2015中考数学真题分类汇编:圆(7)共九套
- 格式:pdf
- 大小:1.31 MB
- 文档页数:38
2015中考数学真题分类汇编:圆(1)一.选择题(共30小题)1.(2015•大庆)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30°B.45°C.60°D.90°2.(2015•玉林)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C =∠BOD C.∠C=∠BD.∠A=∠BOD3.(2015•广元)如图,已知⊙O的直径AB⊥CD于点E,则下列结论一定错误的是()A.CE=DE B.AE=OE C .=D.△OCE≌△ODE 4.(2015•泰安)如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.85.(2015•台湾)如图,AB为圆O的直径,BC为圆O的一弦,自O点作BC的垂线,且交BC于D点.若AB=16,BC=12,则△OBD的面积为何?()A.6B.12C.15D.306.(2015•遂宁)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm7.(2015•潍坊)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2 D.(π﹣2)cm28.(2015•兰州)如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定9.(2015•酒泉)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°10.(2015•巴中)如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB 的度数为()A.25°B.50°C.60°D.30°11.(2015•凉山州)如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°12.(2015•威海)如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为()A.68°B.88°C.90°D.112°13.(2015•河池)如图,在⊙O中,直径AB⊥CD,垂足为E,∠BOD=48°,则∠BAC的大小是()A.60°B.48°C.30°D.24°14.(2015•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P 是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°15.(2015•黑龙江)如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB 上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A.60°B.120°C.60°或120°D.30°或150°16.(2015•永州)如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()A.45°B.40°C.25°D.20°17.(2015•莆田)如图,在⊙O 中,=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°18.(2015•柳州)如图,BC是⊙O的直径,点A是⊙O上异于B,C的一点,则∠A的度数为()A.60°B.70°C.80°D.90°19.(2015•宁波)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°20.(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B .=C.∠ACB=90°D.∠COB=3∠D21.(2015•荆州)如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°22.(2015•深圳)如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°23.(2015•牡丹江)如图,△ABD的三个顶点在⊙O上,AB是直径,点C 在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°24.(2015•珠海)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°25.(2015•株洲)如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°26.(2015•眉山)如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°27.(2015•临沂)如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°28.(2015•长春)如图,四边形ABCD内接于⊙O,若四边形ABCD是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°29.(2015•邵阳)如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.80°B.100°C.60°D.40°30.(2015•淮安)如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数是()A.100°B.110°C.120°D.130°2015中考数学真题分类汇编:圆(1)参考答案与试题解析一.选择题(共30小题)1.(2015•大庆)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30°B.45°C.60°D.90°考点:垂径定理;等腰直角三角形.分析:利用等腰直角三角形的性质以及垂径定理得出∠BOC的度数进而求出.解答:解:如图所示:连接BO,AO,∵圆心O到弦AB的距离为AB长度的一半,∴DO=DB,DO⊥AB,∴∠BOC=∠BOC=45°,则∠A=∠AOC=45°,∴∠AOB=90°.故选:D.点评:此题主要考查了垂径定理以及等腰直角三角形的性质,得出∠BOC=∠BOC=45°是解题关键.2.(2015•玉林)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C =∠BOD C.∠C=∠BD.∠A=∠BOD考点:垂径定理;圆周角定理.分析:根据垂径定理得出=,=,根据以上结论判断即可.解答:解:A、根据垂径定理不能推出AC=AB,故A选项错误;B、∵直径CD⊥弦AB,∴=,∵对的圆周角是∠C ,对的圆心角是∠BOD,∴∠BOD=2∠C,故B选项正确;C、不能推出∠C=∠B,故C选项错误;D、不能推出∠A=∠BOD,故D选项错误;故选:B点评:本题考查了垂径定理的应用,关键是根据学生的推理能力和辨析能力来分析.3.(2015•广元)如图,已知⊙O的直径AB⊥CD于点E,则下列结论一定错误的是()A.CE=DE B.AE=OE C .=D.△OCE≌△ODE考点:垂径定理.分析:根据垂径定理得出CE=DE,弧CB=弧BD,再根据全等三角形的判定方法“AAS”即可证明△OCE≌△ODE.解答:解:∵⊙O的直径AB⊥CD于点E,∴CE=DE,弧CB=弧BD,在△OCE和△ODE 中,,∴△OCE≌△ODE,故选B点评:本题考查了圆周角定理和垂径定理的应用,注意:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.4.(2015•泰安)如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.8考点:垂径定理;含30度角的直角三角形;勾股定理;圆周角定理.分析:首先连接OA,OC,过点O作OD⊥AC于点D,由圆周角定理可求得∠AOC的度数,进而可在构造的直角三角形中,根据勾股定理求得弦AC 的一半,由此得解.解答:解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD =∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD =OC =2,∴AC=2CD =4.故选A.点评:此题主要考查了三角形的外接圆以及勾股定理的应用,还涉及到圆周角定理、垂径定理以及直角三角形的性质等知识,难度不大.5.(2015•台湾)如图,AB为圆O的直径,BC为圆O的一弦,自O点作BC的垂线,且交BC于D点.若AB=16,BC=12,则△OBD的面积为何?()A.6B.12C.15D.30考点:垂径定理;勾股定理.专题:计算题.分析:根据垂径定理,由OD⊥BC得到BD=CD =BC=6,再在Rt△BOD中利用勾股定理计算出OD =2,然后根据三角形面积公式求解.解答:解:∵OD⊥BC,∴BD=CD =BC =×12=6,在Rt△BOD中,∵OB =AB=8,BD=6,∴OD ==2,∴S△OBD =OD•BD =×2×6=6.故选A.点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.6.(2015•遂宁)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm考点:垂径定理;勾股定理.分析:连接OA,先利用垂径定理得出AC的长,再由勾股定理得出OC的长即可解答.解答:解:连接OA,∵AB=6cm,OC⊥AB于点C,∴AC =AB =×6=3cm,∵⊙O的半径为5cm,∴OC ===4cm,故选B.点评:本题考查了垂径定理,以及勾股定理,熟练掌握垂径定理的应用是解题的关键.7.(2015•潍坊)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2 D.(π﹣2)cm2考点:垂径定理的应用;扇形面积的计算.分析:作OD⊥AB于C,交小⊙O于D,则CD=2,由垂径定理可知AC=CB,利用正弦函数求得∠OAC=30°,进而求得∠AOC=120°,利用勾股定理即可求出AB的值,从而利用S扇形﹣S△AOB求得杯底有水部分的面积.解答:解:作OD⊥AB于C,交小⊙O于D,则CD=2,AC=BC,∵OA=OD=4,CD=2,∴OC=2,在RT△AOC中,sin∠OAC ==,∴∠OAC=30°,∴∠AOC=120°,AC ==2,∴AB =4,∴杯底有水部分的面积=S扇形﹣S△AOB =﹣××2=(π﹣4)cm2故选A.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.(2015•兰州)如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定考点:圆周角定理;坐标与图形性质.分析:由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB=90°.解答:解:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.故选B.点评:此题考查了圆周角定理.此题比较简单,解题的关键是观察图形,得到∠AOB与∠ACB是优弧AB所对的圆周角.9.(2015•酒泉)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°考点:圆周角定理.