21.(2022南阳方城二模)如图,在矩形OABC 中,2,4AB BC ==,点D 是边AB 的中点,反比例函数1(0)k y x x=>的图象经过点D ,交BC 边于点E ,直线DE 的解析式为2(0)y mx n m =+≠.(1)求反比例函数1(0)k y x x=>的解析式和直线DE 的解析式;(2)在y 轴上找一点P ,使PDE △的周长最小,求出此时点P 的坐标;(3)在(2)的条件下,PDE △的周长最小值是______.22.(2022洛阳一模)如图,反比例函数()0k y k x =≠的图象与正比例函数32y x =-的图象相交于(),3A a ,B 两点.(1)求k 的值及点B 的坐标;(2)请直接写出不等式32k x x >-的解集;(3)已知AD x ∥轴,以AB 、AD 为边作菱形ABCD ,求菱形ABCD 的面积.23.(2022开封二模)如图,平面直角坐标系中,反比例函数()0n y n x=≠与一次函数()0y kx b k =+≠的图像相交于点()1,A m ,()3,1B --两点.(1)求反比例函数与一次函数的解析式;(2)直接写出n kx b x+>的解集.(3)已知直线AB 与y 轴交于点C ,点(),0P t 是x 轴上一动点,作PQ ⊥x 轴交反比例函数图像于点Q ,当以C ,P ,Q ,O 为顶点的四边形的面积等于2时,求t 的值.24.(2022鹤壁一模)如图,在矩形ABCO 中,84AB BC ==,,点D 是边AB 的中点,反比例函数11(0)k y x x=<的图象经过点D ,交BC 边于点E ,直线DE 的解析式为()2220y k x b k =+≠.(1)求反比例函数和直线DE 的解析式.(2)在x 轴上找一点P ,使PDE △的周长最小,求出此时点P 的坐标.(3)在(2)的条件下,PDE △的周长最小值是_________.25.(2022周口扶沟一模)如图,正比例函数y x =的图象与反比例函数k y x=(0x >)的图象交于点()1,A a ,在ABC 中,90ACB ∠=︒,CA CB =,点C 坐标为()2,0-.(1)求k 的值;(2)求AB 所在直线的解析式.26.(2022信阳一模)如图,直线y=-2x+b与x轴、y轴分别相交于点A,B,以线段AB为边在第一象限作正方形ABCD,已知(1)求直线AB的解析式;(2)求点D的坐标,并判断点D是否在双曲线y=12x,说明理由.27.(2022雅安中考)如图,在平面直角坐标系中,等腰直角三角形ABO的直角顶点A的坐标为(m,2),点B在x轴上,将△ABO向右平移得到△DEF,使点D恰好在反比例函数y=8x(x>0)的图象上.(1)求m的值和点D的坐标;(2)求DF所在直线的表达式;(3)若该反比例函数图象与直线DF的另一交点为点G,求S△EFG.28.(2022盘锦中考)如图,平面直角坐标系xOy 中,四边形OABC 是菱形,点A 在y 轴正半轴上,点B 的坐标是(4,8)-,反比例函数(0)k y x x=<的图象经过点C .(1)求反比例函数的解析式;(2)点D 在边CO 上,且34CD DO =,过点D 作DE x 轴,交反比例函数的图象于点E ,求点E 的坐标.29.(2022天门中考)(7分)如图,OA=OB,∠AOB=90°,点A,B分别在函数y=(x>0)和y=(x >0)的图象上,且点A的坐标为(1,4).(1)求k1,k2的值;(2)若点C,D分别在函数y=(x>0)和y=(x>0)的图象上,且不与点A,B重合,是否存在点C,D,使得△COD≌△AOB.若存在,请直接写出点C,D的坐标;若不存在,请说明理由.30.(2022恩施中考)如图,在平面直角坐标系中,O 为坐标原点,已知∠ACB=90°,A(0,2),C(6,2).D 为等腰直角三角形ABC 的边BC 上一点,且S △ABC =3S △ADC .反比例函数y 1=kx(k≠0)的图象经过点D .(1)求反比例函数的解析式;(2)若AB 所在直线解析式为()20y ax b a =+≠,当12y y >时,求x 的取值范围.31.(2022河南中考)如图,反比例函数()0ky x x=>的图像经过点()2,4A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B 铅笔作图)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD AB ∥.32.(2022荆州中考)小华同学学习函数知识后,对函数()()2410410x x y x x x⎧-<≤⎪=⎨-≤->⎪⎩或通过列表、描点、连线,画出了如图1所示的图象.x…-4-3-2-134-12-14-01234…y (1)4324941140-4-243--1…请根据图象解答:(1)【观察发现】①写出函数的两条性质:______;______;②若函数图象上的两点()11,x y ,()22,x y 满足120x x +=,则120y y +=一定成立吗?______.(填“一定”或“不一定”)(2)【延伸探究】如图2,将过()1,4A -,()4,1B -两点的直线向下平移n 个单位长度后,得到直线l 与函数()41y x x=-≤-的图象交于点P ,连接PA ,PB .①求当n =3时,直线l 的解析式和△PAB 的面积;②直接用含....n .的代数式表示......△PAB 的面积.33.(2022牡丹江中考)如图,在平面直角坐标系中,四边形ABCD ,A 在y 轴的正半轴上,B ,C 在x 轴上,AD//BC ,BD 平分ABC ∠,交AO 于点E ,交AC 于点F ,CAO DBC ∠=∠.若OB ,OC 的长分别是一元二次方程2560x x -+=的两个根,且OB OC >.请解答下列问题:(1)求点B ,C 的坐标;(2)若反比例函数()0ky k x=≠图象的一支经过点D ,求这个反比例函数的解析式;(3)平面内是否存在点M ,N (M 在N 的上方),使以B ,D ,M ,N 为顶点的四边形是边长比为2:3的矩形?若存在,请直接写出在第四象限内点N 的坐标;若不存在,请说明理由.34.(2022驻马店六校联考三模)如图,在平面直角坐标系中,反比例函数kyx(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.35.(2022周口川汇区一模)如图,正方形ABCD的边AB在x轴上,点D的坐标为(2,2),点M是AD的中点,反比例函数ykx的图象经过点M,交BC于点N.(1)求反比例函数的表达式;(2)若点P是x轴上的一个动点,求PM+PN的最小值.36.(2022郑州外国语一模)如图,点()4,B a 是反比例函数()120y x x=>图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数()0ky x x=>的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,连接BF .(1)求k 的值;(2)求BDF 的面积;(3)设直线DE 的解析式为1y k x b =+,请结合图像直接写出不等式1kk x b x+<的解集______.37.(2022郑州二模)如图1,点A、B是双曲线y=kx(k>0)上的点,分别经过A、B两点向x轴、y轴作垂线段AC、AD、BE、BF,AC和BF交于点G,得到正方形OCGF(阴影部分),且S阴影=1,△AGB的面积为2.(1)求双曲线的解析式;(2)在双曲线上移动点A和点B,上述作图不变,得到矩形OCGF(阴影部分),点A、B在运动过程中始终保持S阴影=1不变(如图2),则△AGB的面积是否会改变?说明理由.38.(2022信阳三模)如图,在矩形OABC中,BC=4,OC,OA分别在x轴、y轴上,对角线OB,AC交于点E;过点E作EF⊥OB,交x轴于点F.反比例函数kyx=(x>0)的图像经过点E,且交BC于点D,已知S△OEF=5,CD=1.(1)求OF的长;(2)求反比例函数的解析式;(3)将△OEF沿射线EB个单位长度,得到△O'E'F',则EF的对应线段E'F'的中点(填“能”或“不能”)落在反比例函数kyx=(x>0)的图上.39.(2022河南新野一模)如图,()()4,30P m m m ->是双曲线12y x =-上一点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线k y x=于E 、F 两点.(1)求直线AB 的解析式;(2)若12BFBP =,求k 的值和EF 的长.40.(2022平顶山二模)如图,四边形ABCD,EFGH均为菱形,其中点E,A,B,F四点均在x轴上,点D,H在y轴上,EH∥AD.双曲线y=kx(x>0)的图象过点C(5,4),交边GH于点P(103,a).(1)填空:k=______,a=______;(2)求菱形EFGH的面积.41.(2022南阳卧龙一模)如图,已知在平面直角坐标系中,点(3,4)B 在反比例函数(0,0)k y k x x=>>的图象上,过点B 作BA x ⊥轴于点A ,连接OB ,将OAB 向右平移,得到,'''''O A B O B 交双曲线于点(3,)C a a .(1)求k ,a 的值;(2)求OAB 向右平移的距离;(3)连接,BC OC ,则OBC 的面积为____________.42.(2022洛阳伊川一模)如图,已知点()0,1A 在y 轴上,点()10B ,在x 轴上,以AB 为边在第一象限内作正方形ABCD ,此时反比例函数(0)k y k x=≠在第一象限内的图象恰好经过点C ,D .(1)直接写出点D 的坐标和反比例函数的表达式;(2)将正方形ABCD 绕点B 按顺时针方向旋转,当点C 的对应点C '落在x 轴上时,判断点D 的对应点D ′是否落在反比例函数k y x =的图象上,并说明理由.43.(2022洛阳二模)如图,在平面直角坐标系中,ABCD 的顶点分别为()1,2A ,()4,2B ,()7,5C ,曲线():0k G y x x=>.(1)求点D 的坐标;(2)当曲线G 经过ABCD 的对角线的交点时,求k 的值;(3)若曲线G 刚好将ABCD 边上及其内部的“整点”(横、纵坐标都为整数的点)分成数量相等的两部分,则直接写出k 的取值范围是______.44.(2022河南林州一模)如图,在平面直角坐标系中,正方形ABCD 的边BC 在x 轴上,点A 坐标为()2,4,点M 是AB 的中点,反比例函数k y x=的图象经过点M ,交CD 于点N .(1)求反比例函数的表达式;(2)若反比例函数图象上的一个动点(),P m n 在正方形ABCD 的内部(含边界),求POC △面积的最小值.45.(2022河南兰考一模)如图,在平面直角坐标系中,ABCD 的顶点分别为(1,2),(4,2),(7,5)A B C ,曲线(0)k y k x=>.(1)当曲线经过ABCD 的对角线的交点时,求k 的值.(2)若曲线刚好将ABCD 边上及其内部的“整点”(横、纵坐标都为整数的点)分成数量相等的两部分,求k 的取值范围.46.(2022河南兰考二模)如图,在矩形OABC 中,2AB =,4BC =,D 是AB 边的中点,反比例函数()0k y x x=>的图象经过点D ,与BC 边交于点E .(1)求反比例函数的表达式及点E 的坐标;(2)若点P 在y 轴上,当△PDE 的周长最小时,直接写出△PDE 的面积.47.(2022河南滑县一模)如图,平行四边形OABC 的顶点A ,C 都在反比例函数y k x=(k >0)的图象上,已知点B 的坐标为(8,4),点C 的横坐标为2.(1)求反比例函数y k x=(k >0)的解析式;(2)求平行四边形OABC 的面积S .48.(2022河南邓州一模)如图,在平面直角坐标系中,矩形ABCD 的顶点A (1,0),D (0,2),反比例函数k y x =的图象经过了矩形的顶点B ,且1tan 2ABD ∠=.(1)求反比例函数表达式;(2)动手画直线OB ,记为y mx =,结合图象直接写出关于x 的不等式0k mx x ->的解集.。
2023年中考数学高频考点突破——反比例函数与四边形综合1.如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+b的图象分别交于A(1,3)、B两点.(1)求m、b的值;(2)若点M是反比例函数图象上的一动点,直线MC⊥x轴于C,交直线AB于点N,MD⊥y轴于D,NE⊥y轴于E,设四边形MDOC、NEOC的面积分别为S1、S2,S=S2﹣S1,求S的最大值.2.已知:如图所示,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x 轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,求M点坐标.3.如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.4.如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点Q的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.5.如图,已知点A在函数(x>0)的图象上,点B在函数(x<0)的图象上,点C在函数(x<0)的图象上,且AB∥x轴,BC∥y轴,四边形ABCD是以AB、BC为一组邻边的矩形.(1)若点A的坐标为(,2),求点D的坐标;(2)若点A在函数(x>0)上移动,矩形ABCD的面积是否变化?如果不变,求出其面积;(3)若矩形ABCD四个顶点A、B、C、D分别在>0,x>0),<0,x<0),>0,x<0),<0,x>0)上,请直接写出k1、k2、k3、k4满足的数量关系式.6.如图,一次函数y=x﹣1的图象与反比例函数y=(x>0)的图象交于点B(3,a),与x轴交于点A.点C在反比例函数y=(x>0)的图象上的一点,CD⊥x轴,垂足为D,CD与AB交于点E,OA=AD.(1)求a,k的值;(2)若点P为x轴上的一点,求当PB+PC最小时,点P的坐标;(3)F是平面内一点,是否存在点F使得以A、B、C、F为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.7.如图,已知,A(0,4),B(﹣3,0),C(2,0),过A作y轴的垂线交反比例函数的图象于点D,连接CD,AB∥CD.(1)证明:四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)求sin∠DAC的值.8.如图,直线y=x与双曲线y=(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是x轴上的点,Q是平面内一点,是否存在点P,Q,使得A,B,P,Q为顶点的四边形是矩形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.9.如图,在△AOB中,∠OAB=90°,AO=AB,OB=2.一次函数交y轴于点C(0,﹣1),交反比例函数于A、D两点.(1)求一次函数和反比例函数的解析式;(2)求△OAD的面积;(3)问:在直角坐标系中,是否存在一点P,使以O,A,D,P为顶点的四边形是平行四边形?若存在,直接写出点PP的坐标;若不存在,请说明理由.10.如图在平面直角坐标系中,已知直线y=﹣x+2及双曲线y=(k>0,x>0).直线交y轴于A点,x轴于B点,C、D为双曲线上的两点,它们的横坐标分别为a,a+m (m>0).(1)如图①连接AC、DB、CD,当四边形CABD为平行四边形且a=2时,求k的值.(2)如图②过C、D两点分别作CC′∥y轴∥DD'交直线AB于C',D',当CD∥AB 时,①对于确定的k值,求证:a(a+m)的值也为定值.②若k=6,且满足m=a﹣4+,求d的最大值.11.如图1,已知A(﹣1,0),B(0,﹣2),平行四边形ABCD的边AD、BC分别与y轴、x轴交于点E、F,且点E为AD中点,双曲线y=(k为常数,k≠0)经过C、D 两点.(1)求k的值;(2)如图2,点G是y轴正半轴上的一个动点,过点G作y轴的垂线,分别交反比例函数y=(k为常数,k≠0)图象于点M,交反比例函数y=﹣(x<0)的图象于点N,当FM=FN时,求G点坐标;(3)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求出满足要求的所有点Q的坐标.12.综合与探究如图1,反比例函数的图象y=﹣经过点A,点A的横坐标是﹣2,点A关于坐标原点O的对称点为点B,作直线AB.(1)判断点B是否在反比例函数y=﹣的图象上,并说明理由;(2)如图1,过坐标原点O作直线交反比例函数y=﹣的图象于点C和点D,点C 的横坐标是4,顺次连接AD,DB,BC和CA.求证:四边形ACBD是矩形;(3)已知点P在x轴的正半轴上运动,点Q在平面内运动,当以点O,B,P和Q为顶点的四边形为菱形时,请直接写出此时点P的坐标.13.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数(k>0,x>0)的图象上,点D的坐标为(4,3).设AB所在直线解析式为y=ax+b(a≠0).(1)求反比例和一次函数解析式;(2)若将菱形ABCD沿x轴正方向平移m个单位,在平移中若反比例函数图象与菱形的边AD始终有交点,求m的取值范围;(3)在直线AB上是否存在M、N两点,使以MNOD四点的四边形构成矩形?若不存在,请说明理由,若存在直接求出M、N(点M在点N的上方)两点的坐标.14.如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象与反比例函数y=(k >0)的图象交于A、B两点(点A在点B左边),交x轴于点C,延长AO交反比例函数y=(k>0)的图象于点E,点F为第四象限内一点,∠AFE=90°,连接OF.(1)填空:FO AO(填“>”、“=”或“<”);(2)连接CF,若AF平分∠OAC.①若△AFC的面积为10,求k的值;②连接BF,四边形AOFB能否为菱形?若能,直接写出符合条件的k的值;若不能,说明理由.15.如图1,在平面直角坐标系中,直线l:y=﹣2x+2与x轴交于点A,将直线l绕着点A 顺时针旋转45°后,与y轴交于点B,过点B作BC⊥AB,交直线l于点C.(1)求点A和点C的坐标;(2)如图2,将△ABC以每秒3个单位的速度沿y轴向上平移t秒,若存在某一时刻t,使A、C两点的对应点D、F恰好落在某反比例函数的图象上,此时点B对应点E,求出此时t的值;(3)在(2)的情况下,若点P是x轴上的动点,是否存在这样的点Q,使得以P、Q、E、F四个点为顶点的四边形是菱形?若存在,请直接写出符合题意的点Q的坐标;若不存在,请说明理由.16.如图,一次函数y1=x+1的图象与反比例函数y2=的图象相交于点A(m,2),B 两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)请根据函数图象的轴对称性,直接写出点B的坐标为;当y1>y2,则自变量x的取值范围是;(3)在平面直角坐标系内,是否存在一点P,使以点O,A,B,P为顶点的四边形为菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.17.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=的第一象限内的图象上,OA=6,OC=10,动点P在x轴的上方,且满足S=.△PAO(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PA,求PO+PA的最小值;(3)若点Q是平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.18.如图,在平面直角坐标系中,四边形ABCO为矩形,B(5,4),D(﹣3,0),点P 从点A出发,以每秒1cm的速度沿AB方向向终点B运动;点Q从点D出发,以每秒2cm的速度沿DC方向向终点C运动,已知动点P、Q同时出发,当点P、Q有一点到达终点时,P、Q都停止运动,设运动时间为t秒.(1)用含t的代数式表示:BP=cm,CQ=cm;(2)函数y=的图象在第一象限内的一支双曲线经过点P,且与线段BC交于点M,若出△POM的面积为7.5cm2,试求此时t的值;(3)点P、Q在运动过程的中,是否存在某一时刻t,使坐标平面上存在点E,以P、Q、C、E为顶点的四边形刚好是菱形?若存在,请求出所有满足条件的t的值,若不存在,请说明理由.19.如图,在平面直角坐标系中,一次函数y=kx+b的图象与双曲线交于点M(﹣4,m)、N(n,﹣4),与x轴交于A.(1)求k、b的值.(2)①将直线y=kx+b向上平移4个单位分别交x轴、y轴于点B、C,画出这条直线.②P是平面直角坐标系中的一点,若以A、B、C、P为顶点的四边形是平行四边形,求P点的坐标.20.如图1,在平面直角坐标系中,菱形ABCD的顶点D在第二象限,其余顶点都在第一象限,AB∥x轴,过点A作AE⊥CD,垂足为E.(1)若点A(6,8),点E(6,14).