分析:首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.解答:解:如图,∵∠AOC=160°,∴∠ABC =∠AOC =×160°=80°,∵∠ABC+∠ABʹC=180°,∴∠ABʹC=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.点评:此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.10.(2015•巴中)如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB 的度数为()A.25°B.50°C.60°D.30°考点:圆周角定理;平行线的性质.分析:由圆周角定理求得∠BAC=25°,由AC∥OB,∠BAC=∠B=25°,由等边对等角得出∠OAB=∠B=25°,即可求得答案.解答:解:∵∠BOC=2∠BAC,∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠BAC=∠B=25°,∵OA=OB,∴∠OAB=∠B=25°,故选:A.点评:此题考查了圆周角定理以及平行线的性质.此题难度不大,注意掌握数形结合思想的应用.11.(2015•凉山州)如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°考点:圆周角定理.分析:连接OC,然后根据等边对等角可得:∠OCB=∠OBC=40°,然后根据三角形内角和定理可得∠BOC=100°,然后根据周角的定义可求:∠1=260°,然后根据圆周角定理即可求出∠A的度数.解答:解:连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°,∵∠1+∠BOC=360°,∴∠1=260°,∵∠A =∠1,∴∠A=130°.故选:D.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用,解题的关键是:熟记在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(2015•威海)如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为()A.68°B.88°C.90°D.112°考点:圆周角定理.分析:如图,作辅助圆;首先运用圆周角定理证明∠CAD=2∠CBD,∠BAC=2∠BDC,结合已知条件∠CBD=2∠BDC,得到∠CAD=2∠BAC,即可解决问题.解答:解:如图,∵AB=AC=AD,∴点B、C、D在以点A为圆心,以AB的长为半径的圆上;∵∠CBD=2∠BDC,∠CAD=2∠CBD,∠BAC=2∠BDC,∴∠CAD=2∠BAC,而∠BAC=44°,∴∠CAD=88°,故选B.点评:该题主要考查了圆周角定理及其推论等几何知识点及其应用问题;解题的方法是作辅助圆,将分散的条件集中;解题的关键是灵活运用圆周角定理及其推论等几何知识点来分析、判断、推理或解答.13.(2015•河池)如图,在⊙O中,直径AB⊥CD,垂足为E,∠BOD=48°,则∠BAC的大小是()A.60°B.48°C.30°D.24°考点:圆周角定理;垂径定理.专题:计算题.分析:先根据垂径定理得到=,然后根据圆周角定理求解.解答:解:∵直径AB⊥CD,∴=,∴∠BAC =∠BOD =×48°=24°.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.14.(2015•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°考点:圆周角定理;含30度角的直角三角形;翻折变换(折叠问题).专题:计算题.分析:作半径OC⊥AB于D,连结OA、OB,如图,根据折叠的性质得OD=CD,则OD =OA,根据含30度的直角三角形三边的关系得到∠OAD=30°,接着根据三角形内角和定理可计算出∠AOB=120°,然后根据圆周角定理计算∠APB的度数.解答:解:作半径OC⊥AB于D,连结OA、OB,如图,∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD,∴OD =OC =OA,∴∠OAD=30°,而OA=OB,∴∠CBA=30°,∴∠AOB=120°,∴∠APB =∠AOB=60°.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了含30度的直角三角形三边的关系和折叠的性质.15.(2015•黑龙江)如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB 上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A.60°B.120°C.60°或120°D.30°或150°考点:圆周角定理;含30度角的直角三角形;垂径定理.专题:分类讨论.分析:作OD⊥AB,如图,利用垂线段最短得OD=1,则根据含30度的直角三角形三边的关系得∠OAB=30°,根据三角形内角和定理可计算出∠AOB=120°,则可根据圆周角定理得到∠AEB =∠AOB=60°,根据圆内接四边形的性质得∠F=120°,所以弦AB所对的圆周角的度数为60°或120°.解答:解:作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB =∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了含30度的直角三角形三边的关系.16.(2015•永州)如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()A.45°B.40°C.25°D.20°考点:圆周角定理.分析:先由圆周角定理求出∠A与∠ADB的度数,然后根据三角形外角的性质即可求出∠P的度数.解答:解:∵和所对的圆心角分别为90°和50°,∴∠A=25°,∠ADB=45°,∵∠P+∠A=∠ADB,∴∠P=∠ADB﹣∠P=45°﹣25°=20°.故选D.点评:此题考查了圆周角定理及三角形外角的性质,解题的关键是:熟记并能灵活应用圆周角定理及三角形外角的性质解题.17.(2015•莆田)如图,在⊙O 中,=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°考点:圆周角定理;垂径定理.分析:先求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.解答:解:∵在⊙O 中,=,∴∠AOC=∠AOB,∵∠AOB=50°,∴∠AOC=50°,∴∠ADC =∠AOC=25°,故选D.点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.18.(2015•柳州)如图,BC是⊙O的直径,点A是⊙O上异于B,C的一点,则∠A的度数为()A.60°B.70°C.80°D.90°考点:圆周角定理.专题:计算题.分析:利用直径所对的圆周角为直角判断即可.解答:解:∵BC是⊙O的直径,∴∠A=90°.故选D.点评:此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.19.(2015•宁波)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°考点:圆周角定理.专题:计算题.分析:连结OB,如图,先根据圆周角定理得到∠BOC=2∠A=144°,然后根据等腰三角形的性质和三角形内角和定理计算∠BCO的度数.解答:解:连结OB,如图,∠BOC=2∠A=2×72°=144°,∵OB=OC,∴∠CBO=∠BCO,∴∠BCO =(180°﹣∠BOC)=×(180°﹣144°)=18°.故选B.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.20.(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B .=C.∠ACB=90°D.∠COB=3∠D考点:圆周角定理;垂径定理;圆心角、弧、弦的关系.分析:根据垂径定理、圆周角定理,进行判断即可解答.解答:解:A、∠A=∠D,正确;B 、,正确;C、∠ACB=90°,正确;D、∠COB=2∠CDB,故错误;故选:D.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,也考查了圆周角定理,解集本题的关键是熟记垂径定理和圆周角定理.21.(2015•荆州)如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°考点:圆周角定理.分析:连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.解答:解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠BAO =(180°﹣50°)=65°.故选C.点评:本题考查了圆周角定理;作出辅助线,构建等腰三角形是正确解答本题的关键.22.(2015•深圳)如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°考点:圆周角定理.专题:计算题.分析:先根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,再利用互余得∠ACD=90°﹣∠DCB=70°,然后根据同弧或等弧所对的圆周角相等求解.解答:解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.23.(2015•牡丹江)如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°考点:圆周角定理.分析:由AB是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠ADB 的度数,继而求得∠A的度数,又由圆周角定理,即可求得答案.解答:解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=52°,∴∠A=90°﹣∠ABD=38°;∴∠BCD=∠A=38°.故选:B.点评:此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.24.(2015•珠海)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°考点:圆周角定理;垂径定理.分析:由“等弧所对的圆周角是所对的圆心角的一半”推知∠DOB=2∠C,得到答案.解答:解:∵在⊙O中,直径CD垂直于弦AB,∴=,∴∠DOB=2∠C=50°.故选:D.点评:本题考查了圆周角定理、垂径定理.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.25.(2015•株洲)如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°考点:圆周角定理.分析:先根据圆周角定理求出∠BOC的度数,再根据等腰三角形的性质即可得出结论.解答:解:∵∠A与∠BOC是同弧所对的圆周角与圆心角,∠A=68°,∴∠BOC=2∠A=136°.∵OB=OC,∴∠OBC ==22°.故选A.点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.26.