①求AO的长;②线段MN在y轴上移动(点M在点N的上方),MN=2,当四边形AEMN的周长最小时,求点M的坐标;(2)如图2,反比例函数y=(x>0)的图象经过点E,与边AB交于点F,AO⊥AD,AO=AB,DE=4CE,连结OE,OF,EF,且S△EOF=.求反比例函数的表达式.参考答案与试题解析1.【解答】解:(1)把A(1,3)的坐标分别代入y=、y=﹣x+b,∴m=xy=3,3=﹣1+b,∴m=3,b=4.(2)由(1)知,反比例函数的解析式为y=,一次函数的解析式为y=﹣x+4,∵直线MC⊥x轴于C,交直线AB于点N,∴可设点M的坐标为(x,),点N的坐标为(x,﹣x+4),其中,x>0,又∵MD⊥y轴于D,NE⊥y轴于E,∴四边形MDOC、NEOC都是矩形,∴S1=x•=3,S2=x•(﹣x+4)=﹣x2+4x,∴S=S2﹣S1=(﹣x2+4x)﹣3=﹣(x﹣2)2+1.其中,x>0,∵a=﹣1<0,开口向下,∴有最大值,∴当x=2时,S取最大值,其最大值为1.2.【解答】解:(1)∵点A(3,2)为正比例函数与反比例函数的交点,∴将x=3,y=2代入正比例解析式y=ax得:3a=2,解得:a=,将x=3,y=2代入反比例解析式y=得:=2,解得:k=6,∴正比例函数解析式为y=x,反比例函数解析式为y=;(2)过M作MN⊥x轴于N点.∵M(m,n)(0<m<3)是反比例函数图象上的一动点,且四边形OCDB为矩形,∴mn=6,BM=m,BO=DC=MN=n,又A(3,2),∴AC=2,OC=3,又mn=6,=S矩形OCDB﹣S△BMO﹣S△AOC=3n﹣mn﹣×2×3=3n﹣6=6,∴S四边形OADM解得:n=4,由mn=6,得到4m=6,解得:m=,则M坐标为(,4).3.【解答】解:(1)∵四边形OABC是面积为4的正方形,∴OA=OC=2,∴点B坐标为(2,2),将x=2,y=2代入反比例解析式得:2=,∴k=2×2=4.(2)∵正方形MABC′、NA′BC由正方形OABC翻折所得,∴ON=OM=2AO=4,∴点E横坐标为4,点F纵坐标为4.∵点E、F在函数y=的图象上,∴当x=4时,y=1,即E(4,1),当y=4时,x=1,即F(1,4).设直线EF解析式为y=mx+n,将E、F两点坐标代入,得,∴m=﹣1,n=5.∴直线EF的解析式为y=﹣x+5.4.【解答】解:(1)设正比例函数解析式为y=kx,将点M(﹣2,﹣1)坐标代入得k=,所以正比例函数解析式为y=x,同样可得,反比例函数解析式为;(2)当点Q在直线OM上运动时,设点Q的坐标为Q(m,m),=OB•BQ=×m×m=m2,于是S△OBQ=|(﹣1)×(﹣2)|=1,而S△OAP所以有,m2=1,解得m=±2,所以点Q的坐标为Q1(2,1)和Q2(﹣2,﹣1);(3)因为四边形OPCQ是平行四边形,所以OP=CQ,OQ=PC,而点P(﹣1,﹣2)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值,(8分)因为点Q在第一象限中双曲线上,所以可设点Q的坐标为Q(n,),由勾股定理可得OQ2=n2+=(n﹣)2+4,所以当(n﹣)2=0即n﹣=0时,OQ2有最小值4,又因为OQ为正值,所以OQ与OQ2同时取得最小值,所以OQ有最小值2,由勾股定理得OP=,所以平行四边形OPCQ周长的最小值是2(OP+OQ)=2(+2)=2+4.(或因为反比例函数是关于y=x对称,所以当Q在反比例函数时候,OQ最短的时候,就是反比例与y=x的交点时候,联立方程组即可得到点Q坐标)5.【解答】解:(1)∵点A的坐标为(,2),AB∥x轴,∴B点纵坐标为2,又点B在函数(x<0)的图象上,∴当y=2时,x=﹣1.5,∴B(﹣1.5,2),∵BC∥y轴,∴C点横坐标为﹣1.5,又点C在函数(x<0)的图象上,∴当x=﹣1.5时,y=﹣4,∴C(﹣1.5,﹣4).∵AD⊥y轴,∴D(0.5,﹣4).(2)若点A在函数(x>0)上移动,矩形ABCD的面积不变.理由如下:如图,设AB、CD与y轴分别交于F、G,BC、AD与x轴分别交于E、H,设A(a,),则B(﹣3a,),C(﹣3a,﹣),D(a,﹣).∵矩形ABCD的面积=矩形AFOH的面积+矩形BFOE的面积+矩形CEOG的面积+矩形DHOG的面积=1+3+6+2=12.(3)设A(t,),则B(,),C(,),D(t,),又∵点D在y=的图象上,t•=k4,∴k1k3=k2k4.6.【解答】解:(1)∵一次函数y=x﹣1的图象与反比例函数y=(x>0)的图象交于点B(3,a),∴a=3﹣1,∴a=2.∴B(3,2),∴k=3×2=6;(2)令y=0,则x﹣1=0,∴x=1.∴A(1,0),∴OA=1,∵OA=AD,∴AD=1,∴OD=2,∴点C的横坐标为2,由(1)知:k=6,∴反比例函数y=(x>0)的解析式为y=.∴y==3,∴C(2,3).设点C关于x轴的对称点C′,则C′(2,﹣3),连接BC′,交x轴于点P,如图,则此时PB+PC最小.设直线BC′的解析式为y=kx+b,∴,解得:,∴直线BC′的解析式为y=5x﹣13.令y=0,则5x﹣13=0,∴x=.∴P(,0);(3)存在点F使得以A、B、C、F为顶点的四边形是平行四边形,理由:①当四边形ABFC为平行四边形时,如图,由(2)知:AD=1,C(2,3),B(3,2),OD=2,∴CD=3,DM=2,BM=1.过点F作FG⊥x轴,过点B作MH∥x轴交CD于点M,交FG于点H,∵CD⊥x轴,FG⊥x轴,∴CD∥FG.∵四边形ABFC为平行四边形,∴AC∥FB,AC=FB.∴∠ACD=∠BFH.在△ACD和△BFH中,,∴△ACD≌△BFH(AAS),∴AD=BH=1,CD=FH=3.∴MH=MB+BH=2.∵CD⊥x轴,FG⊥x轴,MH∥x轴,∴四边形MDGH为矩形,∴GH=DM=2,DG=MH=2,∴OG=OD+DG=4,FG=FH+HG=5,∴F1(4,5);②当四边形ABCF为平行四边形时,如图,设直线y=x﹣1与y轴交与点N,则N(0,﹣1),∴ON=1.∵OA=1,∴OA=ON,∴∠OAN=45°,∴∠EAD=∠OAN=45°,∵CD⊥x轴,∴∠AED=45°.∴DE=AD=1.∵CD=3,∴CE=CD﹣DE=2,过点B作BM⊥CE于点M,则BM=1,∵∠CEB=∠AED=45°,∴ME=BM=1,∴CM=1,∴BM=CE,M为CE的中点,∴∠CBE=90°.∵四边形ABCF为平行四边形时,∴CB∥AE,∴∠EAB+∠ABC=180°∴∠EAB=90°,∴∠FAO=45°,∴OF=OA=1,∴F2(0,1);③当四边形ACBF为平行四边形时,如图,过点B作BG⊥x轴,过点F作MH∥x轴,交BG的延长线于点H,过点A作AM⊥MH 于点M,同①可求得:OB=3,BG=2,△ACD≌△FBH,∴BH=CD=3,FH=AD=1,四边形AMHG为矩形,∴MH=AG=2,AM=GH=BH﹣BG=1,∴MF=MH﹣FH=1,∴F3(2,﹣1).综上,存在点F使得以A、B、C、F为顶点的四边形是平行四边形,符合条件的点F的坐标F1(4,5),F2(0,1),F3(2,﹣1).7.【解答】(1)证明:由题意得AD⊥AO,BC⊥AO,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形,∵A(0,4),B(﹣3,0),C(2,0),∴BC=2﹣(﹣3)=5,AO=4,BO=3,CO=2,在Rt△ABO中,AB===5,∴AB=BC,∴四边形ABCD是菱形;(2)解:过点D作DH⊥x轴于H,则四边形AOHD是矩形,∴DH=AO=4,OH=AD,∵四边形ABCD是菱形,∴AD=AB=5,∴OH=5,∴D(5,4),∵反比例函数的图象于点D,∴4=,∴k=20,∴此反比例函数的解析式为y=;(3)解:在Rt△ACO中,AC===2∵四边形ABCD是菱形,∴AD∥BC,∴∠DAC=∠ACO,∴sin∠DAC=sin∠ACO===.8.【解答】解:(1)将点A的坐标为(m,﹣3)代入直线y=x中,得﹣3=m,解得:m=﹣2,∴A(﹣2,﹣3),∴k=﹣2×(﹣3)=6,∴反比例函数解析式为y=,由,得或,∴点B的坐标为(2,3);(2)如图1,作BE⊥x轴于点E,CF⊥x轴于点F,∴BE∥CF,∴△DCF∽△DBE,∵BC=2CD,BE=3,∴=,∴=,∴CF=1,∴C(6,1),作点B关于y轴的对称点B′,连接B′C交y轴于点G,则B′C即为BG+GC的最小值,∵B′(﹣2,3),C(6,1),∴B′C==2,∴BG+GC=B′C=2;(3)存在.理由如下:当点P在x的正半轴上时,如图,设点P1的坐标为(a,0),过点B作BE⊥x轴于点E,∵∠OEB=∠OBP1=90°,∠BOE=∠P1OB,∴△OBE∽△OP1B,∴=,∵B(2,3),∴OB==,∴=,∴点P1的坐标为(,0),当点P在x的负轴上时,如图2,设点P2的坐标为(a,0),过点A作AH⊥x轴于点H,同理证得点P2的坐标为(﹣,0),当四边形AP3BQ3或是矩形四边形AP4BQ4时,OA=OP4=,∴点P的坐标为(﹣,0)或(,0),综上所述,点P的坐标为(,0)或(﹣,0)或(﹣,0)或(,0).9.【解答】解:(1)作AF垂直于x轴,垂足为点F,∵AO=AB,AF⊥OB,∴,∵∠OAB=90°,AO=AB,∴∠AOB=45°,∴AF=OF=1,∴点A(1,1),设一次函数解析式为y1=k1x+b,反比例函数解析式为,将点A(1,1)和C(0,﹣1)代入y1=k1x+b,得y1=2,b=﹣1,∴一次函数的解析式为y1=2x﹣1.将点A(1,1)代入,得k2=1,∴反比例函数的解析式为,即一次函数解析式为y1=2x﹣1,反比例函数解析式为;(2)将两个函数联立得,整理得2x2﹣x﹣1=0,解得,x2=1,∴y1=﹣2,y2=1,∴点,∴,即△OAD的面积为;(3)存在,①以OA为对角线时,∵O(0,0),A(1,1),D(﹣,﹣2),∴将A点向右平移个单位,向上平移2个单位得到P点的坐标,即P(,3),②以OD为对角线时,∵O(0,0),A(1,1),D(﹣,﹣2),∴将D点向右平移1个单位,向上平移1个单位得到P点的坐标,即P(,﹣1),③以AD为对角线时,∵O(0,0),A(1,1),D(﹣,﹣2),∴将D点向左平移1个单位,向下平移1个单位得到P点的坐标,即P(﹣,﹣3),综上所述,点P的坐标为,,.10.【解答】(1)解:∵直线y=﹣x+2交y轴于A点,交x轴于B点,∴点A(0,2),点B(4,0),∵C、D为双曲线上的两点,∴点C(2,),点D(2+m,),∵四边形CABD为平行四边形,∴AD与BC互相平分,∴=,=,解得:m=4,k=6;(2)①证明:∵CC′∥y轴∥DD',CD∥AB,∴四边形CDD'C'是平行四边形,∴CC'=DD',∵C、D为双曲线上的两点,∴点C(a,),点D(a+m,),∵CC′∥y轴∥DD',∴点C'的横坐标为a,点D的横坐标为a+m,∴点C'(a,﹣a+2),点D'(a+m,﹣a﹣m+2),∴+a﹣2=+a+m﹣2,∴k=a(a+m),∴当k为定值时,a(a+m)为定值;②解:∵k=6,∴6=a(a+m),∴a2+am=12,∵m=a﹣4+,∴a2+a(a﹣4+)=12,∴d=﹣2a2+4a+12=﹣2(a﹣1)2+14,∴当a=1时,d的最大值为14.11.【解答】解:(1)∵A(﹣1,0),B(0,﹣2),E为AD中点,∴x D=1,设D(1,t),又∵DC∥AB,∴C(2,t﹣2),∴t=2t﹣4,∴t=4,∴k=4;(2)由(1)得C(2,2),∵B(0,﹣2),∴直线BC的解析式为y=2x﹣2,当y=0时,x=1,∴F(1,0),∴OF=1,设点G的坐标为(0,m),∵MN∥x轴,∴M(,m),N(﹣,m),∵FM=FN,∴1﹣(﹣)=﹣1,解得:m=或m=0(不合题意舍去),∴点G的坐标为(0,);(3)∵由(1)知k=4,∴反比例函数的解析式为y=,∵点P在双曲线上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1,若ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6);如图2,若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3,当AB为对角线时,AP=BQ,且AP∥BQ;∴=,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);故点Q的坐标为(0,6)或(0,﹣6)或(0,2).12.【解答】(1)解:结论:点B在反比例函数y=﹣的图象上.理由:∵反比例函数的图象y=﹣经过点A,点A的横坐标是﹣2,∴A(﹣2,4),∵A,B关于原点对称,∴B(2,﹣4),∵x=2时,y=﹣=﹣4,∴点B在反比例函数y=﹣的图象上;(2)证明:由题意,C(4,﹣2),D(﹣4,2),∵C,D关于原点对称,∴OC=OD,∵A,B关于原点对称,∴OA=OB,∴四边形ADBC是平行四边形,∵CD==4,AB==4,∴AB=CD,∴四边形ADBC是矩形;(3)解:如图,当四边形OBP1Q1是菱形时,P1(4,0).当四边形OBQ2P2是菱形时,P2(2,0).当四边形OP3BQ3是菱形时,P3(5,0),综上所述,满足条件的点P的坐标为(4,0)或(2,0)或(5,0).13.【解答】解:(1)如图,延长AD交x轴于F,由题意得AF⊥x轴,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,由菱形的性质得到B(0,5),设直线AB的方程为:y=ax+b(a≠0),则,解得,故反比例解析式为y=;直线AB的方程为:y=x+5;(2)将菱形ABCD沿x轴正方向平移m个单位,使得点D落在函数y=(x>0)的图象D'点处,∴点D'的坐标为(4+m,3),∵点D'在y=的图象上,∴3=,解得m=,∴0≤m;(3)如图,存在,理由:∵四边形ABCD是菱形,∴OB=OD=5,过D作DE⊥x轴于E,过N作NF⊥y轴于F,过M作MH⊥y轴于H,∴∠DEO=∠ONB=∠NOD=90°,∴∠BON+∠BOD=∠BOD+∠DOE=90°,∴△BON≌△DOE(AAS),∴BN=DE=3,ON=OE=4,=OB•NF=BN•ON,∴S△OBN∴NF=,∵点N在直线AB上,∴N(﹣,),设M(n,n+5),∴MH=n,OH=n+5,∵BM2=BH2+MH2,∴22=(n+5﹣5)2+n2,∴n=±,∵n>0,∴M(,).14.【解答】解:(1)∵反比例函数y=(k>0)的图象是中心对称图形,∴AO=EO,在Rt△AEF中,∠AFE=90°,AO=EO,∴FO=,故答案为:=;(2)①如图,连接CF,由(1)可知,FO=AO,∴∠OAF=∠OFA,∵AF平分∠OAC,∴∠OAF=∠BAF,∴∠OFA=∠BAF,∴OF∥AC,=S△AFC=10,∴S△AOC对于y=﹣x+5,令y=0,则0=﹣x+5,∴x=5,∴C(5,0),∴OC=5,设A(m,﹣m+5),m>0,∴S=﹣,=10,又∵S△AOC∴﹣,∴m=1,∴﹣m+5=﹣1+5=4,∴A(1,4),∵A(1,4)在反比例函数y=上,∴k=1×4=4;②如图,连接BF,由①可知,OF∥AB,FO=AO,当AO=AB时,此时四边形AOFB是菱形,将y=﹣x+5由y=联立,得:,解得:或,∴A(),B(),∴OA+()2=25﹣2k,AB2=50﹣8k,当AO=AB时,OA2=AB2,即25﹣2k=50﹣8k,∴k=,综上所述,当四边形AOFB为菱形时,k=.15.【解答】解:(1)∵y=﹣2x+2与x轴交于点A,∴0=﹣2x+2,得x=1,∴点A(1,0);过点C作CH⊥y轴于点H,∴∠CHB=∠BOA=90°∵将直线l绕着点A顺时针旋转45°后,与y轴交于点B,∴∠BAC=45°,又∵BC⊥AB,∴∠BAC=∠ACB=45°,∴AB=BC,∵∠OBA+∠OAB=90°,∠OBA+∠CBH=90°,∴∠OAB=∠CBH,在△AOB和△BHC中,∴△AOB≌△BHC(AAS),∴BH=AO=1,CH=BO,设OB=a,则OH=a+1,∴点C(a,﹣a﹣1),∵点C在直线l上,∴﹣a﹣1=﹣2a+2,∴a=3,∴C(3,﹣4);(2)将△ABC以每秒3个单位的速度沿y轴向上平移t秒,A(1,0),B(0,﹣3),C(3,﹣4)∴点D(1,3t),点E(0,﹣3+3t),点F(3,﹣4+3t),∵点A、C两点的对应点D、F正好落在某反比例函数的图象上,∴1×3t=3×(﹣4+3t),∴t=2;(3)由(2)知E(0,3),F(3,2),∴EF=,当EF=EP=时,则OP=1,∴P(1,0)或(﹣1,0),当P(1,0)时,由平移的性质得,点Q(4,﹣1),当P(﹣1,0)时,由平移的性质得,点Q(2,﹣1),当EF=FP=时,同理得P(3﹣,0)或(3+,0),∴Q(﹣,1)或(,1),当PE=PF时,设P(x,0),则9+x2=4+9﹣6x+x2,解得x=,∴P(,0),∴Q(),综上:Q(4,﹣1)或(2,﹣1)或(﹣,1)或(,1)或().16.【解答】解:(1)将A(m,2)代入y1=x+1得,2=m+1,∴m=1,∴A(1,2),将A(1,2)代入y2=得,k=1×2=2,∴y2=;(2)根据函数图象的轴对称性知,点A与B关于直线y=﹣x对称,过A作AC∥y轴,过B作BC∥x交于C,则C(﹣1,﹣1),∴B(﹣2,﹣1),当y1>y2,则自变量x的取值范围是x>1或﹣2<x<0,故答案为:(﹣2,﹣1),x>1或﹣2<x<0;(3)存在,如图,∵OA=OB,∴点P在AB上方时,四边形OAPB是菱形,∵O(0,0),A(1,2),B(﹣2,﹣1),由平移的性质得P(﹣1,1),∴以点O,A,B,P为顶点的四边形为菱形,点P的坐标为(﹣1,1).17.【解答】解:(1)设点P的纵坐标为m,=.∵S△PAO∴,∴m=4,∵四边形OABC是矩形,OA=6,OC=10,∴B(6,10),∴k=6×10=60,∵点P在这个反比例函数的图象上,∴点P的横坐标为=15,∴P(15,4);(2)如图,点P在直线y=4上运动,作点O关于直线y=4的对称点O',连接O'A,此时PO+PA的最小值即为AO'的长,在Rt△AOO'中,由勾股定理得,AO'==10,∴PO+PA的最小值为10;(3)当AP=AB=10时,如图,AG=4,∴PG=2,∴P(6﹣2,4),∴Q(6﹣2,14),当点P在G的右侧时,同理Q'(6+2,14),当BA=BP时,如图,由勾股定理得PG=8,∴P(﹣2,4),∵PQ=10,∴Q(﹣2,﹣6),同理,当P在G的右侧时,Q'(14,﹣6),当PA=PB时,点P在AB的垂直平分线y=5上,点P又在直线y=4上,故不存在,综上:Q(6﹣2,14)或(6+2,14)或(﹣2,﹣6)或(14,﹣6).18.【解答】解:(1)根据题意得:AP=tcm,AB=5cm,∴BP=(5﹣t)cm,∵DC=DO+OC=3+5=8,DQ=2tcm,∴CQ=DC﹣DQ=(8﹣2t)cm,故答案为:(8﹣2t);当BP=CQ时,四边形PQCB是矩形,∴5﹣t=8﹣2t,解得:t=3,∴当t=3时,四边形PQCB为矩形;故答案为:(5﹣t);3;(2)∵点P的坐标为(t,4),点P在反比例函数的图象上,∴k=4t,∴y=,∴点M的坐标为(5,),∴BM=4﹣,连接PM,如图1所示:∴△POM的面积S=矩形AOCB的面积﹣△AOP的面积﹣△PBM的面积﹣△OCM的面积=5×4﹣×t×4﹣×(5﹣t)×(4﹣)﹣×5×=﹣t2+10,∵点Q从点D运动到点C用是为4秒,点P从点A运动到点B用时为5秒,∴0≤t≤4,∴S=﹣t2+10(0≤t≤4);(3)存在;t的值为或,点E的坐标为(,4)或(3﹣2,4);理由如下:∵点P的坐标为(t,4),点Q的坐标为(2t﹣3,0),点C的坐标为(5,0),∴PQ2=(t﹣3)2+42,PC2=(t﹣5)2+42,CQ2=(8﹣2t)2;分情况讨论:①当PQ=PC时,(t﹣3)2+42=(t﹣5)2+42,解得:t=4(不合题意,舍去);②当PQ=CQ时,(t﹣3)2+42=(8﹣2t)2,解得:t=,或t=(不合题意,舍去),∴t=;若四边形PQCE为菱形,则PE∥CQ,点E在直线AB上,如图2所示:∴AE=AP+PE=t+8﹣2t=8﹣t=8﹣=,此时点E的坐标为(,4);③当PC=CQ时,(t﹣5)2+42=(8﹣2t)2,解得:t=,或t=(不合题意,舍去),∴t=;若四边形PQCE为菱形,则PE∥CQ,点E在直线AB上,如图3所示:∴AE=PE﹣AP=8﹣2t﹣t=83=﹣3+2,此时点E的坐标为(3﹣2,4);综上所述:存在某一时刻,使坐标平面上存在点E,以P、Q、C、E为顶点的四边形刚好是菱形,t的值为或,点E的坐标为(,4)或(3﹣2,4).19.【解答】解:(1)把x=﹣4,y=m代入中,得,∴点M(﹣4,2),把x=n,y=﹣4代入中,得,∴点N(2,﹣4),∴将点M(﹣4,2),点N(2,﹣4)代入y=kx+b中,得,解得,∴k=﹣1,b=﹣2;(2)①将直线y=﹣x﹣2向上平移4个单位,得y=﹣x+2,当x=0时,y=2,∴点C坐标为(0,2),当y=﹣x+2=0时,x=2,∴点B坐标为(2,0),平移后的直线如图所示:②以A、B、C、P为顶点的四边形是平行四边形,分情况讨论:当CA,CB为边时,AP∥CB且AP=CB,点P坐标为(0,﹣2),当BC,BA为边时,AP∥CB且AP=CB,点P坐标为(﹣4,2),当AC,AB为边,AC∥BP且AC=BP,∴点P坐标为(4,2),综上,满足条件的点P坐标为(0,﹣2)或(﹣4,2)或(4,2).20.【解答】解:(1)①∵点A(6,8),∴AO==10;(2)∵点A(6,8),点E(6,14),∴AE=6,∵四边形AEMN的周长=AE+MN+ME+AN,AE=6,MN=2,∴四边形AEMN的周长=8+AN+ME,∴当AN+ME有最小值时,四边形AEMN的周长有最小值,如图,将A向上平移两个单位得到A',连接A'M,作点A'关于y轴的对称点A'',连接A''E,∴AA'=2=MN,A'(6,10),∴四边形ANMA'是平行四边形,∴AN=A'M,∴AN+ME=A'M+ME,∵点A'与点A''关于y轴对称,∴A''M=A'M,点A''(﹣6,10),∴AN+ME=A''M+ME,∴点M,点E,点A''共线时,A''M+ME的最小值为A''E的长,∵点A''(﹣6,10),点E(6,14),∴直线A''E的解析式为:y=x+12,当x=0时,y=12,∴点M(0,12);(3)如图,延长EA交x轴于N,过点F作FH⊥x轴于H,设AB=AO=5a,∵四边形ABCD是菱形,∴DC∥AB,DC=AB=5a=AD,∵DE=4CE,∴DE=4a,CE=a,∵AB∥x轴,∴DE∥AB∥x轴,∵AE⊥CD,∴AE⊥x轴,AE⊥AB,∴∠DEA=∠ANO=90°,∴AE==3a,∵AD⊥AO,∴∠DAE+∠OAN=90°=∠OAN+∠AON,∴∠DAE=∠AON,又∵AD=AO=AB,∴△ANO≌△DEA(AAS),∴DE=AN=4a,AE=ON=3a,∴点A(3a,4a),点E(3a,7a),∵反比例函数y=(x>0)的图象经过点E,与边AB交于点F,∴k=21a2,点F(a,4a),==×3a×7a+(7a+4a)×(a﹣3a)﹣×4a×a,∵S△EOF∴a=1,∴k=21,∴反比例函数解析式为y=.。
专题06 反比例函数中的平行四边形1.如图,在第一象限内,A 是反比例函数()110k y k x=>图象上的任意一点,AB 平行于y 轴交反比例函数()220k y k x=<的图象于点B ,作以AB 为边的平行四边形ABCD ,其顶点C ,D 在y 轴上,若7ABCD S =,则这两个反比例函数可能是( )A .2y x =和3y x =-B .3y x =和4y x=-C .4y x =和5y x=- D .5y x=和6y x =-2.如图,反比例函数ky x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是____.【答案】9【分析】根据平移和平行四边形的性质将点D 也用a 、b 表示,再根据反比例函数图象上的点的横纵坐标的乘积相等列式算出a 、b ,再由点坐标求出k 的值. 【详解】解:∵()3,0A ,()0,4B ,∴A 可以看作由B 向右平移3个单位,向下平移4个单位得到的,根据平行四边形的性质,D 也可以看作由C 向右平移3个单位,向下平移4个单位得到的, ∵(),C a b ,∴()3,4D a b +-, ∵7.5a b +=,∴(),7.5C a a -,()3,3.5D a a +-, ∵C 、D 都在反比例函数图象上,∴它们横纵坐标的乘积相等,即()()()7.53 3.5a a a a -=+-,解得 1.5a =, ∴()1.57.5 1.59k =⨯-=. 故答案为:9.【点睛】本题考查反比例函数与几何图形的结合,解题的关键是根据题目条件,用同一个未知数设出反比例函数图象上的点,然后用反比例函数图象上点的性质列式求解.3.如图,在平面直角坐标系中,点A 在反比例函数y =kx(x <0)的图像上一点,点B 是y轴正半轴上一点,以OA 、AB 为邻边作平行四边形ABCO ,若点C 和BC 的中点D 都在反比例函数y =4x(x >0)的图像上,则k 的值是___________.∵四边形ABCO是平行四边形,∴8k =-, 都答案为:-8.【点睛】本题主要考查反比例函数的应用、三角形的全等、平行四边形的性质、中位线的性质,掌握相关知识并灵活应用是解题的关键.4.如图,已知反比例函数(0)ky x x=>与正比例函数(0)y x x =的图象,点(1,4)A ,点(4,)A b '与点B ′均在反比例函数的图象上,点B 在直线y x =上,四边形AA B B ''是平行四边形,则B 点的坐标为__.【详解】解:反比例函数点点点四边形点【点睛】本题考查了反比例函数综合及平行四边形的性质、平移的性质等知识,根据题意表示出B ′点坐标是解题的关键.5.如图,分别过反比例函数1y x=图像上的点P 1(1,y 1),P 2(1+2,y 2),P 3(1+2+3,y 3),...,Pn (1+2+3+...+n ,yn )作x 轴的垂线,垂足分别为A 1,A 2,A 3,...,An ,连接A 1P 2,A 2P 3,A 3P 4,...,An -1Pn ,再以A 1P 1,A 1P 2为一组邻边画一个平行四边形A 1P 1B 1P 2,以A 2P 2,A 2P 3为一组邻边画一个平行四边形A 2P 2B 2P 3,以此类推,则B 2的纵坐标是__________;点B 1,B 2,...,Bn 的纵坐标之和为__________.1 123(1)n n n n +=++++++++1y x=的图象上,1123(1)n n n +++++++++14(2)n n +++1(n n ++⨯+1115n n -++-+三、解答题(共0分)6.如图,在平面直角坐标系中,一次函数y =kx +b 的图象与双曲线y =-8x交于点M (-4,m )、N (n ,-4),与x 轴交于A .(1)求k、b的值;(2)①将直线y=kx+b向上平移4个单位分别交x轴、y轴于点B、C,画出这条直线;②P是平面直角坐标系中的一点,若以A、B、C、P为顶点的四边形是平行四边形,求P点的坐标.解:①由(1)知直线MN的解析式为y=-x-2,将直线y=-x-2向上平移4个单位,得y=-x+2,当x=0时,y=2,∴点C坐标为(0,2),当y=-x+2=0时,x=2,∴点B坐标为(2,0),平移后的直线如图所示:②以A、B、C、P为顶点的四边形是平行四边形,直线MN与x轴的交点A的坐标为(-2,0),分情况讨论:∥且AP=CB,当CA,CB为边时,AP CB∵点C(0,2)向左平移2个单位,向下平移平移2个单位得到点A(-2,0),∴点B(2,0)向左平移2个单位,向下平移平移2个单位得到点P(0,-2),点P坐标为(0,-2);∥且AP=CB,当BC,BA为边时,AP CB同理可得点P坐标为(-4,2);∥且AC=BP,当AC,AB为边,AC BP同理可得点P坐标为(4,2),综上,满足条件的点P坐标为(0,-2)或(-4,2)或(4,2).【点睛】本题考查了反比例函数与一次函数的综合应用,涉及待定系数法求解析式,平移的性质,平行四边形的判定等,熟练掌握这些知识是解题的关键,本题综合性较强.7.综合与探究如图,已知,()0,4A ,()3,0B -,()2,0C ,D 为B 点关于AC 的对称点,反比例函数k y x=的图象经过D 点.(1)证明四边形ABCD 为菱形; (2)求此反比例函数的解析式; (3)已知在ky x=的图象(0x >)上有一点N ,y 轴正半轴上有一点M ,且四边形ABMN 是平行四边形,求M 点的坐标.8.如图,一次函数22y x =+的图象与x 轴交于点B ,与反比例函数(0)y k x=≠的图象的一个交点为()A 2m ,.(1)直接写出反比例函数的解析式;(2)过点A 作AC x ⊥轴,垂足为点C ,设点P 在反比例函数图象上,且△PBC 的面积等于6,请求出点P 的坐标;(3)设M 是直线AB 上一动点,过点M 作MN//x 轴,交反比例函数ky x=的图象于点N ,若以B 、O 、M 、N 为顶点的四边形为平行四边形,请直接写出点M 的坐标.9.如图,一次函数y kx b =+与反比例函数y x=的图像交于点()1,6A ,()3,B n 两点.(1)求反比例函数和一次函数的表达式;(2)连接OA 、OB ,求AOB 的面积;(3)直线a 经过点()0,1且平行于x 轴,点M 在直线a 上,点N 在y 轴上,以A 、B 、M 、N 为顶点的四边形可以是平行四边形吗?如果可以,直接写出点M 、N 的坐标,如果不可以,说明理由.ADO S=BDO S =8AOB ADO BDO S S S =-=;(3)∴M (4,1),N (0,7);②当AM 为为平行四边形对角线时,130612m n +=+⎧⎨+=+⎩, 解得25m n =⎧⎨=⎩, ∴M (2,1),N (0,5);③当AN 为为平行四边形对角线时,103621m n +=+⎧⎨+=+⎩, 解得23m n =-⎧⎨=-⎩, ∴M (-2,1),N (0,-3);综上所述,以A 、B 、M 、N 为顶点的四边形是平行四边形时,M (4,1),N (0,7)或M (2,1),N (0,5)或M (-2,1),N (0,-3).【点睛】本题为反比例函数与一次函数的综合应用,涉及待定系数法、函数图像与x 轴交点、平行四边形的性质、方程思想及数形结合思想等知识,在(1)中注意待定系数法的应用,在(2)中注意数形结合,在(3)中确定出M 、N 的位置是解题的关键.10.如图,一次函数1y x =+与反比例函数k y x=的图象相交于(,2)A m ,B 两点,分别连接OA ,OB .(1)求这个反比例函数的表达式;(2)求AOB 的面积;(3)在平面内是否存在一点P ,使以点O ,B ,A ,P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.12AOB OCA OCB S S S OC =+=⋅)解:存在,理由如下:OA 与OB 为邻边时,点11.如图,已知一次函数1y kx b =+与反比例函数2k y x=的图象交于第一象限内的点(16)A ,和(6)B m ,,与x 轴交于点C ,交y 轴于点D .(1)分别求出这两个函数的表达式;(2)连接OA 、OB ,求AOB ∆的面积;(3)点P 为坐标平面内的点,若点O ,A ,C ,P 组成的四边形是平行四边形,请直接写出点P 的坐标. (6)B m ,1m ∴=,(61)B ∴,,当AP OC ∥且AP OC =时,则7AP OC ==,(16)A ,,P ∴点坐标为当AP OC '∥(1,6)A ,P '∴点坐标为:当AO P ∥P ''∴点坐标为:综上所述:点12.如图,在平面直角坐标系中,一次函数y 1=2x ﹣4(k ≠0)的图象与反比例函数y 2=x的图象交于A 、B 两点.(1)求A、B的坐标.(2)当x为何值时,2x﹣4>6 x(3)如图,将直线AB向上平移与反比例函数y=6x的图象交于点C、D,顺次连接点A、B、C、D,若四边形ABCD是平行四边形,求S四边形ABCD的值.则FE =m =8,13.如图,一次函数1y x =+与反比例函数y x =的图象交于点A 和B (-2,n ),与y 轴交于点C .(1)求反比例函数解析式;(2)点P为第三象限内反比例函数图象上一点,过点P作PD//y轴,交线段AB于点D,是否存在点P使得四边形DPOC为平行四边形?若存在求出点P的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系xOy中,一次函数y=2x+1的图象与x轴交于点A,与y轴交于点C,与反比例函数y=kx(k≠0)的图象交于B,D两点,且AC=BC.(1)写出点A,B的坐标为:A(,),B(,)(2)求出点D的坐标,并直接写出当反比例函数的值大于一次函数的值时对应x的取值范围;(3)若P是x轴上一点,PM⊥x轴交一次函数于点M,交反比例函数于点N,当O,C,M,N为顶点的四边形为平行四边形时,直接写出点P的坐标.【答案】(1)−2,0;2,2;(2)0<x<2或x<−4;(3)(2,0),(−2,0),(−2+1【点睛】此题主要考查了反比例函数综合以及相似三角形的判定与性质以及一元二次方程的15.如图1,菱形ABCD 顶点A 在y 轴上,顶点D 在反比例函数()0y x x=>上,边BC 交y 轴于点E ,AD x ∥轴,2AE EC =,5AD =.(1)求k .(2)如图2,延长BA 交x 轴于点F ,问是否在该反比例函数上存在的点P ,坐标轴上的点Q ,使得以A、F、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点Q的坐标,若不存在请说明理由.16.如图,在平面直角坐标系中,一次函数12y x =-的图像与反比例函数2y x=(0k ≠)的图像交于()2,A a -、(),2B m 两点,与y 轴交于点C ,与x 轴交于点D ,连接OA 、OB .(1)求反比例函数2ky x=(0k ≠)的表达式; (2)求△AOB 的面积;(3)点N 为坐标轴上一点,点M 为2y 的图像上一点,当以点C 、D 、M 、N 为顶点的四边形是平行四边形时,请直接写出所有满足条件的N 点的坐标. AOBS=1(02)N ,【分析】(1)8k , (02)C ,-1(02)N ∴,②如图2,四边形是平行四边形,2(0N ∴-,③如图3,四边形3CM ∴∥【点睛】本题是反比例函数的综合题,考查反比例函数与一次函数的交点问题、待定系数法、17.如图1,在平面直角坐标系中,反比例函数y x=(k 为常数,0x >)的图像经过点()2,A m ,()6,B n 两点.(1)m 与n 的数量关系是( )A .3m n =B .3n m =C .8m n +=D .4m n -= (2)如图2,若点A 绕x 轴上的点P 顺时针旋转90°,恰好与点B 重合. ①求点P 的坐标及反比例函数的表达式; ②连接OA 、OB ,则AOB 的面积为_________;(3)若点M 在反比例函数(0)k y x x=>的图像上,点N 在y 轴上,在(2)的条件下,是否存在以A 、B 、M 、N 为顶点的四边形为平行四边形?若存在,请直接写出点M 的坐标,若不存在,请说明理由.②借助割补法求面积,将AOB 的面积补全在五边形中,利用边分别看作平行四边形的边和对角线,进行分类讨论求得分别代入y =②如图,作AE y ⊥轴,AF x ⊥轴,BG x ⊥轴,综上所述,AOB的面积为8.(3)-=-x x x xx x x x -=-18.如图1,动点M 在函数()0y x x =>的图象上,过点M 分别作x 轴和y 轴的平行线,交函数()40y x x=>的图象于点B 、C ,作直线BC ,设直线BC 的函数表达式为y kx b =+.(1)若点M 的坐标为()2,4.①B 点坐标为______,C 点坐标为______,直线BC 的函数表达式为______;②点D 在x 轴上,点E 在y 轴上,且以点B 、C 、D 、E 为顶点的四边形是平行四边形,请直接写出点D 、E 的坐标;(2)连接BO、CO.=时,求OB的长度;①当OB OC②如图2,试证明BOC的面积是个定值.8m84。
专题28 反比例函数与平行四边形结合(2021春·浙江杭州·八年级杭州外国语学校校考期末)1. 如图,在平面直角坐标系中,ABCD 的三个顶点坐标分别为()()()1,04,22,3A B C ,,,第四个顶点D 在反比例函数()0k y x x =<的图像上,则k 的值为( )A. 1-B. 2-C. 3-D. 4-2. 如图,点A ,B 在反比例函数()20y x x=-<的图象上,连结OA ,AB ,以OA ,AB 为边作OABC ,若点C 恰好落在反比例函数()10y x x=>的图象上,此时OABC 的面积是( )A. 3B.C.D. 6(2022春·浙江杭州·八年级杭州外国语学校校考期末)3. 如图,四边形OABC 为平行四边形,A 在x 轴上,且∠AOC =60°,反比例函数=k y x(k >0)在第一象限内过点C ,且与AB 交于点E .若E 为AB 的中点,且S△OCE =,则OC 的长为( )A. 8B. 4C.D. (2020春·浙江杭州·八年级期末)4. 如图,已知函数y=2x 和函数k y=x的图象交于A 、B 两点,过点A 作AE ⊥x 轴于点E ,若△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,则满足条件的P 点坐标是____.(2022春·浙江金华·八年级统考期末)5. 如图,平行四边形OABC 的边OA 在x 轴上,顶点C 在反比例函数()40y x x=-<的图象上,BC 与y 轴相交于点D ,且D 为BC 的中点,则平行四边形OABC 的面积为__________.6. 如图,点A 、B 分别在双曲线2y x=和6y x =上,四边形ABCO 为平行四边形,则 □ABCO 的面积为_________(2022春·浙江宁波·八年级统考期末)7. 如图,在平面直角坐标系中,OABC 的顶点C 在x 轴的正半轴上,点A 是第一象限内一点,反比例函数8y x=的图象经过点A ,与BC 边交于点D ,若OCD 与ABD △的面积相等,则OAD △的面积为______________.8. 综合与探究如图,已知,()0,4A ,()3,0B -,()2,0C ,D 为B 点关于AC 的对称点,反比例函数k y x=的图象经过D 点.(1)证明四边形ABCD 为菱形;(2)求此反比例函数的解析式;(3)已知在k y x=的图象(0x >)上有一点N ,y 轴正半轴上有一点M ,且四边形ABMN 是平行四边形,求M 点的坐标.(2021春·浙江衢州·八年级统考期末)9. 如图,平行四边形ABCD 放置在平面直角坐标系中,已知点A (﹣2,0),B (﹣6,0),D (0,3),点C 在反比例函数y k x=的图象上.(1)直接写出点C 坐标,并求反比例函数的表达式;(2)将平行四边形ABCD 向上平移得到平行四边形EFGH ,使点F 在反比例函数y =k x的图象上,GH 与反比例函数图象交于点M .连结AE ,求AE 的长及点M 的坐标.(2020春·浙江绍兴·八年级统考期末)10. 如图,在平面直角坐标系xOy 中,已知点A 坐标(2,3),过点A 作AH ⊥x 轴,垂足为点H ,AH 交反比例函数在第一象限的图象于点B ,且满足AB BH=2.(1)求该反比例函数的解析式;(2)点C 在x 正半轴上,点D 在该反比例函数的图象上,且四边形ABCD 是平行四边形,求点D 坐标.11. 如图,在直角坐标系中,点C 在第一象限,CB x ⊥轴于B ,CA y ⊥轴于A ,3CB =,6CA =,有一反比例函数图象刚好过点C .(1)分别求出过点C 的反比例函数和过A ,B 两点的一次函数的函数表达式;(2)直线l x ⊥轴,并从y 轴出发,以每秒1个单位长度的速度向x 轴正方向运动,交反比例函数图象于点D ,交AC 于点E ,交直线AB 于点F ,当直线l 运动到经过点B 时,停止运动.设运动时间为t (秒).①问:是否存在t 的值,使四边形DFBC 为平行四边形?若存在,求出t 的值;若不存在,说明理由;②若直线l 从y 轴出发的同时,有一动点Q 从点B 出发,沿射线BC 方向,以每秒3个单位长度的速度运动.是否存在t 的值,使以点D ,E ,Q ,C 为顶点的四边形为平行四边形;若存在,求出t 的值,并进一步探究此时的四边形是否为特殊的平行四边形;若不存在,说明理由.12. 定义:点(),P a b 关于原点的对称点为P',以'PP 为边作等边'PP C ∆,则称点C 为P 的“等边对称点”;(1)若(P ,求点P 的“等边对称点”的坐标;(2)若P 点是双曲线()20=>y x x上动点,当点P 的“等边对称点”点C 在第四象限时,①如图(1),请问点C 是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由;②如图(2),已知点()1,2A ,()2,1B ,点G 是线段AB 上的动点,点F 在y 轴上,若以A 、G 、F 、C 这四个点为顶点的四边形是平行四边形时,求点C 的纵坐标C y 的取值范围.13. 如图,在平面直角坐标系中,矩形OABC 的顶点A 在y 轴上,C 在x 轴上,把矩形OABC 沿对角线AC 所在的直线翻折,点B 恰好落在反比例函数()0k y k x=≠的图象上的点B'处,'CB 与y 轴交于点D ,已知'2DB =,30ACB ∠= .()1求的度数;()2求反比例函数()0k y k x =≠的函数表达式;()3若Q 是反比例函数()0k y k x=≠图象上的一点,在坐标轴上是否存在点P ,使以P ,Q ,C ,D 为顶点的四边形是平行四边形?若存在,请求出P 点的坐标;若不存在,请说明理由.(2021春·浙江嘉兴·八年级统考期末)14. 如图1,在直角坐标系xOy 中,点(2,)(0)P n n n >在函数k y x=(0x >)图象上,点(0,)B b 在y 轴的正半轴上,PA x ⊥轴于点A .已知△PAB 的面积为4.(1)求点P 的坐标与k 的值.