(2015•眉山)如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°考点:圆周角定理.分析:先根据OA=OC,∠ACO=45°可得出∠OAC=45°,故可得出∠AOC的度数,再由圆周角定理即可得出结论.解答:解:∵OA=OC,∠ACO=45°,∴∠OAC=45°,∴∠AOC=180°﹣45°﹣45°=90°,∴∠B =∠AOC=45°.故选D.点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.27.(2015•临沂)如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°考点:圆周角定理.分析:首先在上取点D,连接AD,CD,由圆周角定理即可求得∠D的度数,然后由圆的内接四边形的性质,求得∠ABC的度数.解答:解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC =∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选D.点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.28.(2015•长春)如图,四边形ABCD内接于⊙O,若四边形ABCD是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°考点:圆内接四边形的性质;平行四边形的性质;圆周角定理.分析:设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.解答:解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形OADC是平行四边形,∴∠ADC=∠AOC;∵∠ADC =β,∠AOC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选C.点评:该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.29.(2015•邵阳)如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.80°B.100°C.60°D.40°考点:圆内接四边形的性质;圆周角定理.分析:根据圆内接四边形的性质求得∠ABC=40°,利用圆周角定理,得∠AOC=2∠B=80°.解答:解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,∴∠ABC=180°﹣140°=40°.∴∠AOC=2∠ABC=80°.故选B.点评:此题主要考查了圆周角定理以及圆内接四边形的性质,得出∠B的度数是解题关键.30.(2015•淮安)如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数是()A.100°B.110°C.120°D.130°考点:圆内接四边形的性质.专题:计算题.分析:直接根据圆内接四边形的性质求解.解答:解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠A=180°﹣70°=110°.故选B.点评:本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.。
江苏省13市2015年中考数学试题分类解析汇编(20专题)专题12:圆的问题1. (2015年江苏南京2分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,则DM 的长为【 】A.133 B. 92 C.D. 【答案】A.【考点】矩形的性质;切线的性质;正方形的判定和性质;切线长定理;勾股定理;方程思想的应用.【分析】如答图,连接,,OE OF OG ,则根据矩形和切线的性质知,四边形,AEOF FOGB 都是正方形. ∵AB =4,∴2AE AF BF BG ====. ∵AD =5,∴3DE DN ==.设GM=NM=x ,则3,3CM BC BG GM x DM DN NM x =--=-=+=+ .在Rt CDM ∆中,由勾股定理得:222DM CD CM =+,即()()222343 x x +=+-,解得,43x =. ∴133DM =. 故选A.2. (2015年江苏苏州3分)如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为【 】A .43π B .43π- C .π D .23π- 【答案】A .【考点】切线的性质;三角形外角性质;垂径定理;三角形和扇形面积的计算;转换思想的应用. 【分析】如答图,过O 点OH ⊥CD 作于点H ,∵AB 为⊙O 的切线,∴OB ⊥AB ,即∠OBA =90°. 又∵∠A =30°,∴∠COD =120°. 在△ODH 中,∵∠ODH =30°,OD=2,∴1,OH DH =∴2120214136023OCD OCD S S S ππ∆⋅⋅=-=-⋅=阴影部分扇形故选A .3. (2015年江苏扬州3分)如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧), 则下列三个结论:①D C ∠>∠sin sin ;②D C ∠>∠cos cos ;③D C ∠>∠tan tan 中,正确的结论为【 】A. ①②B. ②③C. ①②③D. ①③ 【答案】D.【考点】圆周角定理;三角形外角性质;锐角三角函数的性质.【分析】如答图,设AD 与⊙O 相交于点E ,连接BE .∵,>C AEB AEB D ∠=∠∠∠ ,∴>C D ∠∠.∵正弦、正切函数值随锐角的增大而增大,余弦函数值随锐角的增大而减小, ∴sin sin C D ∠>∠, cos <cos C D ∠∠, tan tan C D ∠>∠. ∴正确的结论为①③. 故选D.4. (2015年江苏淮安3分)如图,四边形ABCD 是圆O 的内接四边形,若70A ∠=︒,则∠C 的度数是【 】A. 100°B. 110°C. 120°D. 130° 【答案】B.【考点】圆内接四边形的性质.【分析】∵四边形ABCD 是圆O 的内接四边形, 70A ∠=︒,∴根据圆内接四边形对角互补的性质,得110C ∠=︒. 故选B.5. (2015年江苏南通3分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC ,交BC 于点E ,AB =6,AD =5,则AE 的长为【 】A. 2.5B. 2.8C. 3D. 3.2 【答案】B.【考点】圆周角定理;勾股定理;相似三角形的判定和性质. 【分析】如答图,连接BD 、CD ,∵AB 为⊙O 的直径,∴∠ADB =90°.∴BD∵弦AD 平分∠BAC ,∴CD =BD ∴∠CBD =∠DAB .在△ABD 和△BED 中,∵∠BAD =∠EBD ,∠ADB =∠BDE ,∴△ABD ∽△BED . ∴DE DBDB AD =1155DE =⇒=. ∴115 2.85AE AB DE =-=-=. 故选B.1. (2015年江苏连云港3分)如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为 ▲ .【答案】8π.【考点】由三视图判断几何体;几何体的展开图;扇形面积的计算. 【分析】∵这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,∴这个几何体的侧面展开图的面积=14482ππ⨯⨯=.2. (2015年江苏南京2分)如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E = ▲ .【答案】215°.【考点】圆内接四边形的性质;圆周角定理. 【分析】如答图,连接BD ,∵∠1和∠2是圆内接四边形的对角,∴∠1+∠2=180°.又∵∠3和∠4是同圆中同弧所对的圆周角,且∠4=35°,∴∠3=∠4=35°.∴∠CBA +∠DEA =215°.3. (2015年江苏泰州3分)圆心角为120° ,半径为6cm 的扇形面积为 ▲ cm 2. 【答案】12π【考点】扇形面积的计算.【分析】直接根据扇形面积公式计算:2120612360S ππ⋅⋅== cm 2. 4. (2015年江苏泰州3分)如图,⊙O 的内接四边形ABCD 中,∠A =115°,则∠BOD 等于 ▲ °.【答案】130.【考点】圆内接四边形的性质;圆周角定理. 【分析】∵⊙O 的内接四边形ABCD 中,∠A =115°,∴根据圆内接四边形对角互补的性质,得18065C A ∠=︒-∠=︒. ∵C ∠与BOD ∠是同圆中同弧所对的圆周角和圆心角, ∴2130BOD C ∠=∠=︒.5. (2015年江苏徐州3分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠C =20°,则∠CDA = ▲ °.【答案】125° .【考点】切线的性质;三角形内角和定理;圆周角定理.【分析】如答图,连接OD ,∵CD 与⊙O 相切于点D ,∴CD OD ⊥. ∴90CDO ∠=︒.∵∠C =20°,∴70COD ∠=︒. ∴35A ∠=︒. ∴180125CDA C A ∠=︒-∠-∠=︒.6.(2015年江苏徐州3分)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC ,若∠CAB =22.5°,CD =8cm ,则⊙O 的半径为 ▲ cm .【答案】【考点】垂径定理;圆周角定理;等腰直角三角形的判定和性质. 【分析】如答图,连接OC ,∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =8cm ,∴4CE DE cm ==. ∵∠CAB =22.5°,∴45COE ∠=︒.∴COE ∆是等腰直角三角形.∴OC =∴⊙O 的半径为.7. (2015年江苏徐州3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径 ▲ . 【答案】1.【考点】圆锥和扇形的计算。