(2)如图2,设点C 是线段AB 的中点,点D 在函数k y x =(0x >)图象上,当四边形BCPD 是平行四边形时,求点D 的坐标.(3)如图3,设点C 在直线AB 上,点D 在函数k y x=(0x >)图象上,若四边形BCPD是平行四边形,设该四边形BCPD的面积为1S,△APC的面积为2S,求1S S的数量关系式.与2专题28 反比例函数与平行四边形结合(2021春·浙江杭州·八年级杭州外国语学校校考期末)【1题答案】【答案】A【解析】【分析】过点D 作DE ⊥x 轴于点E ,CF ⊥x 轴于F ,作BH ∥x 轴,交CF 于H ,利用AAS 得到三角形ADE 与三角形BCH 全等,由全等三角形的对应边相等得到AE =BH =2,DE =CH =1,求出OE 的长,确定出D 坐标,代入反比例解析式求出k 的值即可.【详解】解:过点D 作DE ⊥x 轴于点E ,CF ⊥x 轴于F ,作BH ∥x 轴,交CF 于H ,∵A (1,0),B (4,2),C (2,3),∴BH =4-2=2,CH =3-2=1,∵四边形ABCD 为平行四边形,∴BC =AD ,BC ∥AD ,∴∠DAB +∠ABC =180°,∵BH ∥x 轴,∴∠ABH =∠BAF ,∵∠DAE +∠BAF +∠DAB =180°=∠CBH +∠ABH +∠DAB ,∴∠DAE =∠CBH ,在△ADE 和△BCH 中,90DAE CBH AED BHC AD BC ∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ADE ≌△BCH (AAS ),∴AE =BH =2,DE =CH =1,∴OE =1,∴点D 坐标为(-1,1),∵点D 在反比例函数()0k y x x =<的图象上,∴k =-1×1=-1,故选:A .【点睛】此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,全等三角形的判定与性质,待定系数法确定反比例函数解析式,以及平行四边形的性质,熟练掌握性质是解本题的关键.【2题答案】【答案】A【解析】【分析】连接AC ,BO 交于点E ,作AG ⊥x 轴,CF ⊥x 轴,设点A (a ,2a -),点C (m ,1m)(a <0,m >0),由平行四边形的性质和中点坐标公式可得点B[(a+m ),(2a -+1m)],把点B 坐标代入解析式可求a=-2m ,由面积和差关系可求解.【详解】解:如图,连接AC ,BO 交于点E ,作AG ⊥x 轴,CF ⊥x 轴,设点A (a ,2a -),点C (m ,1m)(a <0,m >0),∵四边形ABCO 是平行四边形,∴AC 与BO 互相平分,∴点E (21,22a m a m -++),∵点O 坐标(0,0),∴点B[(a+m),(2a-+1m)].∵点B在反比例函数y=2x-(x<0)的图象上,∴212a m a m-+=-+,∴a=-2m,a=m(不合题意舍去),∴点A(-2m,1m),∴四边形ACFG是矩形,∴S△AOC=12(1m+1m)(m+2m)-12-1=32,∴▱OABC的面积=2×S△AOC=3.故选A.【点睛】本题考查了反比例函数图象上点的坐标特征,平行四边形的性质,中点坐标公式,解决问题的关键是数形结合思想的运用.(2022春·浙江杭州·八年级杭州外国语学校校考期末)【3题答案】【答案】D【解析】【分析】过点C作CD⊥x轴于点D,过点E作EF⊥x轴于点F,根据平行四边形的性质可得∠EAF=∠AOC=60°,设OD=t,在Rt△COD和Rt△EAF中表示出CD、OC、AE、AF以及EF,再根据点C与点E都在反比例函数kyx=的图像上,得到OD×CD=OF×EF,进而表示出OF、OA,在利用平行四边形OABC的面积与△OCE 的面积关系得出关于t的方程,解方程得t,即可得解.【详解】过点C作CD⊥x轴于点D,过点E作EF⊥x轴于点F,如图,∵四边形OABC 为平行四边形,∴OC =AB ,OC AB ∥,∴∠EAF =∠AOC =60°,∵在Rt △COD 中,∠DOC =60°,∴∠DCO =30°,设OD =t ,∴CD,OC =AB =2t ,∵在Rt △EAF 中,∠EAF =60°,AE =12AB =t ,∴AF =12t ,EF,∵点C 与点E 都在反比例函数k y x=的图像上,∴OD ×CD =OF ×EF ,∴2OD CD OF t EF ⨯===,∴OA =OF -EF =2t -12t =32t ,∵平行四边形OABC 的面积为2OCE S S =△,∴2OA CD ⨯=⨯,322t =⨯,解得t =(负值舍去),∴OC =2t,故选:D .【点睛】本题考查了反比例函数系数k 的几何意义、平行四边形的性质、解直角三角形以及四边形与三角形的面积等知识,根据点C 与点E 都在反比例函数k y x=的图像上,得到OD ×CD =OF ×EF ,进而表示出OF 是解答本题的关键.(2020春·浙江杭州·八年级期末)【4题答案】【答案】(0,﹣4),(﹣4,﹣4),(4,4)【解析】【分析】先求出B 、O 、E 的坐标,再根据平行四边形的性质画出图形,即可求出P 点的坐标.【详解】解:如图∵△AOE 的面积为4,函数k y=x的图象过一、三象限,∴k=8.∴反比例函数为8y=x∵函数y=2x 和函数8y=x的图象交于A 、B 两点,∴A 、B 两点的坐标是:(2,4)(﹣2,﹣4),∵以点B 、O 、E 、P 为顶点的平行四边形共有3个,∴满足条件的P 点有3个,分别为:P 1(0,﹣4),P 2(﹣4,﹣4),P 3(4,4).【点睛】本题考查了反比例函数综合,用到的知识点是反比例函数的性质、平行四边形的性质,关键是画图形把P 点的所有情况都画出来.(2022春·浙江金华·八年级统考期末)【5题答案】【答案】8【解析】【分析】设点C 的坐标为(a ,b ),四边形OABC 是平行四边形,证得BC ⊥OD ,CD =﹣a ,OD =b ,由点C 在反比例函数()40y x x=-<的图象上,得到﹣ab =4,根据平行四边形面积公式即可求得答案.【详解】解:设点C 的坐标为(a ,b ),∵ 四边形OABC 是平行四边形,∴ BC OA ,∴ ∠CDO =90°,∴BC ⊥OD ,∴CD =﹣a ,OD =b ,∵D 为BC 的中点,∴BC =2CD =﹣2a ,∵点C 在反比例函数()40y x x =-<的图象上,∴﹣ab =4,∴平行四边形OABC 的面积=BC ×OD =﹣2ab =8.故答案为:8【点睛】此题考查了反比例函数,平行四边形的性质等知识,熟练掌握反比例函数的性质是解题的关键.【6题答案】【答案】4【解析】【分析】由AB∥x 轴可知,A 、B 两点纵坐标相等,且都设为b ,根据点A 在双曲线2y x =上,点B 在双曲线6y x=上,求得AB ,而▱ABCD 的CD 边上高为b ,根据平行四边形的面积公式进行计算即可.【详解】∵点A 在双曲线y=2x上,点B 在双曲线y=6x 上,且AB ∥x 轴,∴设A(2b ,b),B(6b ,b),则AB=6b −2b,▱ABCD 的CD 边上高为b ,∴S ▱ABCD=(6b −2b )×b=6−2=4.故答案为4.【点睛】本题考查了反比例函数的综合运用,解决问题的关键是由平行于x 轴的直线上的点的纵坐标相等,根据平行四边形的面积公式计算.(2022春·浙江宁波·八年级统考期末)【7题答案】【答案】6【解析】【分析】先求出OABC 的面积,再根据OAD △的面积为OABC 的面积的一半即可求出.【详解】解:设点A 的坐标为(a ,8a ),AB =OC =b ,则点B 的坐标为(a +b ,8a )∵OCD 与ABD △的面积相等,且AB =OC∴点D 到AB 和OC 的距离相等,∴点D 为BC 的中点,∵点C 的坐标为(a +b ,0)∴点D 的坐标为(12a b +,4a )∵点D 在反比例函数8y x=的图象上,∴12a b +=84a=2a ,解得b =32a .∴OABC 的面积=32a 8a =12∴OAD △的面积=1122⨯=6.故答案为6.【点睛】本题主要考查了反比例函数与几何图形的综合,根据面积相等得到点D 是线段BC 的中点是解题的关键.【8题答案】【答案】(1)见详解 (2)20y x= (3)8(0,)3【解析】【分析】(1)由A (0,4),B (-3,0),C (2,0),利用勾股定理可求得AB =5=BC ,又由D 为B 点关于AC 的对称点,可得AB =AD ,BC =DC ,即可证得AB =AD =CD =CB ,继而证得四边形ABCD 为菱形;(2)由四边形ABCD 为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N 的横坐标,代入反比例函数解析式,即可求得点N 的坐标,继而求得M 点的坐标.【小问1详解】证明:∵()0,4A ,()3,0B -,()2,0C ,∴4OA =,3OB =,2OC =,∴5AB ===,235BC BO OC =+=+=,∴AB BC =,∵D 为B 点关于AC 的对称点,∴AB AD =,CB CD =,∴AB AD CD CB ===,∴四边形ABCD 为菱形;【小问2详解】∵四边形ABCD 为菱形,∴D 点的坐标为(5,4),反比例函数y=k x 的图象经过D 点,∴4=5k ,∴k =20,∴反比例函数的解析式为:20y x=;【小问3详解】∵四边形ABMN 是平行四边形,∴AN BM ∥,AN BM =,∴AN 是BM 经过平移得到的,∵将B 点先向右平移3个单位长度,再向上平移4个单位长度即可得到A 点,∴将M 先向右平移3个单位长度,再向上平移4个单位长度即可得到N 点,∵M 点在y 轴正半轴,∴M 点的横坐标为0,∴即根据平移可知N 点的横坐标为3,代入20y x=,得203y =,即N 点坐标为20(3,)3,∴根据平移的路径可知M 点的纵坐标为:208433-=,∴M 点的坐标为8(0,)3.【点睛】此题属于反比例函数综合题,考查了菱形的性质与判定、待定系数法求函数的解析式以及平行四边形的性质.注意掌握坐标与图形的关系是关键.(2021春·浙江衢州·八年级统考期末)【9题答案】【答案】(1)12y x =-;(2)2AE =,12(,5)5M -【解析】【分析】(1)由A 与B 的坐标求出AB 的长,根据四边形ABCD 为平行四边形,求出DC 的长,进而确定出C 坐标,设反比例解析式为k y x=,把C 坐标代入求出k 的值,即可确定出反比例解析式;(2)根据平移的性质得到B 与F 横坐标相同,代入反比例解析式求出F 纵坐标得到平移的距离,即为AE 的长,求出H 纵坐标,即为M 纵坐标,代入反比例解析式求出M 横坐标,即可确定出M 坐标.【详解】解:(1)ABCD 中,(2,0)A -,0()6,B -,(0,3)D ,4AB CD ∴==,//DC AB ,(4,3)C ∴-,设反比例解析式为k y x=,把C 坐标代入得:12k =-,则反比例解析式为12y x =-;(2)(6,0)B - ,∴把6x =-代入反比例解析式得:2y =,即(6,2)F -,∴平行四边形ABCD 向上平移2个单位,即2AE =,(0,5)H ∴,把5y =代入反比例解析式得:125x =-,即12(,5)5M -.【点睛】本题考查了平行四边形的性质,反比例函数图象上点的坐标特征,以及待定系数法求反比例函数解析式,解题的关键是熟练掌握待定系数法.(2020春·浙江绍兴·八年级统考期末)【10题答案】【答案】(1)y =2x ;(2)点D 坐标(1,2)【解析】【分析】(1)先求出点B 坐标,利用待定系数法可求反比例函数解析式;(2)利用平行四边形的性质可得AB ∥CD ,AB =CD =2,可求点D 坐标.【详解】解:(1)∵点A 坐标(2,3),∴AH =3,∵AB BH=2,∴BH =1,AB =2,∴点B (2,1),设反比例函数的解析式为y =k x(k ≠0),∵点B 在反比例函数的图象上,∴k =2×1=2,∴反比例函数的解析式为y =2x;(2)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD =2,∵AB ⊥x 轴,∴CD ⊥x 轴,∴点D 纵坐标2,∴点D 坐标(1,2).【点睛】本题是反比例函数综合题,考查了反比例函数的性质,平行四边形的性质,熟练运用这些性质进行推理是本题的关键.【11题答案】【答案】(1)18y x =, 132y x =-+;(2)①不存在,理由详见解析;②存在,t =【解析】【分析】(1)先确定A 、B 、C 的坐标,然后用待定系数法解答即可;(2)①可用t 的代数式表示DF ,然后根据DF=BC 求出t 的值,得到DF 与CB 重合,因而不存在t ,使得四边形DFBC 为平行四边形;②可分两种情况(点Q 在线段BC 上和在线段BC 的延长线上)讨论,由于DE ∥QC ,要使以点D 、E 、Q 、C 为顶点的四边形为平行四边形,只需DE=QC ,只需将DE 、QC 分别用的式子表示,再求出t 即可解答.【详解】解:(1)由题意得(6,3)C ,(0,3)A ,(6,0)B ,∴反比例函数为18y x =,一次函数为:132y x =-+.(2)①不存在.l x ⊥ 轴,CB x ⊥轴,//l BC ∴.又 四边形DFBC 是平行四边形,3DF BC ∴==.设18,D t t ⎛⎫ ⎪⎝⎭,则1,32F t t ⎛⎫-+ ⎪⎝⎭,181332DF t t ⎛⎫∴=--+= ⎪⎝⎭,6t ∴=.此时D 与C 重合,不符合题意,∴不存在.②存在.当01t <<时,CQ DE ≠;当16t <≤时,由18,D t t ⎛⎫ ⎪⎝⎭,()1,3E ,得183DE t=-.由()6,3Q t ,()6,3C .得33CQ t =-.//DE CQ∴当DE CQ =时,四边形DECQ 为平行四边形.18333t t∴-=-.1t ∴=,2t ∴=(舍)∴当t =DECQ 为平行四边形.又DE CE ⊥ 且DE EC ≠,DECQ ∴ 为矩形.【点睛】本题主要考查了用待定系数法求反比例函数和一次函数的解析式以及平行四边形的判定、解方程、根的判别式等知识,在解答以点D 、E 、Q 、C 为顶点的四边形的四个顶点的顺序不确定,需要分情况讨论是解答本题的关键.【12题答案】【答案】(1)(3,C或(C -;(2)①()60y x x=->;②6C y ≤-或32C y -≤≤-【解析】【分析】(1)根据P 点坐标得出P'的坐标,可求PP'=4;设C (m ,n ),有PC=P'C=24,通过解方程即可得出结论;(2)①设P (c ,2c),得出P'的坐标,利用连点间的距离公式可求PP '的长,设C (s ,t ),有=''==PC P C PP,然后通过解方程可得22,=-=t s t c,再根据x y ⎧=⎪⎨⎪=⎩消元c 即可得xy=-6;②分AG 为平行四边形的边和AG 为平行四边形的对角线两种情况进行分类讨论.【详解】解:(1)∵P (1,∴P'(-1,,∴PP'=4,设C (m ,n ),∴等边△PP′C ,∴PC=P'C=4,4==∴=m22(1)(16∴-+=n解得∴m=-3或m=3.如图1,观察点C 位于第四象限,则C -3).即点P 的“等边对称点”的坐标,-3).(2)①设2,P c c ⎛⎫ ⎪⎝⎭,∴2',P c c ⎛⎫-- ⎪⎝⎭,∴'PP =,设(),C s t ,'PC P C ====,∴22t s c =-,∴223t c =,∴t =,∴C ⎛⎫ ⎪ ⎪⎝⎭或C ⎫⎪⎪⎭,∴点C 在第四象限,0c >,∴C ⎫⎪⎪⎭,令x y ⎧=⎪⎨⎪=⎩,∴6xy =-,即()60y x x=->;②已知()1,2A ,()2,1B ,则直线AB 为3y x =-+,设点(),3G a a -+,设点()0,F m ,6,C n n ⎛⎫- ⎪⎝⎭,即()1,2A ,(),3G a a -+,6,C n n ⎛⎫- ⎪⎝⎭,()0,F m 构成平行四边形,点G 在线段AB 上,12a ≤≤;当GF 为对角线时,平行四边形对角坐标之和相等;01632a na m n +=+⎧⎪⎨-++=-⎪⎩,1n a =-,01n <≤,即6C y ≤-;当GF 为边时,平行四边形GFAC ,10632a n a m n +=+⎧⎪⎨-++=-⎪⎩,1n a =+,23n ≤≤,即32C y -≤≤-;当GF 为边时,平行四边形GFCA,01632a n a m n +=+⎧⎪⎨-+-=+⎪⎩,1n a =-,10n -<≤,而点C 在第三象限,0n >,即此时点C 不存在;综上,6C y ≤-或32C y -≤≤-.【点睛】本题考查反比例函数的图象及性质,等边三角形的性质,新定义;理解题意,利用等边三角形的性质结合勾股定理求点C 的坐标是关键,数形结合解题是求y c 范围的关键.【13题答案】【答案】(1)30.(2)y =(3)满足条件的点P坐标为1P ⎛⎫ ⎪ ⎪⎝⎭,2P ⎛⎫ ⎪ ⎪⎝⎭,370,2P ⎛⎫ ⎪⎝⎭,410,2P ⎛⎫⎪⎝⎭,5P ⎫⎪⎪⎭.【解析】【分析】(1)'90906030B CO BCB ∠'=-∠=-= ;(2)求出B '的坐标即可;(3)分五种情况,分别画出图形可解决问题.【详解】解:()1 四边形ABCO 是矩形,90BCO ∴∠= ,'30ACB ACB ∠=∠= ,'906030B CO ∴∠=-= .()2如图1中,作'B H x ⊥轴于H.'30DAC ACB DAB ∠=∠=∠= ,2'4AD CD DB ∴===,'6CB ∴=,'3B H =,CH =CO =OH ∴=)'B ∴,反比例函数()0kyk x=≠的图象经过点B',k ∴=y ∴=()3如图2中,作//DQ x 轴交y =2Q ⎫⎪⎪⎭,以DQ 为边构造平行四边形可得1P ⎛⎫⎪ ⎪⎝⎭,2P ⎛⎫⎪ ⎪⎝⎭;如图3中,作'//CQ OA 交y =3'2Q ⎛⎫-- ⎪⎝⎭,以'CQ 为边构造平行四边形可得370,2P ⎛⎫ ⎪⎝⎭,410,2P ⎛⎫⎪⎝⎭;如图4中,当2Q ⎛⎫"- ⎪ ⎪⎝⎭,以CQ "为边构造平行四边形可得5P ⎫⎪⎪⎭,综上所述,满足条件的点P 坐标为1P ⎛⎫ ⎪ ⎪⎝⎭,2P ⎛⎫ ⎪ ⎪⎝⎭,370,2P ⎛⎫⎪⎝⎭,410,2P ⎛⎫⎪⎝⎭,5P ⎫⎪⎪⎭.【点睛】本题考核知识点:反比例函数,矩形,翻折,直角三角形等综合知识. 解题关键点:作辅助线,数形结合,分类讨论.(2021春·浙江嘉兴·八年级统考期末)【14题答案】【答案】(1)P (4,2),k =8;(2)D (2,4);(3)12S 1+S 2=4【解析】【分析】(1)根据12PAB S OA PA ∆=⋅,列方程求解即可得出答案;(2)根据平行四边形性质和平移规律可得出(2,2)2b D +,由点D 在函数8y x=图象上,建立方程求解即可;(3)连接BP ,运用平行四边形性质可得11122BCP BCPD S S S ∆==四边形,再利用BCP ACP BAP S S S ∆∆∆+=,利用三角形面积公式即可得出答案.【详解】解:(1)PA x ⊥ 轴于点A .(2P n ,)(0)n n >,PA n ∴=,2OA n =,211222PAB S OA PA n n n ∆∴=⋅=⨯⨯=,PAB ∆ 的面积为4,24n ∴=,0n > ,2n ∴=,(4,2)P ∴,428k ∴=⨯=;(2)(4,0)A ,(0,)B b ,点C 是线段AB 的中点,(2,)2bC ∴,四边形BCPD 是平行四边形,//BC DP ∴,BC DP =,根据平移规律可得:(2,2)2b D +,点D 在函数8yx=图象上,2(2)82b∴⨯+=,解得:4b =,(2,4)D ∴;(3)如图3,当点C 在线段AB 上时,四边形BCPD 是平行四边形,//PD AB ∴,PD BC =,//BD AC ,BD AC =,连接BP ,11122BCP BCPD S S S ∆∴==四边形,1124422BCP ACP BAP S S S AP OA ∆∆∆+==⋅=⨯⨯= ,∴12142S S +=.如图4,当点C 在AB 延长线上时,连接BP ,四边形BCPD 是平行四边形,则11122BCP BCPD S S S ∆==四边形,1124422ACP BCP BAP S S S AP OA ∆∆∆-==⋅=⨯⨯=,21142S S ∴-=.如图5,当点C 在BA 延长线上时,四边形BCPD 是平行四边形,C P BD x x x x ∴-=-,∴点D 在第二象限,不成立;综上所述,12142S S +=或21142S S -=.【点睛】本题是关于反比例函数综合题,考查了待定系数法,求一次函数与反比例函数图像交点坐标,平行四边形的判定与性质,平行四边形和三角形面积等,解题关键是熟练掌握平行四边形性质及反比例函数性质.。
反比例函数与特殊平行四边形1.如图,在平面直角坐标系中,O为坐标原点,已知▱AOBC的边OA在x轴上,BC与y轴正半轴交于点D,A(−9,0),C(−6,4),反比例函数y=k(x>0)经过点B.动点P从点B出发,沿B−O−D的折线以每秒1个单位x的速度匀速运动,动点Q同时从点A出发,沿A−O以每秒1个单位的速度匀速运动,点P,Q中有一个点到达终点,另一个点运动随即而停止.(1)求反比例函数的表达式.(2)在反比例函数的图象是否存在一点E,使得以B,D,P,E为顶点的四边形是平行四边形?若存在,请求出点P的坐标:若不存在,请说明理由.(3)过动点Q的直线始终与x轴垂直且与折线ACB交于点M,当t≥5时,在坐标平面内是否存在点N,使得以P,Q,M,N为顶点的四边形为菱形?若存在,请直接写出t的值;若不存在,请说明理由.2.(1)已知直线y =kx −2和抛物线y =x 2−2x +3,①当k =4时,求直线与抛物线的交点坐标;②当k 为何值时,直线与抛物线只有一个交点?(2)已知点A(a,0)是x 轴上的动点,B(0,42),以AB 为边在AB 右侧做正方形ABCD ,当正方形ABCD 的边与反比例函数y =4个交点时,试求a 的取值范围.3.在平面直角坐标系中,过点P (0,a )作直线l 分别交y =m x (m >0、x >0)、y =nx (n <0、x <0)于点M 、N ,(1)若m =2,MN ∥x 轴,S △MON =6,求n 的值;(2)若a =5,PM =PN ,点M 的横坐标为4,求m -n 的值;(3)如图,若m =4,n =-6,点A(d ,0)为x 轴的负半轴上一点,B 为x 轴上点A 右侧一点,AB =4,以AB 为一边向上作正方形ABCD ,若正方形ABCD 与y =m x (m >0、x >0)、y =n x (n <0、x <0)都有交点,求d 的范围.4.如图所示,一次函数y=kx+b的图象与反比例函数y=m交于A(1,t+2),B(﹣2t,﹣1)两点.x(1)求一次函数和反比例函数的函数表达式;(2)点C(x1,y1)和D(x2,y2)是反比例函数y=m x图象上任意两点,①若x1<x2<0,p=y1+y28,q=2x,试判断p、q的大小关系,并说明理由;1+x2②若x1<﹣4,0<x2<1,过C、D两点分别作直线AB的垂线,垂足分别为E、F,当x1x2=﹣4时,判断四边形CEFD的形状,并说明理由.5.正方形ABCD的顶点A(1,1),点C(3,3),反比例函数y=k(x>0).x(x>0)的关系式;(1)如图1,双曲线经过点D时求反比例函数y=kx(2)如图2,正方形ABCD向下平移得到正方形A′B′C′D′,边A'B'在x轴上,反比例函数y=k(x>0)的图象分x别交正方形A′B′C′D′的边C'D′、边B′C′于点F、E,①求△A'EF的面积;②如图3,x轴上一点P,是否存在△PEF是等腰三角形,若存在直接写出点P坐标,若不存在明理由.6.如图1,在平行四边形ABCD中,AD//x轴,AD=7,原点O是对角线AC的中点,顶点A的坐标为(﹣3,3),反比例函数y=kx(k≠0)在第一象限的图象过四边形ABCD的顶点D.(1)D点坐标为,k=.(2)①平行四边形ABCD的顶点B是否在反比例函数的图象上?为什么?②如图2,连接BD并延长,设直线BD解析式为y=k1x,根据图象直接写出不等式k1x<k x的x的取值范围;(3)是否存在两点P、Q分别在反比例函数图象的两支上,使得四边形AQCP是菱形?若存在,求出P、Q两点的坐标.7.如图,四边形ABCD的四个顶点分别在反比例函数y=mx 与y=nx(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P,已知点B的横坐标为4.(1)当m=4,n=16时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m、n之间的数量关系:若不能,试说明理由.8.如图,直线y=12x与y=kx(k>0)在第一象限内的交于点P(a,12a),且OP=20.(1)求a,k的值;(2)A为x正半轴上的点,B为直线y=12x上的一点,C为平面内一点;①当四边形OABC是以点P为对角线交点的矩形时,求直线AC的解析式;②当四边形OABC是以点P为对角线交点的菱形时,直接写出点A、C的坐标,并判断点C是否在y=kx上.9.如图所示,M、N、P在第二象限,横坐标分别是﹣4、﹣2、﹣1,双曲线y=k过M、N、P三点,且MN=xNP.(1)求双曲线的解析式;于另一点Q,求Q点坐标;(2)过P点的直线l交x轴于A,交y轴于B,且PA=4AB,且交y=kx(3)以PN为边(顺时针方向)作正方形PNEF,平移正方形使N落在x轴上,点P、E对应的点P′、E'正好落上,求F对应点F′的坐标.在反比例函数y=bx10.我们知道求函数图象的交点坐标,可以联立两个函数解析式组成方程组,方程组的解就是交点的坐标.如:求直线y=2x+3与y=﹣x+6的交点坐标,我们可以联立两个解析式得到方程组{y=2x+3y=−x+6,解得{x=1y=5,所以直线y=2x+3与y=﹣x+6的交点坐标为(1,5).请利用上述知识解决下列问题:(1)已知直线y=kx﹣2和抛物线y=x2﹣2x+3,①当k=4时,求直线与抛物线的交点坐标;②当k为何值时,直线与抛物线只有一个交点?(2)已知点A(a,0)是x轴上的动点,B(0,42),以AB为边在AB右侧做正方形ABCD,当正方形ABCD的边与反比例函数y4个交点时,试求a的取值范围.谢谢观看。
第二轮复习---------反比例函数专题1.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.42.如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠AOB=45,反比例函数kyx(k>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标;(3)在(2)中的条件下,过点F作EF∥OB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PA,PO.是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.3.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3 B.6 C.D.4.如图,已知直线l经过点A(1,0),与双曲线y=mx(x>0)交于点B(2,1).过点P(p,p-1)(p>1)作x轴的平行线分别交双曲线y=mx(x>0)和y=-mx(x<0)于点M、N.(1)求m的值和直线l的解析式;(2)若点P在直线y=2上,求证:△PMB∽△PNA;(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.O A Blxy5.如图,已知直线y=x 与双曲线y=(k >0)交于A 、B 两点,点B 的坐标为(﹣4,﹣2),C 为双曲线y=(k >0)上一点,且在第一象限内,若△AOC 的面积为6,则点C 的坐标为 . 6.已知双曲线k y x=与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C . (1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.(第28题)y O ·AD xB CEN M ·7. 如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC交于点D,直线1y x b2=-+过点D,与线段AB相交于点F,求点F的坐标;(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.8.如图,直线AB 交双曲线ky x=于A、B ,交x 轴于点C,B 为线段AC 的中点,过点B 作BM ⊥x 轴于M ,连结OA.若OM=2MC,S ⊿OAC =12,则k 的值为 .9.在矩形AOBC 中,OB=6,OA=4,分别以OB ,OA 所在直线为x 轴和y 轴建立如图所示的平面直角坐标系,F 是边BC 上的一个动点(不与B ,C 重合),过F 点的反比例函数)0(>=k xky 的图像与AC 边交于点E. (1) 求证:AE×AO=BF×BO;(2) 若点E 的坐标为(2,4),求经过O 、E 、F 三点的抛物线的解析式;(3) 是否存在这样的点F ,使得将△CEF 沿EF 对折后,C 点恰好落在OB 上?若存在,求出此时的OF 长;若不存在,请说明理由.图610.如图,直线 6y x =- 交x 轴、y 轴于A 、B 两点,P 是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。
专题反比例函数及其应用(41题)一、单选题1.(2024·安徽·中考真题)已知反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,则k的值为()A.-3B.-1C.1D.3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出y=2-3=-1,代入反比例函数求解即可【详解】解:∵反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,∴y=2-3=-1,∴-1=k3,∴k=-3,故选:A2.(2024·重庆·中考真题)反比例函数y=-10x的图象一定经过的点是()A.1,10B.-2,5C.2,5D.2,8【答案】B【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当x=1时,y=-101=-10,图象不经过1,10,故A不符合要求;当x=-2时,y=-10-2=5,图象一定经过-2,5,故B符合要求;当x=2时,y=-102=-5,图象不经过2,5,故C不符合要求;当x=2时,y=-102=-5,图象不经过2,8,故D不符合要求;故选:B.3.(2024·天津·中考真题)若点A x1,-1,B x2,1,C x3,5都在反比例函数y=5x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x1<x3<x2C.x3<x2<x1D.x2<x1<x3【答案】B【分析】本题主要考查了比较反比例函数值的大小,根据反比例函数性质即可判断.【详解】解:∵k=5>0,∴反比例函数y =5x的图象分布在第一、三象限,在每一象限y 随x 的增大而减小,∵点B x 2,1 ,C x 3,5 ,都在反比例函数y =5x的图象上,1<5,∴x 2>x 3>0.∵-1<0,A x 1,-1 在反比例函数y =5x的图象上,∴x 1<0,∴x 1<x 3<x 2.故选:B .4.(2024·广西·中考真题)已知点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,若x 1<0<x 2,则有()A.y 1<0<y 2B.y 2<0<y 1C.y 1<y 2<0D.0<y 1<y 2【答案】A【分析】本题考查了反比例函数的图象,熟练掌握反比例函数图象上点的坐标特征是解题的关键.根据点M x 1,y 1 ,N x 2,y 2 在反比例函数图象上,则满足关系式y =2x,横纵坐标的积等于2,结合x 1<0<x 2即可得出答案.【详解】解:∵点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,∴x 1y 1=2,x 2y 2=2,∵x 1<0<x 2,∴y 1<0,y 2>0,∴y 1<0<y 2.故选:A .5.(2024·浙江·中考真题)反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点.下列正确的选项是()A.当t <-4时,y 2<y 1<0B.当-4<t <0时,y 2<y 1<0C.当-4<t <0时,0<y 1<y 2D.当t >0时,0<y 1<y 2【答案】A【分析】本题考查了反比例函数图象上的点的坐标特征,由于反比例函数y =4x,可知函数位于一、三象限,分情况讨论,根据反比例函数的增减性判断出y 1与y 2的大小.【详解】解:根据反比例函数y =4x,可知函数图象位于一、三象限,且在每个象限中,y 都是随着x 的增大而减小,反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点,当t<t+4<0,即t<-4时,0>y1>y2;当t<0<t+4,即-4<t<0时,y1<0<y2;当0<t<t+4,即t>0时,y1>y2>0;故选:A.6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若x=5,则y=100B.若y=125,则x=4C.若x减小,则y也减小D.若x减小一半,则y增大一倍【答案】C【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x度,能使用y天.∴xy=500,∴y=500x,当x=5时,y=100,故A不符合题意;当y=125时,x=500125=4,故B不符合题意;∵x>0,y>0,∴当x减小,则y增大,故C符合题意;若x减小一半,则y增大一倍,表述正确,故D不符合题意;故选:C.7.(2024·四川泸州·中考真题)已知关于x的一元二次方程x2+2x+1-k=0无实数根,则函数y=kx与函数y=2x的图象交点个数为()A.0B.1C.2D.3【答案】A【分析】本题考查了根的判别式及一次函数和反比例函数的图象.首先根据一元二次方程无实数根确定k 的取值范围,然后根据一次函数和反比例函数的性质确定其图象的位置.【详解】解:∵方程x2+2x+1-k=0无实数根,∴Δ=4-41-k<0,解得:k<0,则函数y=kx的图象过二,四象限,而函数y=2x的图象过一,三象限,∴函数y=kx与函数y=2x的图象不会相交,则交点个数为0,故选:A.8.(2024·重庆·中考真题)已知点-3,2 在反比例函数y =kxk ≠0 的图象上,则k 的值为()A.-3B.3C.-6D.6【答案】C【分析】本题考查了待定系数法求反比例解析式,把-3,2 代入y =kxk ≠0 求解即可.【详解】解:把-3,2 代入y =kxk ≠0 ,得k =-3×2=-6.故选C .9.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数y =kx的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,OE =2AE ,若四边形ODAF 的面积为2,则k 的值是()A.25B.35C.45D.85【答案】D【分析】本题考查了矩形的性质、三角形面积的计算、反比例函数的图象和性质、相似三角形的判定和性质;熟练掌握矩形的性质和反比例函数的性质是解决问题的关键.过点E 作EM ⊥OC ,则EM ∥AC ,设E a ,k a ,由△OME ∽△OCA ,可得OC =32a ,AC =32⋅ka,再由S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF ,列方程,即可得出k 的值.【详解】过点E 作EM ⊥OC ,则EM ∥AC ,∴△OME ∽△OCA ,∴OM OC =EM AC =OEOA设E a ,k a ,∵OE =2AE ∴OM OC =EM AC=23,∴OC =32a ,AC =32⋅ka∴S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF =32a ⋅32⋅ka即k 2+k 2+2=32a ⋅32⋅k a ,解得:k =85故选D10.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线y =12xx >0 经过A 、B 两点,连接OA 、AB ,过点B 作BD ⊥y 轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则△AEB 的面积是()A.4.5B.3.5C.3D.2.5【答案】A【分析】本题考查了反比例函数,相似三角形的判定与性质等知识,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a ,证明△AFE ∽△ODE ,有AF OD =AE OE=EF DE ,根据E 为AO 的中点,可得AF =OD ,EF =DE ,进而有EF =DE =12DF =12a ,AF =OD =12y A =6a ,可得y B =OD =6a ,x B=2a ,则有BE =BD -DE=32a ,问题随之得解.【详解】如图,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a,a >0,∵BD ⊥y 轴,AF ⊥BD ,∴AF ∥y 轴,DF =a ,∴△AFE ∽△ODE ,∴AF OD =AE OE=EFDE ,∵E 为AO 的中点,∴AE =OE ,∴AF OD =AE OE=EFDE =1,∴AF =OD ,EF =DE ∴EF =DE =12DF =12a ,AF =OD =12y A =6a,∵OD =y B ,∴y B =OD =6a,∴xB =2a ,∴BD=x B=2a,∴BE=BD-DE=32a,∴S△ABE=12×AF×BE=12×6a×32a=92=4.5,故选:A.11.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数y=4x+2的图像与坐标轴的交点个数是()A.0B.1C.2D.4【答案】B【分析】根据函数表达式计算当x=0时y的值,可得图像与y轴的交点坐标;由于4x+2的值不可能为0,即y≠0,因此图像与x轴没有交点,由此即可得解.本题主要考查了函数图像与坐标轴交点个数,掌握求函数图像与坐标轴交点的计算方法是解题的关键.【详解】当x=0时,y=42=2,∴y=4x+2与y轴的交点为0,2;由于4x+2是分式,且当x≠-2时,4x+2≠0,即y≠0,∴y=4x+2与x轴没有交点.∴函数y=4x+2的图像与坐标轴的交点个数是1个,故选:B.12.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O是坐标原点,点A4,2在函数y=k xk>0,x>0的图象上.将直线OA沿y轴向上平移,平移后的直线与y轴交于点B,与函数y=k xk>0,x>0的图象交于点C.若BC=5,则点B的坐标是()A.0,5B.0,3C.0,4D.0,25【答案】B【分析】本题主要考查反比例函数、解直角三角形、平移的性质等知识点,掌握数形结合思想成为解题的关键.如图:过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,先根据点A坐标计算出sin∠OAE、k值,再根据平移、平行线的性质证明∠DBC=∠OAE,进而根据sin∠DBC=CDBC=sin∠OAE求出CD,最后代入反比例函数解析式取得点C的坐标,进而确定CD=2,OD=4,再运用勾股定理求得BD,进而求得OB即可解答.【详解】解:如图,过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,则AE∥y轴,∵A4,2,∴OE=4,OA=22+42=25,∴sin∠OAE=OEOA =425=255.∵A4,2在反比例函数的图象上,∴k=4×2=8.∴将直线OA向上平移若干个单位长度后得到直线BC,∴OA∥BC,∴∠OAE=∠BOA,∵AE∥y轴,∴∠DBC=∠BOA,∴∠DBC=∠OAE,∴sin∠DBC=CDBC =sin∠OAE=255,∴CD5=255,解得:CD=2,即点C的横坐标为2,将x=2代入y=8x,得y=4,∴C点的坐标为2,4,∴CD=2,OD=4,∴BD=BC2-CD2=1,∴OB=OD-BD=4-1=3,∴B0,3故选:B.13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC中,AB=AC,反比例函数y=kxk≠0的图象经过点A、B及AC的中点M,BC∥x轴,AB与y轴交于点N.则ANAB的值为()A.13B.14C.15D.25【答案】B【分析】本题考查反比例函数的性质,平行线分线段成比例定理,等腰三角形的性质等知识,找到坐标之间的关系是解题的关键.作辅助线如图,利用函数表达式设出A 、B 两点的坐标,利用D ,M 是中点,找到坐标之间的关系,利用平行线分线段成比例定理即可求得结果.【详解】解:作过A 作BC 的垂线垂足为D ,BC 与y 轴交于E 点,如图,在等腰三角形ABC 中,AD ⊥BC ,D 是BC 中点,设A a ,k a,B b ,kb ,由BC 中点为D ,AB =AC ,故等腰三角形ABC 中,∴BD =DC =a -b ,∴C 2a -b ,kb,∵AC 的中点为M ,∴M 3a -b 2,ka +kb 2 ,即3a -b 2,k a +b 2ab,由M 在反比例函数上得M 3a -b 2,k 3a -b2,∴k a +b 2ab=k3a -b 2,解得:b =-3a ,由题可知,AD ∥NE ,∴AN AB=DE BD =a a -b =a a +3a =14.故选:B .二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数y =kxk ≠0 的图象经过点3,y 1 和-3,y 2 ,则y1+y2的值是.