2015中考数学真题分类汇编:圆(2)一.选择题(共30小题)1.(2015?宁夏)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD 的度数是()A.88°B.92°C.106°D.136°2.(2015?贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.33.(2015?河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE4.(2015?台湾)如图,坐标平面上有A(0,a)、B(﹣9,0)、C(10,0)三点,其中a>0.若∠BAC=95°,则△ABC的外心在第几象限?()A.一B.二C.三D.四5.(2015?湖北)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°6.(2015?张家界)如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是()A.相离B.相交C.相切D.以上三种情况均有可能7.(2015?齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤58.(2015?梅州)如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于()A.20°B.25°C.40°D.50°9.(2015?嘉兴)如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.B.2.4 C.D.10.(2015?黔西南州)如图,点P在⊙O外,PA、PB分别与⊙O相切于A、B两点,∠P=50°,则∠AOB等于()A.150°B.130°C.155°D.135°11.(2015?吉林)如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为()A.40°B.50°C.80°D.100°12.(2015?漳州)已知⊙P的半径为2,圆心在函数y=﹣的图象上运动,当⊙P与坐标轴相切于点D时,则符合条件的点D的个数为()A.0 B.1 C.2 D.413.(2015?厦门)如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与BC相切于点D,则该圆的圆心是()A.线段AE的中垂线与线段AC的中垂线的交点B.线段AB的中垂线与线段AC的中垂线的交点C.线段AE的中垂线与线段BC的中垂线的交点D.线段AB的中垂线与线段BC的中垂线的交点14.(2015?潍坊)如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,则∠C的度数是()A.70°B.50°C.45°D.20°15.(2015?重庆)如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°16.(2015?内江)如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40°B.35°C.30°D.45°17.(2015?枣庄)如图,一个边长为4cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C,与AC相交于点E,则CE的长为()A.4cm B.3cm C.2cm D.1.5cm18.(2015?广州)已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A.B.3 C.5 D.1019.(2015?南京)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.220.(2015?南充)如图,PA和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是()A.40°B.60°C.70°D.80°21.(2015?湖州)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4 B.2C.8 D.422.(2015?重庆)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O 于点D,连接OD.若∠BAC=55°,则∠COD的大小为()A.70°B.60°C.55°D.35°23.(2015?泸州)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P 的度数为()A.65°B.130°C.50°D.100°24.(2015?达州)如图,AB为半圆O的在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE?CD,正确的有()A.2个B.3个C.4个D.5个25.(2015?宜昌)如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm226.(2015?青岛)如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30°B.35°C.45°D.60°27.(2015?台湾)如图,AB切圆O1于B点,AC切圆O2于C点,BC分别交圆O1、圆O2于D、E两点.若∠BO1D=40°,∠CO2E=60°,则∠A的度数为何?()A.100 B.120 C.130 D.14028.(2015?衢州)如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3 B.4 C.D.29.(2015?河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x 轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6 B.8 C.10 D.1230.(2015?岳阳)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()A.①②B.①②③C.①④D.①②④2015中考数学真题分类汇编:圆(2)参考答案与试题解析一.选择题(共30小题)1.(2015?宁夏)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD 的度数是()A.88°B.92°C.106°D.136°考点:圆内接四边形的性质;圆周角定理.分析:首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.解答:解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.点评:(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.(2015?贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.3考点:点与圆的位置关系;三角形中位线定理;轨迹.专题:计算题.分析:取OP的中点N,连结MN,OQ,如图可判断MN为△POQ的中位线,则MN=OQ=1,则点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1.解答:解:取OP的中点N,连结MN,OQ,如图,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,在△OMN中,1<OM<3,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.点评:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3.(2015?河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE考点:三角形的外接圆与外心.分析:利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,进而判断得出即可.解答:解:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF.故选:B.点评:此题主要考查了三角形外心的定义,正确把握外心的定义是解题关键.4.(2015?台湾)如图,坐标平面上有A(0,a)、B(﹣9,0)、C(10,0)三点,其中a>0.若∠BAC=95°,则△ABC的外心在第几象限?()A.一B.二C.三D.四考点:三角形的外接圆与外心;坐标与图形性质.分析:根据钝角三角形的外心在三角形的外部和外心在边的垂直平分线上进行解答即可.解答:解:∵∠BAC=95°,∴△ABC的外心在△ABC的外部,即在x轴的下方,∵外心在线段BC的垂直平分线上,即在直线x=上,∴△ABC的外心在第四象限,故选:D.点评:本题考查的是三角形的外心的确定,掌握外心的概念和外心与锐角、直角、钝角三角形的位置关系是解题的关键,锐角三角形的外心在三角形的内部,直角三角形的外心是斜边的中点,钝角三角形的外心在三角形的外部.5.(2015?湖北)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°考点:三角形的外接圆与外心;圆周角定理.专题:分类讨论.分析:利用圆周角定理以及圆内接四边形的性质得出∠BAC的度数.解答:解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.点评:此题主要考查了圆周角定理以及圆内接四边形的性质,利用分类讨论得出是解题关键.6.(2015?张家界)如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是()A.相离B.相交C.相切D.以上三种情况均有可能考点:直线与圆的位置关系.分析:利用直线l和⊙O相切?d=r,进而判断得出即可.解答:解:过点C作CD⊥AO于点D,∵∠O=30°,OC=6,∴DC=3,∴以点C为圆心,半径为3的圆与OA的位置关系是:相切.故选:C.点评:此题主要考查了直线与圆的位置,正确掌握直线与圆相切时d与r的关系是解题关键.7.(2015?齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤5考点:直线与圆的位置关系;勾股定理;垂径定理.分析:此题可以首先计算出当AB与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8.若大圆的弦AB与小圆有公共点,即相切或相交,此时AB≥8;又因为大圆最长的弦是直径10,则8≤AB≤10.解答:解:当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∴AB=2=8.∵大圆的弦AB与小圆有公共点,即相切或相交,∴8≤AB≤10.故选:A.点评:本题综合考查了切线的性质、勾股定理和垂径定理.此题可以首先计算出和小圆相切时的弦长,再进一步分析有公共点时的弦长.8.(2015?梅州)如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于()A.20°B.25°C.40°D.50°考点:切线的性质.分析:连接OA,根据切线的性质,即可求得∠C的度数.解答:解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=20°,∴∠AOC=40°,∴∠C=50°.故选:D.点评:本题考查了圆的切线性质,以及等腰三角形的性质,掌握已知切线时常用的辅助线是连接圆心与切点是解题的关键.9.(2015?嘉兴)如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.B.2.4 C.D.考点:切线的性质;勾股定理的逆定理.分析:首先根据题意作图,由AB是⊙C 的切线,即可得CD⊥AB,又由在直角△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理求得AB的长,然后由S△ABC=AC?BC=AB?CD,即可求得以C为圆心与AB相切的圆的半径的长.解答:解:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=AC?BC=AB?CD,∴AC?BC=AB?CD,即CD===,∴⊙C的半径为,故选B.点评:此题考查了圆的切线的性质,勾股定理,以及直角三角形斜边上的高的求解方法.此题难度不大,解题的关键是注意辅助线的作法与数形结合思想的应用.10.(2015?黔西南州)如图,点P在⊙O外,PA、PB分别与⊙O相切于A、B两点,∠P=50°,则∠AOB等于()A.150°B.130°C.155°D.135°考点:切线的性质.分析:由PA与PB为圆的两条切线,利用切线性质得到PA与OA垂直,PB与OB垂直,在四边形APBO中,利用四边形的内角和定理即可求出∠AOB 的度数.解答:解:∵PA、PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∵∠P=50°,∴∠AOB=130°.故选B.点评:此题考查了切线的性质,以及四边形的内角和定理,熟练掌握切线的性质是解本题的关键.11.(2015?吉林)如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为()A.40°B.50°C.80°D.100°考点:切线的性质.分析:根据切线的性质得出∠OCD=90°,进而得出∠OCB=40°,再利用圆心角等于圆周角的2倍解答即可.解答:解:∵在⊙O中,AB为直径,BC为弦,CD为切线,∴∠OCD=90°,∵∠BCD=50°,∴∠OCB=40°,∴∠AOC=80°,故选C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.(2015?漳州)已知⊙P的半径为2,圆心在函数y=﹣的图象上运动,当⊙P 与坐标轴相切于点D时,则符合条件的点D的个数为()A.0 B.1 C.2 D.4考点:切线的性质;反比例函数图象上点的坐标特征.分析:⊙P的半径为2,⊙P 与x轴相切时,P点的纵坐标是±2,把y=±2代入函数解析式,得到x=±4,因而点D的坐标是(±4,0),⊙P与y轴相切时,P点的横坐标是±2,把x=±2代入函数解析式,得到y=±4,因而点D的坐标是(0.±4).解答:解:根据题意可知,当⊙P与y轴相切于点D时,得x=±2,把x=±2代入y=﹣得y=±4,∴D(0,4),(0,﹣4);当⊙P与x轴相切于点D时,得y=±2,把y=±2代入y=﹣得x=±4,∴D(4,0),(﹣4,0),∴符合条件的点D的个数为4,故选D.点评:本题主要考查了圆的切线的性质,反比例函数图象上的点的特征,掌握反比例函数图象上的点的特征是解题的关键.13.(2015?厦门)如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与BC相切于点D,则该圆的圆心是()A.线段AE的中垂线与线段AC的中垂线的交点B.线段AB的中垂线与线段AC的中垂线的交点C.线段AE的中垂线与线段BC的中垂线的交点D.线段AB的中垂线与线段BC的中垂线的交点考点:切线的性质;线段垂直平分线的性质;等腰三角形的性质.分析:连接AD,作AE的中垂线交AD于O,连接OE,由AB=AC,D是边BC的中点,得到AD是BC的中垂线,由于BC是圆的切线,得到AD必过圆心,由于AE是圆的弦,得到AE的中垂线必过圆心,于是得到结论.解答:解:连接AD,作AE的中垂线交AD于O,连接OE,∵AB=AC,D是边BC的中点,∴AD⊥BC.∴AD是BC的中垂线,∵BC是圆的切线,∴AD必过圆心,∵AE是圆的弦,∴AE的中垂线必过圆心,∴该圆的圆心是线段AE的中垂线与线段BC的中垂线的交点,故选C.点评:本题考查了切线的性质,等腰三角形的性质,线段中垂线的性质,掌握切线的性质是解题的关键.14.(2015?潍坊)如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,则∠C的度数是()A.70°B.50°C.45°D.20°考点:切线的性质.分析:由BC是⊙O的切线,OB是⊙O的半径,得到∠OBC=90°,根据等腰三角形的性质得到∠A=∠ABO=20°,由外角的性质得到∠BOC=40°,即可求得∠C=50°.解答:解:∵BC是⊙O的切线,OB是⊙O的半径,∴∠OBC=90°,∵OA=OB,∴∠A=∠ABO=20°,∴∠BOC=40°,∴∠C=50°.故选B.点评:本题考查了本题考查了切线的性质,等腰三角形的性质,掌握定理是解题的关键.15.(2015?重庆)如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°考点:切线的性质.分析:由AB是⊙O直径,AE是⊙O的切线,推出AD⊥AB,∠DAC=∠B=∠AOC=40°,推出∠AOD=50°.解答:解:∵AB是⊙O直径,AE是⊙O的切线,∴∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°﹣∠B=50°,故选B.点评:本题主要考查圆周角定理、切线的性质,解题的关键在于连接AC,构建直角三角形,求∠B的度数.16.(2015?内江)如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40°B.35°C.30°D.45°考点:切线的性质.分析:连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA=30°;又因为PD为切线,利用切线与圆的关系即可得出结果.解答:解:连接BD,∵∠DAB=180°﹣∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,故选:C.点评:本题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.17.(2015?枣庄)如图,一个边长为4cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C,与AC相交于点E,则CE的长为()A.4cm B.3cm C.2cm D.1.5cm考点:切线的性质;等边三角形的性质.分析:连接OC,并过点O作OF⊥CE于F,求出等边三角形的高即可得出圆的直径,继而得出OC的长度,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长.解答:解:连接OC,并过点O作OF⊥CE于F,∵△ABC为等边三角形,边长为4cm,∴△ABC的高为2cm,∴OC=cm,又∵∠ACB=60°,∴∠OCF=30°,在Rt△OFC中,可得FC=cm,即CE=2FC=3cm.故选B.点评:本题主要考查了切线的性质,等边三角形的性质和解直角三角形的有关知识,题目不是太难,属于基础性题目.18.(2015?广州)已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A.B.3 C.5 D.10考点:切线的性质.分析:根据直线与圆的位置关系可直接得到点O到直线l的距离是5.解答:解:∵直线l与半径为r的⊙O相切,∴点O到直线l的距离等于圆的半径,即点O到直线l的距离为5.故选C.点评:本题考查了切线的性质以及直线与圆的位置关系:设⊙O的半径为r,圆心O 到直线l的距离为d,直线l和⊙O相交?d<r;直线l和⊙O相切?d=r;当直线l和⊙O相离?d>r.19.(2015?南京)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2考点:切线的性质;矩形的性质.分析:连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.解答:解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=,故选A.点评:本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.20.(2015?南充)如图,PA和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是()A.40°B.60°C.70°D.80°考点:切线的性质.分析:由PA、PB是⊙O的切线,可得∠OAP=∠OBP=90°,根据四边形内角和,求出∠AOB,再根据圆周角定理即可求∠ACB的度数.解答:解:连接OB,∵AC是直径,∴∠ABC=90°,∵PA、PB是⊙O的切线,A、B为切点,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=140°,由圆周角定理知,∠ACB=∠AOB=70°,故选C.点评:本题考查了切线的性质,圆周角定理,解决本题的关键是连接OB,利用直径对的圆周角是直角来解答.21.(2015?湖州)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4 B.2C.8 D.4考点:切线的性质.分析:连接OC,利用切线的性质知OC⊥AB,由垂径定理得AB=2AC,因为tan∠OAB=,易得=,代入得结果.解答:解:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=,∴AC=4,∴AB=8,故选C.点评:本题主要考查了切线的性质和垂径定理,连接过切点的半径是解答此题的关键.22.(2015?重庆)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O 于点D,连接OD.若∠BAC=55°,则∠COD的大小为()A.70°B.60°C.55°D.35°考点:切线的性质;圆周角定理.分析:由AC是⊙O的切线,可求得∠C=90°,然后由∠BAC=55°,求得∠B的度数,再利用圆周角定理,即可求得答案.解答:解:∵AC是⊙O的切线,∴BC⊥AC,∴∠C=90°,∵∠BAC=55°,∴∠B=90°﹣∠BAC=35°,∴∠COD=2∠B=70°.故选A.点评:此题考查了切线的性质以及圆周角定理.注意掌握切线的性质:圆的切线垂直于经过切点的半径.23.(2015?泸州)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P 的度数为()A.65°B.130°C.50°D.100°考点:切线的性质.分析:由PA与PB都为圆O的切线,利用切线的性质得到OA 垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.解答:解:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.点评:本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.24.(2015?达州)如图,AB为半圆O的在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE?CD,正确的有()A.2个B.3个C.4个D.5个考点:切线的性质;切线长定理;相似三角形的判定与性质.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE?CD,选项①正确;由△AOD∽△BOC,可得===,选项③正确;由△ODE∽△OEC,可得,选项④错误.解答:解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC?DE,选项①正确;∵∠AOD+∠COB=∠AOD+∠ADO=90°,∠A=∠B=90°,∴△AOD∽△BOC,∴===,选项③正确;同理△ODE∽△OEC,∴,选项④错误;故选C.点评:此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.25.(2015?宜昌)如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2考点:切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.专题:应用题.分析:由BC,AC分别是⊙O的切线,B,A为切点,得到OA⊥CA,OB⊥BC,又∠C=90°,OA=OB,推出四边形AOBC是正方形,得到OA=AC=4,故A,B正确;根据扇形的弧长、面积的计算公式求出结果即可进行判断.