【答案】0【分析】本题考查了反比例函数图象上点的坐标特征,已知自变量求函数值,熟练掌握反比例函数的性质是解题的关键.将点3,y1和-3,y2代入y=kxk≠0,求得y1和y2,再相加即可.【详解】解:∵函数y=kxk≠0的图象经过点3,y1和-3,y2,∴有y1=k3,y2=-k3,∴y1+y2=k3-k3=0,故答案为:0.15.(2024·云南·中考真题)已知点P2,n在反比例函数y=10x的图象上,则n=.【答案】5【分析】本题考查反比例函数图象上点的坐标特征,将点P2,n代入y=10x求值,即可解题.【详解】解:∵点P2,n在反比例函数y=10x的图象上,∴n=102=5,故答案为:5.16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线y1=ax+b a≠0与双曲线y2=kxk≠0交于点A-1,m,B2,-1.则满足y1≤y2的x的取值范围.【答案】-1≤x<0或x≥2【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当-1≤x<0或x≥2时,y1≤y2,∴满足y1≤y2的x的取值范围为-1≤x<0或x≥2,故答案为:-1≤x<0或x≥2.17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f与弦长l成反比例关系,即f=kl(k为常数.k≠0),若某乐器的弦长l为0.9米,振动频率f为200赫兹,则k的值为.【答案】180【分析】本题考查了待定系数法求反比例函数解析式,把l=0.9,f=200代入f=kl求解即可.【详解】解:把l=0.9,f=200代入f=kl,得200=k0.9,解得k=180,故答案为:180.18.(2024·陕西·中考真题)已知点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,若0<m<1,则y1+y20.【答案】</小于【分析】本题主要考查了反比例函数的性质,先求出y1=52,y2=-5m,再根据0<m<1,得出y2<-5,最后求出y1+y2<0即可.【详解】解:∵点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,∴y1=52,y2=-5m,∵0<m<1,∴y2<-5,∴y1+y2<0.故答案为:<.19.(2024·湖北武汉·中考真题)某反比例函数y=kx具有下列性质:当x>0时,y随x的增大而减小,写出一个满足条件的k的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当x>0时,y随x的增大而减小,∴k>0故答案为:1(答案不唯一).20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数y=kx(x<0)的图象经过平行四边形ABCO的顶点A,OC在x轴上,若点B-1,3,S▱ABCO=3,则实数k的值为.【答案】-6【分析】本题考查了反比例函数,根据A ,B 的纵坐标相同以及点A 在反比例函数上得到A 的坐标,进而用代数式表达AB 的长度,然后根据S ▱ABCO =3列出一元一次方程求解即可.【详解】∵ABCO 是平行四边形∴A ,B 纵坐标相同∵B -1,3∴A 的纵坐标是3∵A 在反比例函数图象上∴将y =3代入函数中,得到x =k 3∴A k 3,3∴AB =-1-k 3∵S ▱ABCO =3,B 的纵坐标为3∴AB ×3=3即:-1-k 3×3=3解得:k =-6故答案为:-6.21.(2024·内蒙古包头·中考真题)若反比例函数y 1=2x ,y 2=-3x,当1≤x ≤3时,函数y 1的最大值是a ,函数y 2的最大值是b ,则a b =.【答案】12/0.5【分析】此题主要考查了反比例函数的性质,负整数指数幂,正确得出a 与b 的关系是解题关键.直接利用反比例函数的性质分别得出a 与b ,再代入a b 进而得出答案.【详解】解:∵函数y 1=2x,当1≤x ≤3时,函数y 1随x 的增大而减小,最大值为a ,∴x =1时,y 1=2=a ,∵y 2=-3x ,当1≤x ≤3时,函数y 2随x 的增大而减大,函数y 2的最大值为y 2=-1=b ,∴a b =2-1=12.故答案为:12.22.(2024·四川遂宁·中考真题)反比例函数y =k -1x 的图象在第一、三象限,则点k ,-3 在第象限.【答案】四/4【分析】本题考查了反比例函数的性质,点所在的象限,根据反比例函数的性质得出k >1,进而即可求解.【详解】解:∵反比例函数y =k -1x的图象在第一、三象限,∴k -1>0∴k >1∴点k ,-3 在第四象限,故答案为:四.23.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数y =k x (x >0)的图像上,BC ⊥x 轴于点C ,∠BAC =30°,将△ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为.【答案】23【分析】本题考查了反比例函数k 的几何意义,掌握求解的方法是解题的关键.如图,过点D 作DE ⊥x 轴于点E .根据∠BAC =30°,BC ⊥x ,设BC =a ,则AD =AC =3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,即可得AE =32a ,DE =32a ,解得B (1+3a ,a ),D 1+32a ,32a ,根据点B 的对应点D 落在该反比例函数的图像上,即可列方程求解;【详解】解:如图,过点D 作DE ⊥x 轴于点E .∵点A 的坐标为(1,0),∴OA =1,∵∠BAC =30°,BC ⊥x 轴,设BC =a ,则AD =AC =BC tan30°=3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,∴∠DAC =60°,∠ADE =30°,∴AE =32a ,DE =AD ·sin60°=32a ,∴B (1+3a ,a ),D 1+32a ,32a ,∵点B 的对应点D 落在该反比例函数的图像上,∴k =a 1+3a =32a ⋅1+32a,解得:a =233,∵反比例函数图象在第一象限,∴k =2331+233×3 =23,故答案为:23.24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为5,0 ,2,6 ,过点B 作BC ∥x 轴交y 轴于点C ,点D 为线段AB 上的一点,且BD =2AD .反比例函数y =k x(x >0)的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是.【答案】12【分析】本题主要考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数k 的几何意义,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,由点A ,B 的坐标分别为5,0 ,2,6 得BC =OM =2,BM =OC =6,AM =3,然后证明△ADN ∽△ABM 得DN BM =AN AM =AD AB ,求出DN =2,则ON =OA -AN =4,故有D 点坐标为4,2 ,求出反比例函数解析式y =8x ,再求出E 43,6 ,最后根据S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD 即可求解,熟练掌握知识点的应用是解题的关键.【详解】如图,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,∵点A ,B 的坐标分别为5,0 ,2,6 ,∴BC =OM =2,BM =OC =6,AM =3,∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN BM =AN AM =AD AB,∵BD =2AD ,∴DN 6=AN 3=13,∴DN =2,AN =1,∴ON =OA -AN =4,∴D 点坐标为4,2 ,代入y =k x 得,k =2×4=8,∴反比例函数解析式为y =8x,∵BC ∥x 轴,∴点E 与点B 纵坐标相等,且E 在反比例函数图象上,∴E 43,6,∴CE =43,∴S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD =12×2+5 ×6-12×6×43-12×5×2=12,故答案为:12.25.(2024·四川广元·中考真题)已知y =3x 与y =k x x >0 的图象交于点A 2,m ,点B 为y 轴上一点,将△OAB 沿OA 翻折,使点B 恰好落在y =k x x >0 上点C 处,则B 点坐标为.【答案】0,4【分析】本题考查了反比例函数的几何综合,折叠性质,解直角三角形的性质,勾股定理,正确掌握相关性质内容是解题的关键.先得出A 2,23 以及y =43xx >0 ,根据解直角三角形得∠1=30°,根据折叠性质,∠3=30°,然后根据勾股定理进行列式,即OB =OC =23 2+22=4.【详解】解:如图所示:过点A 作AH ⊥y 轴,过点C 作CD ⊥x 轴,∵y =3x 与y =k xx >0 的图象交于点A 2,m ,∴把A 2,m 代入y =3x ,得出m =3×2=23,∴A 2,23 ,把A 2,23 代入y =k xx >0 ,解得k =2×23=43,∴y =43xx >0 ,设C m ,43m,在Rt △AHO ,tan ∠1=AH OH =223=33,∴∠1=30°,∵点B 为y 轴上一点,将△OAB 沿OA 翻折,∴∠2=∠1=30°,OC =OB ,∴∠3=90°-∠1-∠2=30°,则CD OD=tan ∠3=33=43m m ,解得m =23(负值已舍去),∴C 23,2 ,∴OB =OC =23 2+22=4,∴点B 的坐标为0,4 ,故答案为:0,4 .26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,tan ∠AOC =43,且点A 落在反比例函数y =3x 上,点B 落在反比例函数y =k x k ≠0 上,则k =.【答案】8【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A 、B 作x 轴的垂线,垂足分别为D 、E ,然后根据特殊三角函数值结合勾股定理求得A 32,2 ,OA =52,再求得点B 4,2 ,利用待定系数法求解即可.【详解】解:过点A 、B 作x 轴的垂线,垂足分别为D 、E ,如图,∵tan ∠AOC =43,∴AD OD =43,∴设AD =4a ,则OD =3a ,∴点A 3a ,4a,∵点A 在反比例函数y =3x 上,∴3a ⋅4a =3,∴a =12(负值已舍),则点A 32,2,∴AD =2,OD =32,∴OA =OD 2+AD 2=52,∵四边形AOCB 为菱形,∴AB =OA =52,AB ∥CO ,∴点B 4,2 ,∵点B 落在反比例函数y =k x k ≠0 上,∴k =4×2=8,故答案为:8.27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数y =k x(x >0)的图象上,A (1,0),C (0,2).将线段AB 沿x 轴正方向平移得线段A B (点A 平移后的对应点为A ),A B 交函数y =k x (x >0)的图象于点D ,过点D 作DE ⊥y 轴于点E ,则下列结论:①k =2;②△OBD 的面积等于四边形ABDA 的面积;③A E 的最小值是2;④∠B BD =∠BB O .其中正确的结论有.(填写所有正确结论的序号)【答案】①②④【分析】由B 1,2 ,可得k =1×2=2,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,证明四边形A DEO 为矩形,可得当OD 最小,则A E 最小,设D x ,2xx >0 ,可得A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,可得B n +1,2 ,证明△B BD ∽△A OB ,可得∠B BD =∠B OA ,再进一步可得答案.【详解】解:∵A (1,0),C (0,2),四边形OABC 是矩形;∴B 1,2 ,∴k =1×2=2,故①符合题意;2如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,05∵S △AOB =S △A OD =12×2=1,∴S △BOK =S 四边形AKDA,∴S △BOK +S △BKD =S 四边形AKDA+S △BKD ,∴△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,∵DE ⊥y 轴,∠DA O =∠EOA =90°,∴四边形A DEO 为矩形,∴A E =OD ,∴当OD 最小,则A E 最小,设D x ,2x x >0 ,∴OD 2=x 2+4x 2≥2⋅x ⋅2x =4,∴OD ≥2,∴A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,∴B n +1,2 ,∵反比例函数为y =2x,四边形A B CO 为矩形,∴∠BB D =∠OA B =90°,D n +1,2n +1 ,∴BB =n ,OA =n +1,B D =2-2n +1=2n n +1,A B =2,∴BB OA =n n +1=2n n +12=B D A B,∴△B BD ∽△A OB ,∴∠B BD =∠B OA ,∵B C ∥A O ,∴∠CB O =∠A OB ,∴∠B BD =∠BB O ,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点0,1 是函数y =x +1图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是(填序号);①y =-x +3;②y =2x;③y =-x 2+2x -1.(2)若一次函数y =mx -3m 图象上存在“近轴点”,则m 的取值范围为.【答案】③-12≤m <0或0<m ≤12【分析】本题主要考查了新定义--“近轴点”.正确理解新定义,熟练掌握一次函数,反比例函数,二次函数图象上点的坐标特点,是解决问题的关键.(1)①y =-x +3中,取x =y =1.5,不存在“近轴点”;②y =2x,由对称性,取x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,取x =1时,y =0,得到1,0 是y =-x 2+2x -1的“近轴点”;(2)y =mx -3m =m x -3 图象恒过点3,0 ,当直线过1,-1 时,m =12,得到0<m ≤12;当直线过1,1 时,m =-12,得到-12≤m <0.【详解】(1)①y =-x +3中,x =1.5时,y =1.5,不存在“近轴点”;②y =2x,由对称性,当x =y 时,x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,x =1时,y =0,∴1,0 是y =-x 2+2x -1的“近轴点”;∴上面三个函数的图象上存在“近轴点”的是③故答案为:③;(2)y =mx -3m =m x -3 中,x =3时,y =0,∴图象恒过点3,0 ,当直线过1,-1 时,-1=m 1-3 ,∴m =12,∴0<m ≤12;当直线过1,1 时,1=m 1-3 ,∴m =-12,∴-12≤m <0;∴m 的取值范围为-12≤m <0或0<m ≤12.故答案为:-12≤m <0或0<m ≤12.三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,与反比例函数y =k x x >0 的图象交于点A 2,4 .过点B 0,2 作x 轴的平行线分别交y =ax +b 与y =k xx >0 的图象于C ,D 两点.(1)求一次函数y =ax +b 和反比例函数y =k x的表达式;(2)连接AD ,求△ACD 的面积.【答案】(1)一次函数y =ax +b 的解析式为y =12x +3;反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)6【分析】本题主要考查了一次函数与反比例函数综合:(1)先根据一次函数图象的平移规律y =ax +b =ax +3,再把点A 的坐标分别代入对应的一次函数解析式和反比例函数解析式中,利用待定系数法求解即可;(2)先分别求出C 、D 的坐标,进而求出CD 的长,再根据三角形面积计算公式求解即可.【详解】(1)解:∵将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,∴y =ax +b =ax +3,把A 2,4 代入y =ax +3中得:2a +3=4,解得a =12,∴一次函数y =ax +b 的解析式为y =12x +3;把A 2,4 代入y =k x x >0 中得:4=k 2x >0 ,解得k =8,∴反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)解:∵BC ∥x 轴,B 0,2 ,∴点C 和点D 的纵坐标都为2,在y =12x +3中,当y =12x +3=2时,x =-2,即C -2,2 ;在y =8x x >0 中,当y =8x =2时,x =4,即D 4,2 ;∴CD =4--2 =6,∵A 2,4 ,∴S △ACD =12CD ⋅y A -y C =12×6×4-2 =6.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y =-x +b 和反比例函数y =9x 的图象相交于点A 1,m ,B n ,1 .(1)求点A ,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式-x +b >9x的解集.【答案】(1)A 1,9 ,B 9,1 ,y =-x +10(2)x <0或1<x <9【分析】本题主要考查了一次函数与反比函数的交点问题:(1)分别把点A 1,m ,点B n ,1 代入y =9x,可求出点A ,B 的坐标,即可求解;(2)直接观察图象,即可求解.【详解】(1)解:把点A 1,m 代入y =9x 中,得:m =91=9,∴点A 的坐标为1,9 ,把点B n ,1 代入y =9x 中,得:n =91=9,∴点B 的坐标为9,1 ,把x =1,y =9代入y =-x +b 中得:-1+b =9,∴b =10,∴一次函数的解析式为y =-x +10,(2)解:根据一次函数和反比例函数图象,得:当x <0或1<x <9时,一次函数y =-x +b 的图象位于反比例函数y =9x的图象的上方,∴-x +b >9x的解集为x <0或1<x <9.31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .【答案】(1)I =36R(2)12A【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当R =3Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为I =URU ≠0 ,把9,4 代入I =U RU ≠0 中得:4=U9U ≠0 ,解得U =36,∴这个反比例函数的解析式为I =36R;(2)解:在I =36R中,当R =3Ω时,I =363=12A ,∴此时的电流I 为12A .32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数y =2x +b 与y =kx部分自变量与函数值的对应关系:x -72a12x +ba1________kx________________7(1)求a、b的值,并补全表格;(2)结合表格,当y=2x+b的图像在y=kx的图像上方时,直接写出x的取值范围.【答案】(1)a=-2b=5,补全表格见解析(2)x的取值范围为-72<x<0或x>1;【分析】本题考查的是一次函数与反比例函数的综合,利用图像法写自变量的取值范围;(1)根据表格信息建立方程组求解a,b的值,再求解k的值,再补全表格即可;(2)由表格信息可得两个函数的交点坐标,再结合函数图像可得答案.【详解】(1)解:当x=-72时,2x+b=a,即-7+b=a,当x=a时,2x+b=1,即2a+b=1,∴a-b=-72a+b=1,解得:a=-2b=5,∴一次函数为y=2x+5,当x=1时,y=7,∵当x=1时,y=kx=7,即k=7,∴反比例函数为:y=7x,当x=-72时,y=7÷-72=-2,当y=1时,x=a=-2,当x=-2时,y=-7 2,补全表格如下:x-72-212x+b-217kx-2-7 27(2)由表格信息可得:两个函数的交点坐标分别为-72,-2,1,7 ,∴当y=2x+b的图像在y=kx的图像上方时,x的取值范围为-72<x<0或x>1;33.