解答:解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,∴OA⊥CA,OB⊥BC,又∵∠C=90°,OA=OB,∴四边形AOBC是正方形,∴OA=AC=4,故A,B正确;∴的长度为:=2π,故C错误;S扇形OAB==4π,故D正确.故选C.点评:本题考查了切线的性质,正方形的判定和性质,扇形的弧长、面积的计算,熟记计算公式是解题的关键.26.(2015?青岛)如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30°B.35°C.45°D.60°考点:切线的性质;正多边形和圆.分析:连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理∠PAB.解答:解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°,故选A.点评:本题主要考查了正多边形和圆,切线的性质,作出适当的辅助线,利用弦切角定理是解答此题的关键.27.(2015?台湾)如图,AB切圆O1于B点,AC切圆O2于C点,BC分别交圆O1、圆O2于D、E两点.若∠BO1D=40°,∠CO2E=60°,则∠A的度数为何?()A.100 B.120 C.130 D.140考点:切线的性质.分析:由AB切圆O1于B点,AC切圆O2于C点,得到∠ABO1=∠ACO2=90°,由等腰三角形的性质得到∴∠O1BD=70°,∠O2CE=60°,根据三角形的内角和求得.解答:解:∵AB切圆O1于B点,AC切圆O2于C点,∴∠ABO1=∠ACO2=90°,∵O1D=O1B,O2E=O2C,∴∠O1BD=∠O1DB==70°,∠O2CE=∠O2EC=(180°﹣60°)=60°,∴∠ABC=20°,∠ACB=30°,∴∠A=130°,故选C.点评:本题考查了切线的性质,等腰三角形的性质,三角形的内角和定理,熟记定理是解题的关键.28.(2015?衢州)如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3 B.4 C.D.考点:切线的性质.分析:首先连接OD、BD,根据DE⊥BC,CD=5,CE=4,求出DE 的长度是多少;然后根据AB是⊙O的直径,可得∠ADB=90°,判断出BD、AC的关系;最后在Rt△BCD中,求出BC的值是多少,再根据AB=BC,求出AB的值是多少,即可求出⊙O的半径是多少.解答:解:如图1,连接OD、BD,,∵DE⊥BC,CD=5,CE=4,∴DE=,∵AB是⊙O的直径,∴∠ADB=90°,∵S△BCD=BD?CD÷2=BC?DE÷2,∴5BD=3BC,∴,∵BD2+CD2=BC2,∴,解得BC=,∵AB=BC,∴AB=,∴⊙O的半径是;.故选:D.点评:此题主要考查了切线的性质,要熟练掌握,解答此题的关键是要明确:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.29.(2015?河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x 轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6 B.8 C.10 D.12考点:切线的性质;一次函数图象上点的坐标特征.分析:根据直线的解析式求得OB=4,进而求得OA=12,根据切线的性质求得PM⊥AB,根据∠OAB=30°,求得PM=PA,然后根据“整圆”的定义,即可求得使得⊙P成为整圆的点P的坐标,从而求得点P个数.解答:解:∵直线l:y=kx+4与x轴、y轴分别交于A、B,∴B(0,4),∴OB=4,在RT△AOB中,∠OAB=30°,∴OA=OB=×=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=PA,设P(x,0),∴PA=12﹣x,∴⊙P的半径PM=PA=6﹣x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.点评:本题考查了切线的性质,含30°角的直角三角形的性质等,熟练掌握性质定理是解题的关键.30.(2015?岳阳)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()A.①②B.①②③C.①④D.①②④考点:切线的判定;相似三角形的判定与性质.分析:根据圆周角定理得∠ADB=90°,则BD⊥AC,于是根据等腰三角形的性质可判断AD=DC,则可对①进行判断;利用等腰三角形的性质和平行线的性质可证明∠1=∠2=∠3=∠4,则根据相似三角形的判定方法得到△CBA∽△CDE,于是可对②进行判断;由于不能确定∠1等于45°,则不能确定与相等,则可对③进行判断;利用DA=DC=DE可判断∠AEC=90°,即CE⊥AE,根据平行线的性质得到AB⊥AE,然后根据切线的判定定理得AE为⊙O的切线,于是可对④进行判断.解答:解:∵AB为直径,∴∠ADB=90°,∴BD⊥AC,而AB=CB,∴AD=DC,所以①正确;∵AB=CB,∴∠1=∠2,而CD=ED,∴∠3=∠4,∵CF∥AB,∴∠1=∠3,∴∠1=∠2=∠3=∠4,∴△CBA∽△CDE,所以②正确;∵△ABC不能确定为直角三角形,∴∠1不能确定等于45°,∴与不能确定相等,所以③错误;∵DA=DC=DE,∴点E在以AC为直径的圆上,∴∠AEC=90°,∴CE⊥AE,而CF∥AB,∴AB⊥AE,∴AE为⊙O的切线,所以④正确.故选D.点评:本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了等腰三角形的性质、平行线的性质和相似三角形的判定.。
2015中考真题汇集1(于2015.4.30更新)1.如图,矩形ABCD 的长为6,宽为3,点O 1为矩形的中心,⊙O 2的半径为1,O 1O 2⊥AB 于点P ,O 1O 2=6.若⊙O 2绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 2与矩形的边只有一个公共点的情况一共出现( )A .3次B .4次C .5次D .6次2. 已知⊙O 的半径是6cm ,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法判断3. 如图,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(-3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为( )A .1 B .1或5 C .3 D .54. 在平面直角坐标系xOy 中,直线l 经过点A (-3,0),点B (0, ),点P 的坐标为(1,0),⊙P 与y 轴相切于点O .若将⊙P 沿x 轴向左平移,平移后得到⊙P ′(点P 的对应点为点P ′),当⊙P ′与直线l 相交时,横坐标为整数的点P ′共有( )A .1个B .2个C .3个D .4个5. 已知⊙O 的半径r=3,设圆心O 到一条直线的距离为d ,圆上到这条直线的距离为2的点的个数为m ,给出下列命题:①若d >5,则m=0;②若d=5,则m=1;③若1<d <5,则m=3;④若d=1,则m=2;⑤若d <1,则m=4.其中正确命题的个数是( )A .1B .2C .3D .56. 如图,Rt △ABC 中,∠ACB=90°,AC=4,BC=6,以斜边AB 上的一点O为圆心所作的半圆分别与AC 、BC 相切于点D 、E ,则AD 为( )A .2.5B .1.6C .1.5D .17. 如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心.若∠B=25°,则∠C 的大小等于( )A .20°B .25°C .40°D .50°8. 如图,AB 是⊙O 的直径,CD 是⊙O 的切线,切点为D ,CD 与AB 的延长线交于点C ,∠A=30°,给出下面3个结论:①AD=CD ;②BD=BC ;③AB=2BC ,其中正确结论的个数是( )A .3B .2C .1D .039. (2015•黄冈中学自主招生)如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ′,则图中阴影部分的面积是( )A .3πB .6πC .5πD .4π10. 2015•黄冈中学自主招生)在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为2,则a 的值是11. (2015•黄冈中学自主招生)如图,二次函数y =− 12x 2+2与x 轴交于A 、B 两点,与y 轴交于C 点,点P 从A 点出发,以1个单位每秒的速度向点B 运动,点Q 同时从C 点出发,以相同的速度向y 轴正方向运动,运动时间为t 秒,点P 到达B 点时,点Q 同时停止运动.设PQ 交直线AC 于点G .(1)求直线AC 的解析式;(2)设△PQC 的面积为S ,求S 关于t 的函数解析式;(3)在y 轴上找一点M ,使△MAC 和△MBC 都是等腰三角形.直接写出所有满足条件的M 点的坐标;(4)过点P 作PE ⊥AC ,垂足为E ,当P 点运动时,线段EG 的长度是否发生改变,请说明理由.312.(2015•黄冈中学自主招生)已知关于x的方程(m2-1)x2-3(3m-1)x+18=0有两个正整数根(m是正整数).△ABC的三边a、b、c满足c=23,m2+a2m-8a=0,m2+b2m-8b=0.求:(1)m的值;(2)△ABC的面积.13.(2015•黄冈中学自主招生)若抛物线y=2x2-px+4p+1中不管p取何值时都通过定点,则定点坐标为﹍﹍﹍﹍﹍14.(2015•黄冈中学自主招生)如果函数y=b的图象与函数y=x2-3|x-1|-4x-3的图象恰有三个交点,则b的可能值是﹍﹍﹍﹍﹍15.(2015•黄冈中学自主招生)对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.516.2015•黄冈中学自主招生)如图所示,已知直线y=−33x+1与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.32n−1B.32nC.12n2n+117. 已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.18.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同19.(2015•邯郸一模)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=kx的图象上,若点A的坐标为(-2,-2),则k的值为﹍﹍﹍﹍20.(2015•乐陵市模拟)已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)2015中考真题汇集1答案及解析1.考点:直线与圆的位置关系.专题:分类讨论.分析:根据题意作出图形,直接写出答案即可.解答:解:如图,⊙O2与矩形的边只有一个公共点的情况一共出现4次,故选:B.点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.2.考点:直线与圆的位置关系.分析:设圆的半径为r,点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离,从而得出答案.解答:解:设圆的半径为r,点O到直线l的距离为d,∵d=5,r=6,∴d<r,∴直线l与圆相交.故选:A.点评:本题考查的是直线与圆的位置关系,解决此类问题3.考点:直线与圆的位置关系;坐标与图形性质.分析:平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.解答:解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.4.考点:直线与圆的位置关系;一次函数的性质.专题:几何图形问题.分析:在解答本题时要先求出⊙P的半径,继而求得相切时P′点的坐标,根据A(-3,0),可以确定对应的横坐标为整数时对应的数值.解答:解:如图所示,∵点P的坐标为(1,0),⊙P与y轴相切于点O,∴⊙P的半径是1,若⊙P与AB相切时,设切点为D,由点A(-3,0),点B(0,3),∴OA=3,OB=,∠DAM=30°,设平移后圆与直线AB第一次相切时圆心为M(即对应的P′),∴MD⊥AB,MD=1,又因为∠DAM=30°,∴AM=2,M点的坐标为(-1,0),即对应的P′点的坐标为(-1,0),同理可得圆与直线第二次相切时圆心N的坐标为(-5,0),所以当⊙P′与直线l相交时,横坐标为整数的点P′的横坐标可以是-2,-3,-4共三个.故选:C.点评:本题考查了圆的切线的性质的综合应用,解答本题的关键在于找到圆与直线相切时对应的圆心的坐标,然后结合A点的坐标求出对应的圆心的横坐标的整数解.5.考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系和直线与圆的交点个数以及命题中的数据分析即可得到答案.解答:解:①若d>5时,直线与圆相离,则m=0,故正确;②若d=5时,直线与圆相离,则m=1,故正确;③若1<d<5,则m=2,故错误;④若d=1时,直线与圆相交,则m=3,故错误;⑤若d<1时,直线与圆相交,则m=4,故正确.故选:C.点评:考查了直线与圆的位置关系,解题的关键是了解直线与圆的位置关系与d 与r的数量关系.6.考点:切线的性质;相似三角形的判定与性质.专题:几何图形问题.分析:连接OD、OE,先设AD=x,再证明四边形ODCE是矩形,可得出OD=CE,OE=CD,从而得出CD=CE=4-x,BE=6-(4-x),可证明△AOD∽OBE,再由比例式得出AD 的长即可.解答:解:连接OD、OE,设AD=x,∵半圆分别与AC、BC相切,∴∠CDO=∠CEO=90°,∵∠C=90°,∴四边形ODCE是矩形,∴OD=CE,OE=CD,又∵OD=OE,∴CD=CE=4-x,BE=6-(4-x)=x+2,∵∠AOD+∠A=90°,∠AOD+∠BOE=90°,∴∠A=∠BOE,∴△AOD∽OBE,∴ADOE=ODBE∴x4−x=4−xx+2解得x=1.6,故选:B.点评:本题考查了切线的性质.相似三角形的性质与判定,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形,证明三角形相似解决有关问题.7.考点:切线的性质;圆心角、弧、弦的关系.专题:几何图形问题.分析:连接OA,根据切线的性质,即可求得∠C的度数.解答:解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.点评:本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.8.考点:切线的性质.专题:几何图形问题.分析:连接OD,CD是⊙O的切线,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等边三角形,∠C=∠BDC=30°,再结合在直角三角形中300所对的直角边等于斜边的一半,继而得到结论①②③成立.解答:解:如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,∴△OBD是等边三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,②成立;∴AB=2BC,③成立;∴∠A=∠C,∴DA=DC,①成立;综上所述,①②③均成立,故答案选:A.点评:本题考查了圆的有关性质的综合应用,在本题中借用切线的性质,求得相应角的度数是解题的关键.9.考点:扇形面积的计算;旋转的性质.专题:压轴题.分析:根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB 为直径的半圆的面积.即可求解.解答:解:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB 为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:60π×62360=6π故选B.点评:本题主要考查了扇形的面积的计算,正确理解阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积是解题的关键.10.考点:垂径定理;坐标与图形性质.专题:计算题;压轴题.分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.分别求出PD、DC,相加即可.解答:解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵AB=23,∴AE=3,PA=2,∴PE=1.∵点D在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=2.∵⊙P的圆心是(2,a),∴点D的横坐标为2,∴OC=2,∴DC=OC=2,∴a=PD+DC=2+2.故答案为:2+2点评:本题综合考查了一次函数与几何知识的应用,题中运用圆与直线的关系以及直角三角形等知识求出线段的长是解题的关键.注意函数y=x与x轴的夹角是45°.11.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)直线AC经过点A,C,根据抛物线的解析式面积可求得两点坐标,利用待定系数法就可求得AC的解析式;(2)根据三角形面积公式即可写出解析式;(3)可以分腰和底边进行讨论,即可确定点的坐标;(4)过G作GH⊥y轴,根据三角形相似,相似三角形的对应边的比相等即可求解.解答:解:(1)y=-12x2+2,x=0时,y=2,y=0时,x=±2,∴A(-2,0),B(2,0),C(0,2),设直线AC的解析式是y=kx+b,代入得:0=−2k+b2=b解得:k=1,b=2,即直线AC的解析式是y=x+2;(2)当0<t<2时,OP=(2-t),QC=t,∴△PQC的面积为:S=12(2-t)t=-12t2+t,当2<t≤4时,OP=(t-2),QC=t,∴△PQC的面积为:S=12(t-2)t=12t2-t,∴s=−12t2+t(0<t<2)12t2−t(2<t≤4);(3)当AC=CM=BC时,M的坐标是:(0,22+2),(0,-2);当AM=BM=CM时,M的坐标是:(0,0),(0,2−2 2);一共四个点,(0,2),(0,-2);(4)当0<t<2时,过G作GH⊥y轴,垂足为H.由AP=t,可得AE=22t.∵GH∥OP∴GHPO=QHQO即GH2−t=GH+t2+t,解得GH=1−t2,所以GC=2t.于是,GE=AC-AE-GC=22−.即GE的长度不变.当2<t≤4时,过G作GH⊥y轴,垂足为H.由AP=t,可得AE=22t.由GHPO=QHQO即GHt−2=t−GH2+t,∴GH(2+t)=t(t-2)-(t-2)GH,∴GH(2+t)+(t-2)GH=t(t-2),∴2tGH=t(t-2),解得GH=t−2,以GC=所(t−2)2.是,GE=AC-AE+GC=2于(t−2)即GE的长度不变.综合得:当P点运动时,线段EG的长度不发生改变,为定值212.考点:根与系数的关系;一元二次方程的定义;一元二次方程的解;解一元二次方程-因式分解法;等腰三角形的性质;勾股定理;勾股定理的逆定理.专题:应用题;压轴题;分类讨论;方程思想.分析:(1)本题可先求出方程(m2-1)x2-3(3m-1)x+18=0的两个根,然后根据这两个根都是正整数求出m的值.(2)由(1)得出的m的值,然后将m2+a2m-8a=0,m2+b2m-8b=0.进行化简,得出a,b的值.然后再根据三角形三边的关系来确定符合条件的a,b的值,进而得出三角形的面积.解答:解:(1)∵关于x的方程(m2-1)x2-3(3m-1)x+18=0有两个正整数根(m 是整数).∵a=m2-1,b=-9m+3,c=18,∴b2-4ac=(9m-3)2-72(m2-1)=9(m-3)2≥0,设x1,x2是此方程的两个根,∴x1•x2=ca=18m2−1∴18m2−1也是正整数,即m2-1=1或2或3或6或9或18,又m为正整数,∴m=2;13.点:二次函数图象上点的坐标特征.专题:压轴题.分析:把含p的项合并,只有当p的系数为0时,不管p取何值抛物线都通过定点,可求x、y的对应值,确定定点坐标.解答:解:y=2x2-px+4p+1可化为y=2x2-p(x-4)+1,分析可得:当x=4时,y=33;且与p的取值无关;故不管p取何值时都通过定点(4,33).点评:本题考查二次函数图象过定点问题,解决此类问题:首先根据题意,化简函数式,提出未知的常数,化简后再根据具体情况判断.14.考点:二次函数的性质.专题:计算题;压轴题.分析:按x≥1和x<1分别去绝对值,得到分段函数,确定两函数图象的交点坐标,顶点坐标,结合分段函数的自变量取值范围求出符合条件的b的值.解答:解:当x≥1时,函数y=x2-3|x-1|-4x-3=x2-7x,图象的一个端点为(1,-6),顶点坐标为(72,-494),当x<1时,函数y=x2-3|x-1|-4x-3=x2-x-6,顶点坐标为(12,-254),∴当b=-6或b=-254时,两图象恰有三个交点.故本题答案为:-6,-4点评:本题考查了分段的两个二次函数的性质,根据绝对值里式子的符号分类,得到两个二次函数是解题的关键.15.考点:规律型:数字的变化类.专题:压轴题;规律型.分析:根据n!=1×2×3×…×n得到1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,且5!、…、10!的数中都含有2与5的积,则5!、…、10!的末尾数都是0,于是得到1!+2!+3!+…+10!的末尾数为3.解答:解:∵1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,而5!、…、10!的数中都含有2与5的积,∴5!、…、10!的末尾数都是0,∴1!+2!+3!+…+10!的末尾数为3.故选C.点评:本题考查了规律型:数字的变化类:通过特殊数字的变化规律探讨一般情况下的数字变化规律.16.考点:一次函数综合题.专题:压轴题.分析:根据题目已知条件可推出,AA1=3222n.解答:解:∵OB=3,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1为等边三角形,∠A1AB1=60°,∴∠COA1=30°,则∠CA1O=90°.在Rt△CAA1中,AA1=32,同理得:B1A2=322,依此类推,第n个等边三角形的边长等于32n故选A.点评:本题考查了一次函数综合题.解题时,将一次函数、等边三角形的性质及解直角三角形结合在一起,从而归纳出边长的规律.17.考点:动点问题的函数图象.专题:压轴题;动点型.分析:根据函数解析式求函数图象.解答:解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.点评:要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.18.考点:等边三角形的性质.专题:压轴题;规律型.分析:根据图跟表我们可以看出n代表所剪次数,a n代表小正三角形的个数,也可以根据图形找出规律加以求解.