(2024·湖北·中考真题)一次函数y=x+m经过点A-3,0,交反比例函数y=kx于点B n,4.(1)求m,n,k;(2)点C在反比例函数y=kx第一象限的图象上,若S△AOC<S△AOB,直接写出C的横坐标a的取值范围.【答案】(1)m=3,n=1,k=4;(2)a>1.【分析】本题主要考查了一次函数和反比例函数的综合,求反比例函数解析式,解题的关键是熟练掌握数形结合的思想.(1)利用一次函数y=x+m经过点A-3,0,点B n,4,列式计算求得m=3,n=1,得到点B1,4,再利用待定系数法求解即可;(2)利用三角形面积公式求得S△AOB=6,得到32y C<6,据此求解即可.【详解】(1)解:∵一次函数y=x+m经过点A-3,0,点B n,4,∴-3+m=0 n+m=4 ,解得m=3 n=1 ,∴点B1,4,∵反比例函数y=kx经过点B1,4,∴k=1×4=4;(2)解:∵点A-3,0,点B1,4,∴AO =3,∴S △AOB =12AO ×y B =12×3×4=6,S △AOC =12AO ×y C =32y C ,由题意得32y C<6,∴y C <4,∴x C >1,∴C 的横坐标a 的取值范围为a >1.34.(2024·四川凉山·中考真题)如图,正比例函数y 1=12x 与反比例函数y 2=kxx >0 的图象交于点A m ,2 .(1)求反比例函数的解析式;(2)把直线y 1=12x 向上平移3个单位长度与y 2=kxx >0 的图象交于点B ,连接AB ,OB ,求△AOB 的面积.【答案】(1)y 2=8x(2)6【分析】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移等知识,熟练掌握函数的平移法则是关键.(1)待定系数法求出反比例函数解析式即可;(2)先得到平移后直线解析式,联立方程组求出点B 坐标,根据平行线间的距离可得S △AOB =S △ADO ,代入数据计算即可.【详解】(1)解:∵点A (m ,2)在正比例函数图象上,∴2=12m ,解得m =4,∴A (4,2),∵A (4,2)在反比例函数图象上,∴k =8,∴反比例函数解析式为y 2=8x.(2)解:把直线y 1=12x 向上平移3个单位得到解析式为y =12x +3,令x =0,则y =3,∴记直线与y 轴交点坐标为D (0,3),连接AD ,联立方程组y =8xy =12x +3,解得x =2y =4,x =-8y =-1 (舍去),∴B (2,4),由题意得:BD ∥AO ,∴△AOB ,△AOD 同底等高,∴S △AOB =S △ADO =12OD ⋅x A =12×3×4=6.35.(2024·贵州·中考真题)已知点1,3 在反比例函数y =kx的图象上.(1)求反比例函数的表达式;(2)点-3,a ,1,b ,3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)y =3x(2)a <c <b ,理由见解析【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点1,3 代入y =kx可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【详解】(1)解:把1,3 代入y =k x ,得3=k 1,∴k =3,∴反比例函数的表达式为y =3x;(2)解:∵k =3>0,∴函数图象位于第一、三象限,∵点-3,a ,1,b ,3,c 都在反比例函数的图象上,-3<0<1<3,∴a <0<c <b ,∴a <c <b .36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数y =kxx >0 的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为.【答案】(1)y =6x(2)见解析(3)92【分析】本题考查了待定系数法求反比例函数解析,画反比例函数图象,平移的性质等知识,解题的关键是:(1)利用待定系数法求解即可;(2)分别求出x =1,x =2,x =6对应的函数值,然后描点、连线画出函数图象即可;(3)求出平移后点E 对应点的坐标,利用平移前后对应点的横坐标相减即可求解.【详解】(1)解:反比例函数y =kx的图象经过点A 3,2 ,∴2=k3,∴k =6,∴这个反比例函数的表达式为y =6x;(2)解:当x =1时,y =6,当x =2时,y =3,当x =6时,y =1,∴反比例函数y =6x的图象经过1,6 ,2,3 ,6,1 ,画图如下:(3)解:∵E 6,4 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当y =4时,4=6x,解得x =32,∴平移距离为6-32=92.故答案为:92.37.(2024·四川乐山·中考真题)如图,已知点A 1,m 、B n ,1 在反比例函数y =3xx >0 的图象上,过点A 的一次函数y =kx +b 的图象与y 轴交于点C 0,1 .(1)求m 、n 的值和一次函数的表达式;(2)连接AB ,求点C 到线段AB 的距离.【答案】(1)m =3,n =3,y =2x +1(2)点C 到线段AB 的距离为322【分析】(1)根据点A 1,m 、B n ,1 在反比例函数y =3x图象上,代入即可求得m 、n 的值;根据一次函数y =kx +b 过点A 1,3 ,C 0,1 ,代入求得k ,b ,即可得到表达式;(2)连接BC ,过点A 作AD ⊥BC ,垂足为点D ,过点C 作CE ⊥AB ,垂足为点E ,可推出BC ∥x 轴,BC 、AD 、DB 的长度,然后利用勾股定理计算出AB 的长度,最后根据S △ABC =12BC ⋅AD =12AB ⋅CE ,计算得CE 的长度,即为点C 到线段AB 的距离.【详解】(1)∵点A 1,m 、B n ,1 在反比例函数y =3x图象上。
专题11 反比例函数的性质与图象判断知识对接考点一、反比例函数的概念 1.一般地,形如xky (k ≠0,k 为常数)的函数称为反比例函数,其中自变量x 的取值范围是x ≠0.2.确定反比例函数的解析式,实质上就是确定比例系数k 的值,找出双曲线上任意一点P(x,y),利用xy=k,即可求出双曲线的解析式. 考点二、反比例函数的图像与性质注意:讨论反比例函数的增减性时需强调在每一象限内或强调x>0(或x<0).专项训练一、单选题1.如图,是某个反比例函数图像的一个分支,则它的另一个分支必在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【分析】读图可知:这个反比例函数图象的一个分支在第一象限,即k >0;则它的另一个分支必在第三象限. 【详解】解:由于反比例函数图象的两个分支分别位于一、三或二、四象限; 由图可知,它的另一个分支必在第三象限. 故选:C . 【点睛】本题考查反比例函数图象特点:反比例函数ky x=的图象是双曲线,当k >0时,它的两个分支分别位于第一、三象限;当k <0时,它的两个分支分别位于第二、四象限.2.如图,原点为圆心的圆与反比例函数3y x=的图像交于A 、B 、C 、D 四点,已知点A 的横坐标为1-,则点C 的横坐标为( )A .4B .3C .2D .1【答案】B 【分析】因为圆既是轴对称图形又是中心对称图形,故关于原点对称;而双曲线也既是轴对称图形又是中心对称图形,故关于原点对称,且关于y =x 和y =−x 对称. 【详解】把1x =-代入3y x=,得3y =,故A 点坐标为(1,3)A -. ∵A 、C 关于y x =对称, ∵点C 坐标为(3,1)-, ∵点C 的横坐标为3. 故选:B. 【点睛】本题主要考查了反比例函数图象的中心对称性和轴对称性,要熟练掌握,灵活运用. 3.若点A (﹣5,y 1),B (1,y 2),C (5,y 3)都在反比例函数y =﹣5x的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 1<y 2<y 3 B .y 2<y 3<y 1 C .y 1<y 3<y 2 D .y 3<y 1<y 2【答案】B 【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论. 【详解】解:∵反比例函数y =﹣5x中,k =﹣5<0,∵函数图象的两个分支分别位于二四象限,且在每一象限内,y 随x 的增大而增大. ∵﹣5<0<1<5,∵点A (﹣5,y 1)在第二象限,点B (1,y 2),C (5,y 3)在第四象限, ∵y 2<y 3<y 1. 故选:B . 【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象的性质是解决本题的关键.4.已知一次函数y mx n =+与反比例函数my x=,其中m ,n 为常数,且0mn <,则它们在同一坐标系中的图像可能是( )A .B .C .D .【答案】A 【分析】根据图象中一次函数图象的位置确定m 、n 的值,然后根据m 、n 的值来确定反比例函数和一次函数所在的象限. 【详解】 ∵0mn <, ∵m 、n 异号, ∵当0m <时,0n >, my x=的图像位于第二、四象限, y mx n =+的图像经过第一、二、四象限;当0m >时,0n <, my x=的图像位于第一、三象限, y mx n =+的图像经过第一、三、四象限,∵只有选项A 符合. 故选:A . 【点睛】本题主要考查了反比例函数的图象与性质和一次函数的图象与性质,属于基础题,要掌握它们的性质才能灵活解题.5.正比例函数11y k x =(10k ≠)的图象与反比例函数22k y x=(20k ≠)的图象相交于A . B 两点,其中A 的横坐标为−2,则满足210k k x x->的x 的取值范围是( )A .x <−2或0<x <2B .−2<x <0C .x <−2或x >2D .−2<x <0或x >2【答案】A 【分析】根据反比例函数的对称性得到反比例函数与正比例函数另一个交点的横坐标,再根据数形结合的思想求得x 的取值范围. 【详解】如图,令反比例函数与正比例函数的另一个交点为点B根据反比例函数图像关于坐标原点对称,因为点A 的横坐标为−2,则点B 的横坐标为2 由210k k x x ->,可知21kk x x> 由数形结合思想可知,当正比例函数图像位于反比例函数图像的上方时,x 的取值范围是2x <-或02x <<,故选:A .【点睛】本题主要考查了反比例函数与正比例函数的关系以及反比例函数图像的性质,熟练掌握数形结合的思想解题是解决本题的关键.6.关于反比例函数y=﹣6x,下列叙述正确的是()A.函数图象经过点(﹣2,﹣3)B.函数图象在第一、三象限C.当x>﹣2时,y>3D.当x<0时,y随x的增大而增大【答案】D【分析】根据反比例函数的图象和性质求解即可.【详解】解:画出反比例函数y=﹣6x的图象如图所示,A、将点(﹣2,﹣3)代入表达式y=﹣6x,得:632-≠--,等式不成立,选项错误,不符。
专题05 反比例函数图象与性质类型1:反比例函数的性质(2020·海南中学初三期末)反比例函数3y x=-,下列说法不正确的是( ) A .图象经过点(1,-3) B .图象位于第二、四象限 C .图象关于直线y=x 对称 D .y 随x 的增大而增大【答案】D 【解析】解:由点()1,3-的坐标满足反比例函数3y x=-,故A 是正确的; 由30k =-<,双曲线位于二、四象限,故B 也是正确的;由反比例函数的对称性,可知反比例函数3y x=-关于y x =对称是正确的,故C 也是正确的, 由反比例函数的性质,0k <,在每个象限内,y 随x 的增大而增大,不在同一象限,不具有此性质,故D是不正确的, 故选:D . 思路点拨通过反比例图象上的点的坐标特征,可对A 选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.巩固练习1.(2020·山东初三期末)已知点A (2,y 1)、B (4,y 2)都在反比例函数ky x=(k <0)的图象上,则y 1、y 2的大小关系为( ) A .y 1>y 2 B .y 1<y 2C .y 1=y 2D .无法确定【答案】B 【解析】 ∵当k <0时,y=kx在每个象限内,y 随x 的增大而增大,∴y 1<y 2,故选B.2.(2020·广东初三期末)若点()11,A y -,()22,B y -,()33,C y 在反比例函数8y x=-的图象上,则y 1,y 2,y 3的大小关系是( ) A .123y y y << B .213y y y <<C .132y y y <<D .321y y y <<【答案】D 【解析】解:∵点()11,A y -、()22,B y -、()33,C y 在反比例函数8y x=-的图象上, ∴1881y =-=-,2842y =-=-,383y =-, 又∵8483-<<, ∴321y y y <<. 故选:D .3.(2019·益阳市第六中学初中部初三月考)对于反比例函数2y x=,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上 B .它的图象在第一、三象限 C .当x >0时,y 随x 的增大而增大 D .当x <0时,y 随x 的增大而减小【答案】C 【解析】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A 正确;因为2大于0所以该函数图象在第一,三象限,所以B 正确;C 中,因为2大于0,所以该函数在x >0时,y 随x 的增大而减小,所以C 错误;D 中,当x <0时,y 随x 的增大而减小,正确, 故选C.4.(2019·河北初三期末)反比例函数my x=的图象如图所示,以下结论:①常数m <-1;②在每个象限内,y随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④【答案】C【解析】分析:因为函数图象在一、三象限,故有m>0,故①错误;在每个象限内,y随x的增大而减小,故②错;对于③,将A、B坐标代入,得:h=-m,mk2,因为m>0,所以,h<k,故③正确;函数图象关于原点对称,故④正确.因此,正确的是③④.故选C.典例2:反比例函数与图形面积(2020·山东初三期末)如图,点A,B在反比例函数y=1x (x>0)的图象上,点C,D在反比例函数y=kx(k>0)的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为32,则k的值为()A .4B .3C .2D .32【答案】B 【解析】把x=1代入y =1x 得:y=1, ∴A(1,1),把x=2代入y =1x 得:y=12, ∴B(2, 12), ∵AC//BD// y 轴,∴C(1,K),D(2,k 2) ∴AC=k -1,BD=k 2-12, ∴S △OAC =12(k -1)×1, S △ABD =12(k 2-12)×1,又∵△OAC 与△ABD 的面积之和为32,∴12(k -1)×1+12 (k 2-12)×1=32,解得:k=3; 故答案为B. 思路点拨此题考查了反比例函数系数k 的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解本题的关键.巩固练习1.(2019·福建初三)如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-【答案】A 【解析】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .2.(2020·恩施市崔坝镇民族中学初三月考)已知▱OABC 的顶点O 与坐标原点重合,点A 在x 轴正半轴上,点B 的坐标为(3,4),且B ,C 不在同一象限内,若反比例函数y =8x的图象经过线段AB 的中点D ,则四边形ODBC 的面积为____. 【答案】15 【解析】根据题意,画示意图如解图,分别过点B ,D 作x 轴的垂线,垂足为E ,F ,∵B (3,4), ∴OE =3,BE =4,∵BE ⊥x 轴,DF ⊥x 轴,点D 是AB 的中点, ∴DF 是△ABE 的中位线,∴DF=12BE=2,∵点D在反比例函数y=8x上,∴当y=2时,有2=8x,解得x=4,∴D(4,2),即OF=4,∴EF=4-3=1,∴AE=2EF=2,∴OA=5,∴S四边形ODBC=S▱OABC-S△OAD=OA·BE-12 OA·DF=5×4-12×5×2=15.3.(2020·山东初三期末)如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.【答案】2【解析】如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线1y=x上,∴四边形AEOD的面积为1∵点B在双曲线3y=x上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=24.(2020·湖南初三期末)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx=(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为.【答案】3yx =.【解析】∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx=(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.5.(2020·河北初三期末)如图,点A(m,2),B(5,n)在函数kyx=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.【答案】2.【解析】∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=1,∴A(1,2),∴k=1×2=2.故答案为2.6.(2019·山东初三期中)如图,点P,Q是反比例函数图象上的两点,PA⊥轴于点A,QN⊥轴于点N,作PM⊥轴于点M,QB⊥轴于点B,连结PB,QM,记△ABP的面积为S1,△QMN的面积为S2,则S1_____S2(填“>”或“<”或“=”)【答案】=【解析】有反比例函数的几何性质可知四边形APMO的面积=四边形OBQN的面积∴四边形APEB的面积=四边形MEQN的面积又有题意可知S1=倍四边形APEB的面积,S2=倍四边形OBQN的面积所以S1=S2典例3:反比例函数与一次函数、二次函数的图象综合(2019·广东广州市第二中学初三)a≠0,函数y=ax与y=﹣ax2+a在同一直角坐标系中的大致图象可能是( )A .B .C .D .【答案】D 【解析】当a >0时,函数y =ax的图象位于一、三象限,y =﹣ax 2+a 的开口向下,交y 轴的正半轴,没有符合的选项,当a <0时,函数y =ax的图象位于二、四象限,y =﹣ax 2+a 的开口向上,交y 轴的负半轴,D 选项符合; 故选D . 思路点拨本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.巩固练习1.(2019·石家庄市第二十二中学初三月考)二次函数2y ax bx c =++的图象如图所示,反比例函数by x=与一次函数y cx a =+在同一平面直角坐标系中的大致图象是( )A .B .C .D .【答案】B 【解析】∵由二次函数2y ax bx c =++的图象知,a <0,b2a->0,∴b >0. ∴由b >0知,反比例函数by x=的图象在一、三象限,排除C 、D ; 由知a <0,一次函数y cx a =+的图象与y 国轴的交点在x 轴下方,排除A . 故选B .2.(2020·河北初三期末)如图,在同一平面直角坐标系中,反比例函数y =kx与一次函数y =kx ﹣1(k 为常数,且k >0)的图象可能是( )A .B .C .D .【答案】B 【解析】当k >0时,直线从左往右上升,双曲线分别在第一、三象限,故A 、C 选项错误; ∵一次函数y=kx -1与y 轴交于负半轴, ∴D 选项错误,B 选项正确, 故选B .3.(2019·台州初三月考)如图,是反比例函数4y (x 0)x=>图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内(不包括边界)的整数点个数是k ,则抛物线2y (x 2)2=---向上平移k 个单位后形成的图象是( )A.B.C.D.【答案】A【解析】解:如图,反比例函数4y(x0)x=>图象与坐标轴围成的区域内(不包括边界)的整数点个数是5个,即k5=,∴抛物线2y(x2)2=---向上平移5个单位后可得:2y(x2)3=--+,即2y x4x1=-+-,∴形成的图象是A选项.故选A.4.(2018·莆田市秀屿区实验中学初三期末)已知反比例函数y=kx的图象如图,则二次函数y=2kx2-4x+k2的图象大致为()A .B .C .D .【答案】D【解析】解:∵函数y=k x的图象经过二、四象限,∴k <0, 由图知当x=﹣1时,y=﹣k >1,∴k <﹣1,∴抛物线y=2kx 2﹣4x+k 2开口向下,对称为x=﹣422k -⨯= 11,﹣1<1k <0, ∴对称轴在﹣1与0之间,故选D .典例4:反比例函数与一次函数的综合问题(2020·河北初三期末)如图,一次函数y =k 1x +b 的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数y =2k x的图象分别交于C ,D 两点,点C (2,4),点B 是线段AC 的中点.(1)求一次函数y =k 1x +b 与反比例函数y =2k x的解析式;(2)求△COD 的面积;(3)直接写出当x 取什么值时,k 1x +b <2k x . 【答案】(1)y 1=x +2;y 2=8x ;(2)S △COD =6;(3)当0<x <2或x <﹣4时,k 1x +b <2k x. 【解析】(1)∵点C (2,4)在反比例函数y =2k x 的图象上, ∴2248k ⨯==, ∴28y x=;如图,作CE ⊥x 轴于E ,∵C (2,4),点B 是线段AC 的中点,∴B (0,2),∵B 、C 在11y k x b +=的图象上, ∴1242k b b +=⎧⎨=⎩, 解得112k b =,=, ∴一次函数为12y x +=;(2)由28y x y x =+⎧⎪⎨=⎪⎩, 解得24x y =⎧⎨=⎩或42x y =-⎧⎨=-⎩, ∴D (﹣4,﹣2),∴1222462COD BOC BOD S S S +⨯⨯+⨯⨯V V V ===;(3)由图可得,当0<x <2或x <﹣4时,21k k x b x+<. 思路点拨本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和二次函数的解析式,方程组的解以及三角形的面积等,求得B 点的坐标是解题的关键.巩固练习1.(2019·山东初三期末)如图,一次函数y=kx+b 与反比例函数y=的图象相较于A (2,3),B (﹣3,n )两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b >的解集;(3)过点B 作BC ⊥x 轴,垂足为C ,求S △ABC .【答案】(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)﹣3<x <0或x >2;(3)5.【解析】解:(1)∵点A (2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)由图象可知﹣3<x<0或x>2;(3)以BC为底,则BC边上的高为3+2=5,∴S△ABC=×2×5=5.2.(2019·河北初三)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=mx(x>0)的图像经过点D,P是一次函数y=kx+3-3k(k≠0)的图像与该反比例函数图像的一个公共点.(1)求反比例函数的表达式;(2)通过计算说明一次函数y=kx+3-3k(k≠0)的图像一定经过点C;(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).【答案】y=2x;略;23<a<3.【解析】(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(3,1),C(3,3),∴BC⊥x轴,AD=BC=2,而A点坐标为(1,0),∴点D的坐标为(1,2).∵反比例函数y=mx(x>0)的函数图象经过点D(1,2),∴2=1m ∴m=2∴反比例函数的解析式为y=2x;(2)当x=3时,y=kx+3-3k=3k+3-3k=3,∴一次函数y=kx+3-3k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,∵一次函数y=kx+3﹣3k(k≠0)过C点,并且y随x的增大而增大时,∴k>0,P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,∵y=2x,∴2a<3,解得:a>23,则a的范围为23<a<3.3.(2019·湖北初三期末)如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【答案】(1)①132y x =-+;②四边形ABCD 是菱形,理由见解析;(2)四边形ABCD 能是正方形,理由见解析,m+n=32.【解析】(1)①如图1,4m =Q ,∴反比例函数为4y x=, 当4x =时,1y =,()4,1B ∴,当2y =时,42x∴=, 2x ∴=,()2,2A ∴,设直线AB 的解析式为y kx b =+,∴ 2241k b k b +=⎧⎨+=⎩, ∴ 123k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为132y x =-+; ②四边形ABCD 是菱形,理由如下:如图2,由①知,()4,1B ,//BD y Q 轴,()4,5D ∴,Q 点P 是线段BD 的中点,()4,3P ∴,当3y =时,由4y x =得,43x =, 由20y x =得,203x =, 48433PA ∴=-=,208433PC =-=, PA PC ∴=,PB PD =Q ,∴四边形ABCD 为平行四边形,BD AC ⊥Q ,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P , BD AC ∴=,当4x =时,4m m y x ==,4n n y x == 4,4m B ⎛⎫∴ ⎪⎝⎭,4,4n D ⎛⎫ ⎪⎝⎭, 4,8m n P +⎛⎫∴ ⎪⎝⎭, 8(m A m n ∴+,)8m n +,8(n C m n +,)8m n + AC BD =Q ,∴ 8844n m n m m n m n -=-++, 32m n ∴+=. 4.(2019·云南初三)如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)的图象与反比例函数()m y m 0x =≠的图象交于点C (n ,3),与x 轴、y 轴分别交于点A 、B ,过点C 作CM ⊥x 轴,垂足为M .若3tan 4CAM ∠=,OA =2.0m kx b x+->(1)求反比例函数和一次函数的解析式;(2)当kx +b ﹣m x>0时,求x 的取值范围. 【答案】(1)y =6x ,33y x 42=+;(2)﹣4<x <0或x >2 【解析】解:(1)∵C ( n ,3 ),∴CM =3,在Rt △AMC 中,tan 3CAM 4∠=, ∴334AM =, ∴AM =4,又∵OA =2,∴OM =AM ﹣OA =4﹣2=2, ∴n =2,即 C (2,3)将(2,3)代入m y x =中,得3=m 2, ∴m =6,∴反比例函数的解析式为:y =6x, 把A (﹣2,0)C (2,3)代入y =kx +b 得2023k b k b -+=⎧⎨+=⎩, 解得3432k b ⎧=⎪⎪⎨⎪=⎪⎩∴一次函数的解析式为:33y x 42=+; (2)∵63342y x y x ⎧=⎪⎪⎨⎪=+⎪⎩解得:23x y =⎧⎨=⎩ 或432x y =-⎧⎪⎨=-⎪⎩ ∴由图象知,当m kx b x +->0(即kx +b >m x )时,x 的取值范围﹣4<x <0或x >2.典例5:一次函数与二次函数的综合(2019·河北中考模拟)如图,在平面直角坐标系中,矩形OADB 的顶点A ,B 的坐标分别为A (﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=kx(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=,k=,点E的坐标为;(2)当1≤t≤6时,经过点M(t﹣1,﹣12t2+5t﹣32)与点N(﹣t﹣3,﹣12t2+3t﹣72)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣12x2+bx+c的顶点.①当点P在双曲线y=kx上时,求证:直线MN与双曲线y=kx没有公共点;②当抛物线y=﹣12x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB 中扫过的面积.【答案】(1)6,﹣6,(﹣32,4);(2)①证明见解析;②t=65或t=1110;③212.【解析】解:(1)∵A点坐标为(﹣6,0)∴OA=6∵过点C(﹣6,1)的双曲线y=k x∴k=﹣6y=4时,x=63 42 -=-∴点E的坐标为(﹣32,4)故答案为:6,﹣6,(﹣32,4)(2)①设直线MN解析式为:y1=k1x+b1由题意得:()()211211135122173322t t k t b t t k t b ⎧-+-=-+⎪⎪⎨⎪-+-=--+⎪⎩ 解得12111422k b t t =⎧⎪⎨=-+-⎪⎩, ∵抛物线y=﹣212x bx c ++过点M 、N, ∴()()()()22131t 51?1222171t 33?3222t t b t c t t b t c ⎧-+-=--+-+⎪⎪⎨⎪-+-=---+--+⎪⎩, 解得152b c t =-⎧⎨=-⎩ ∴抛物线解析式为:y=﹣12x 2﹣x+5t ﹣2 ∴顶点P 坐标为(﹣1,5t ﹣32) ∵P 在双曲线y=﹣6x上 ∴(5t ﹣32)×(﹣1)=﹣6 ∴t=32 此时直线MN 解析式为: 联立3586y x y x ⎧=+⎪⎪⎨⎪=⎪⎩∴8x 2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN 与双曲线y=﹣6x没有公共点. ②当抛物线过点B ,此时抛物线y=﹣12x 2+bx+c 与矩形OADB 有且只有三个公共点∴4=5t ﹣2,得t=65当抛物线在线段DB 上,此时抛物线与矩形OADB 有且只有三个公共点 ∴10342t -=,得t=1110∴t=65或t=1110 ③∵点P 的坐标为(﹣1,5t ﹣32) ∴y P =5t ﹣32当1≤t≤6时,y P 随t 的增大而增大此时,点P 在直线x=﹣1上向上运动∵点F 的坐标为(0,﹣211422t t +-) ∴y F =﹣()2115422t -+ ∴当1≤t≤4时,随者y F 随t 的增大而增大此时,随着t 的增大,点F 在y 轴上向上运动∴1≤t≤4当t=1时,直线MN :y=x+3与x 轴交于点G (﹣3,0),与y 轴交于点H (0,3)当t=43MN 过点A .当1≤t≤4时,直线MN 在四边形AEBO 中扫过的面积为 S=1312164332222⎛⎫⨯+⨯-⨯⨯= ⎪⎝⎭. 思路点拨本题为二次函数与反比例函数综合题,考查了数形结合思想和分类讨论的数学思想.解题过程中,应注意充分利用字母t 表示相关点坐标.巩固练习1.(2019·承德县三沟初级中学中考模拟)如图,已知二次函数y=ax 2+2x+c (a >0)图象的顶点M 在反比例函数3y x=上,且与x 轴交于AB 两点.(1)若二次函数的对称轴为12x=-,试求a,c的值;(2)在(1)的条件下求AB的长;(3)若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,试求二次函数的解析式.【答案】(1)y=2x2+2x﹣112;(2)3;(3)23233y x x=++【解析】解:(1)∵二次函数的对称轴为,∴﹣=﹣,解得a=2,∵二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数上,∴顶点为(﹣,c﹣),∴(c﹣)=﹣3,解得c=﹣,∴二次函数的解析式为y=2x2+2x﹣;(2)∵二次函数的解析式为y=2x2+2x﹣;∴令y=0,2x2+2x﹣=0;解得x=.∴AB==2;(3)根据对称轴x=﹣,当x=﹣时,y=﹣3a,∴NO+MN=+3a≥2=2,当3a=时NO+MN最小,即3a2=1时,a=,∴此时二次函数的解析式为y=x2+2x+3.2.如图,曲线BC是反比例函数y=kx(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),抛物线y=﹣x2+2bx的顶点记作A.(1)求k的值.(2)判断点A是否可与点B重合;(3)若抛物线与BC有交点,求b的取值范围.【答案】(1)12;(2)点A不与点B重合;(3)1919 86b≤≤【解析】解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函数kyx=的图象上,∴k=4(1﹣m)=6×(﹣m),∴解得m=﹣2,∴k=4×[1﹣(﹣2)]=12;(2)∵m=﹣2,∴B(4,3),∵抛物线y=﹣x2+2bx=﹣(x﹣b)2+b2,∴A(b,b2).若点A与点B重合,则有b=4,且b2=3,显然不成立,∴点A不与点B重合;(3)当抛物线经过点B(4,3)时,有3=﹣42+2b×4,解得,b=198,显然抛物线右半支经过点B;当抛物线经过点C(6,2)时,有2=﹣62+2b×6,解得,b=196,这时仍然是抛物线右半支经过点C,∴b的取值范围为198≤b≤196.3.(2016·河北中考真题)如图,抛物线L:y=−12(x−t)(x−t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=kx(k>0,x>0)于点P,且OA·MP=12.(1)求k值;(2)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.【答案】(1)6;(2);(3)当t-2≤,即t≤4时,顶点(t-2,2)就是G的最高点;当t>4时,L与MP的交点()就是G的最高点.(4).【解析】解:(1)设点P(x,y),则MP=y,由OA的中点为M知OA=2x,代入OA·MP=12,得,即xy=6,∴k=xy=6.(2)当t=1时,令y=0,0=,∴.∴由B在A的左边,得B(-3,0),A(1,0),∴AB=4.∵L的对称轴为x=-1,而M(,0),∴MP与L对称轴的距离为.(3)∵A(t,0),B(t-4,0),∴L的对称轴为x=t-2,又MP为x=,当t-2≤,即t≤4时,顶点(t-2,2)就是G的最高点;当t>4时,L与MP的交点()就是G的最高点.(4)对双曲线,当4≤x0≤6时,1≤y≤,即L与双曲线C(4,),D(6,1)之间的一段有个交点.①由=,解得;②由1=,解得;随着t的逐渐增大,L的位置随着点A(t,0)向右平移,如图3所示.当t=5时,L右侧过点C;当时,L右侧过点D;即.当8-√2≤t<7时,L右侧离开了点D,而左侧未到点C,即L与该段无交点,舍去.当t=7时,L左侧过点C;当时,L左侧过点D;即.典例6:反比例函数的实际应用(2020·河北初三期末)一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?【答案】(1)AB :1230y x =+(010)x ≤≤;CD :22200y x=(44)x ≥ ;(2)有效时间为50分钟 . 【解析】 解:(1)设线段AB 所在的直线的解析式为y 1=k 1x+30, 把B (10,50)代入得,k 1=2,∴AB 解析式为:y 1=2x+30(0≤x≤10). 设C 、D 所在双曲线的解析式为y 2=, 把C (44,50)代入得,k 2=2200, ∴曲线CD 的解析式为:y 2=(x≥44);(2)将y=40代入y 1=2x+30得:2x+30=40,解得:x=5,将y=40代入y 2=得:x=55. 55﹣5=50. 所以完成一份数学家庭作业的高效时间是50分钟.思路点拨本题主要考查的就是函数图像的基本应用问题,属于基础题型.求函数解析式的时候我们用的就是待定系数法,在设函数关系式的时候一定要正确.巩固练习1.(2020·安徽初三期末)某学校要种植一块面积为100 m 2的长方形草坪,要求两边长均不小于5 m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )A .B .C.D.【答案】C【解析】由草坪面积为100m2,可知x、y存在关系y=,然后根据两边长均不小于5m,可得x≥5、y≥5,则x≤20,故选:C.2.(2019·石家庄市第四十一中学初三)如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A.B.C.D.【答案】C【解析】解:由题意可得,y=308x=240x,当x=40时,y=6,故选C.3.(2019·山东中考模拟)某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟B.20分钟C.13分钟D.7分钟【答案】C【解析】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx =,将y=35代入700yx =,解得20x=;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.4.月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.【答案】(1)y=160(48)28(828)x x x x ⎧≤≤⎪⎨⎪-+≤⎩<(2)当每件的销售价格定为16元时,第一年年利润的最大值为﹣16万元(3)当11≤x≤21时,第二年的年利润s 不低于103万元【解析】解:(1)当4≤x ≤8时,设y =k x,将A (4,40)代入得k =4×40=160, ∴y 与x 之间的函数关系式为y =160x ; 当8<x ≤28时,设y =k 'x +b ,将B (8,20),C (28,0)代入得,820280k b k b +=⎧⎨+=''⎩,解得128k b =-⎧⎨='⎩, ∴y 与x 之间的函数关系式为y =﹣x +28,综上所述,y =()1604828(828)x x x x ⎧≤≤⎪⎨⎪-+<≤⎩; (2)当4≤x ≤8时,s =(x ﹣4)y ﹣160=(x ﹣4)•160x ﹣160=﹣640x , ∵当4≤x ≤8时,s 随着x 的增大而增大,∴当x =8时,s max =﹣6408=﹣80; 当8<x ≤28时,s =(x ﹣4)y ﹣160=(x ﹣4)(﹣x +28)﹣160=﹣(x ﹣16)2﹣16,∴当x =16时,s max =﹣16;∵﹣16>﹣80,∴当每件的销售价格定为16元时,第一年年利润的最大值为﹣16万元.(3)∵第一年的年利润为﹣16万元,∴16万元应作为第二年的成本,又∵x >8,∴第二年的年利润s =(x ﹣4)(﹣x +28)﹣16=﹣x 2+32x ﹣128,令s =103,则103=﹣x 2+32x ﹣128,解得x 1=11,x 2=21,在平面直角坐标系中,画出s 与x 的函数示意图可得:5.(2019·全国初二课时练习)一辆汽车往返于甲、乙两地之间,如果汽车以50千米/时的平均速度从甲地出发,则6小时可到达乙地.(1)写出时间t (时)关于速度v (千米/时)的函数关系式,并画出函数图象.(2)若这辆汽车需在5小时内从甲地到乙地,则此时汽车的平均速度至少应是多少?【答案】(1)t=300v .(2)汽车的平均速度至少为60千米/时. 【解析】解:(1)设函数关系式为k t v. ∵汽车以50千米/时的平均速度从甲地出发,则6小时可到达乙地.∴6=50k . 解得k =300.故图象为:∴时间t (时)关于速度v (千米/时)的函数关系式为t=300v . (2)令t =5,则5=300v. 解得v=60.故汽车的平均速度至少为60千米/时.典例7:反比例函数与几何图形(2019·湖南初三)矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=kx(k>0)的图象与边AC交于点E。
专题:反比例函数与四边形
1、如图,四边形ABCO 为等腰梯形,双曲线k
y x
=
过B 点,且4ABCO S =四,求k 的值.
2、如图,矩形ABCO ,点E 在AB 上,且BE =2AE ,点F 在BC 上,双曲线k
y x
=正好过E 、F 两点,4BOF S =△,求k 的值.
3、如图,B (-1,0),正方形ABCD 中心为1O ,双曲线k
y x
=正好经过C 、1O 两点,求k 的值.
4、如图,矩形ABCD ,A (1,2),矩形ABCD 的面积为8,双曲线k
y x
=正好经过B 、D 两点,且AB //x 轴,求k 的值.
5、如图,正方形ABCD ,A (0,1),C (-5,0),双曲线k
y x
=
过D 点,求k 的值.
6、如图,在平面直角坐标系中,直线22y x =-+与x 轴、y 轴分别相交于点A 、B ,四边形ABCD 是正方形,双曲线k
y x
=
在第一象限经过点D . (1)求双曲线的函数解析式;
(2)将正方形ABCD 沿x 轴向左平移多少个单位长度时,点C 的对应点'C 恰好落在(1)中的双曲线上.。