解答:解:由图可知没剪的时候,有一个三角形,以后每剪一次就多出三个,所以总的个数3n+1.故答案为:3n+1.点评:此题主要考验学生的逻辑思维能力以及应变能力.19.考点:待定系数法求反比例函数解析式;矩形的性质.专题:代数几何综合题;压轴题.分析:先设y=kx再根据k的几何意义求出k值即可.解答:解:设C的坐标为(m,n),又A(-2,-2),∴AN=MD=2,AF=2,CE=OM=FD=m,CM=n,∴AD=AF+FD=2+m,AB=BN+NA=2+n,∵∠A=∠OMD=90°,∠MOD=∠ODF,∴△OMD∽△DAB,∴MDAB=OMDA,即2n+2=m2+m整理得:4+2m=2m+mn,即mn=4,则k=4.故答案为4.点评:主要考查了用待定系数法求反比例函数的解析式和反比例函数系数k的几何意义.反比例函数系数k的几何意义为:反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积,本题综合性强,考查知识面广,能较全面考查学生综合应用知识的能力.20.考点:正方形的性质;全等三角形的判定与性质;勾股定理.专题:证明题;压轴题;探究型.分析:(1)由三角形全等可以证明AH=AB,(2)延长CB至E,使BE=DN,证明△AEM≌△ANM,能得到AH=AB,(3)分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,然后分别延长BM和DN交于点C,得正方形ABCE,设AH=x,则MC=x-2,NC=x-3,在Rt△MCN中,由勾股定理,解得x.解答:解:(1)如图①AH=AB.(2)数量关系成立.如图②,延长CB至E,使BE=DN.∵ABCD是正方形,∴AB=AD,∠D=∠ABE=90°,在Rt△AEB和Rt△AND中,AB=AD∠ABE=∠ADNBE=DN,∴Rt△AEB≌Rt△AND,∴AE=AN,∠EAB=∠NAD,∴∠EAM=∠NAM=45°,在△AEM和△ANM中,AE=AN∠EAM=∠NAMAM=AM,∴△AEM≌△ANM.∴S△A E M=S△A N M,EM=MN,∵AB、AH是△AEM和△ANM对应边上的高,∴AB=AH.(3)如图③分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,∴BM=2,DN=3,∠B=∠D=∠BAD=90°.分别延长BM和DN交于点C,得正方形ABCD,由(2)可知,AH=AB=BC=CD=AD.设AH=x,则MC=x-2,NC=x-3,在Rt△MCN中,由勾股定理,得MN2=MC2+NC2∴52=(x-2)2+(x-3)2(6分)解得x1=6,x2=-1.(不符合题意,舍去)∴AH=6.点评:本题主要考查正方形的性质和三角形全等的判断,难度中等(于2015.4.30更新).。
(2015中考)圆一、选择题1、(2015•莱芜)如图,在直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,以BC 为直径的⊙O 与AD 相切,点E 为AD 的中点,下列结论正确的个数是( ) (1)AB+CD=AD ;(2)S △BCE =S △ABE +S △DCE ;(3)AB •CD=;(4)∠ABE=∠DCE .A .1B .2C .3D .4 2、(2015•青岛)如图,正六边形ABCDEF 内接于⊙O ,若直线PA 与⊙O 相切于点A ,则∠PAB=( )A .30° B .35° C .45° D .60° 3、(2015•临沂)如图A ,B ,C 是⊙O 上的三个点,若∠AOC=100°,则∠ABC 等于( )A .50°B .80°C .100°D .130° 4、(2015•潍坊)如图,AB 是⊙O 的弦,AO 的延长线交过点B 的⊙O 的切线于点C ,如果∠ABO=20°,则∠C 的度数是( )A .70° B .50° C .45° D .20° 5、(2015•潍坊)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm ,水的最大深度是2cm ,则杯底有水部分的面积是( ) A .(π﹣4)cm 2B .(π﹣8)cm 2C .(π﹣4)cm 2D .(π﹣2)cm 26、(2015山东日照市)如右图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O 交斜边BC于D ,则阴影部分面积为(结果保留π)( ) (A ) 244π- (B) 324π- (C) 328π- (D) 167、(2015•枣庄)如图,一个边长为4cm 的等边三角形ABC 的高与⊙O 的直径相等.⊙O 与BC 相切于点C ,与AC 相交于点E ,则CE 的长为( )A .4cm B .3cm C .2cm D .1.5cm 8、(2015山东省聊城市)如图,点O 是圆形纸片的圆心,将这个圆心纸片按下列顺序折叠,使AB和AC 都经过圆心O ,则阴影部分的面积是⊙O 面积的( ) A.12 B.13 C.23 D.359、(泰安)如图,菱形ABCD 的边长为2,∠A=60°,以点B 为圆心的圆与AD ,DC 相切,与AB ,CB 的延长线分别相交于点E 、F ,则图中阴影部分的面积为 ( )A2πBπ C2πD.2π10、(2015•东营)如图,在Rt △ABC 中,∠ABC=90°.AB=BC .点D 是线段AB 上的一点,连结CD .过点B 作BG ⊥CD ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连结DF ,给出以下四个结论:①=;②若点D 是AB 的中点,则AF=AB ;③当B 、C 、F 、D 四点在同一个圆上时,DF=DB ;④若=,则S △ABC =9S △BDF ,其中正确的结论序号是( )A .①②B .③④C .①②③D .①②③④ 11、(2015山东省威海市)若用一张直径为20cm 的半圆做成一个圆锥的侧面,接缝忽略不计,则所得圆锥的高为( )A. cm 35 B. cm 55 C.cm 2155 D. cm 10 12、(2015山东省威海市)如图,已知AB =AC =AD ,∠CBD =2∠BDC , ∠BAC =44°,则∠CAD 的度数为( )DCB13、(2015山东省威海市)如图,正六边形111111F E D C B A 的边长为2,正六边形222222F E D C B A 的外接圆与正六边形111111F E D C B A 的各边相切,正六边形333333F E D C B A 的外接圆与正六边形222222F E D C B A 的的各边相切,·······按这样的规律进行下去,正十边形 101010101010F E D C B A 的边长为( )A.92243 B. 92381 C. 9281 D.8238114、(2014•莱芜)如图,AB 为半圆的直径,且AB=4,半圆绕点B 顺时针旋转45°,点A 旋转到A ′.二、填空题1、(2015•莱芜)如图,在扇形OAB 中,∠AOB=60°,扇形半径为r ,点C 在上,CD ⊥OA,垂足为D ,当△OCD 的面积最大时,的长为 .2、(2015•青岛)如图,圆内接四边形ABCD 两组对边的延长线分别相交于点E ,F ,且∠A=55°, ∠E=30°,则∠F= .3、4、(2015•烟台)如图,直线l :y=﹣x+1与坐标轴交于A ,B 两点,点M (m ,0)是x 轴上一动点,以点M 为圆心,2个单位长度为半径作⊙M ,当⊙M 与直线l 相切时,则m 的值为 .5、(泰安)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,过CD 延长线上一点E 作⊙O 的切线,切点为F.若∠ACF=65°,则∠E=6、(2015•淄博)如图,在⊙O 中,=,∠DCB=28°,则∠ABC=度.7、(2015山东省济南市)如图,P A 是⊙O 的切线,A 是切点,P A =4,OP =5,则⊙O 的周长为____________. (结果保留π) 8、(2015•东营)如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 m .三、解答题9、(2015•滨州)如图,⊙O 的直径AB 的长为10,弦AC 的长为5,∠ACB 的平分线交⊙O 于点D .(1)求的长.(2)求弦BD 的长.10、(2015•德州)如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,∠APC=∠CPB=60°. (1)判断△ABC 的形状: ;(2)试探究线段PA ,PB ,PC 之间的数量关系,并证明你的结论; (3)当点P 位于的什么位置时,四边形APBC 的面积最大?求出最大面积.11、(2015•德州)(1)问题如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°,求证:AD •BC=AP•BP .(2)探究如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由. (3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5,点P 以每秒1个单位长度的速度,由点A 出了,沿边AB 向点B 运动,且满足∠DPC=∠A ,设点P 的运动时间为t (秒),当以D 为圆心,以DC 为半径的圆与AB 相切时,求t 的值.12、(2015•莱芜)如图,已知AB是⊙O的直径,C是⊙O上任一点(不与A,B重合),AB⊥CD 于E,BF为⊙O的切线,OF∥AC,连结AF,FC,AF与CD交于点G,与⊙O交于点H,连结CH.(1)求证:FC是⊙O的切线;(2)求证:GC=GE;(3)若cos∠AOC=,⊙O的半径为r,求CH的长.12、(2015•烟台)如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E ,且=.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.14、(2015•菏泽)如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=2,CE:EB=1:4,求CE的长.15、(2015•潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.16、(2015•临沂)如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).17、如图3,⊙P与x轴相切于原点O,P点的坐标为(0,6),A是⊙P上一点,连接OA,使ta n ∠POA=34,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB。
52015中考数学真题分类汇编:圆(8)一 •解答题(共30小题)1. ( 2015?大连)如图,AB 是O O 的直径,点 C , D 在O O 上,且AD 平分/ CAB ,过 点D 作AC 的垂线,与AC 的延长线相交于点 E ,与AB 的延长线相交于点F .(1) 求证:EF 与O O 相切;(2) 若 AB=6, AD=4逅,求 EF 的长.2. ( 2015?潍坊)如图,在 △ABC 中,AB=AC , 以 AC 为直径的O O 交BC 于点D ,交 AB 于点E ,过点D 作DF 丄AB ,垂足为F ,连接DE .(1) 求证:直线DF 与O O 相切;(2 )若 AE=7, BC=6,求 AC 的长.3. (2015?枣庄)如图,在 A ABC 中,/ ABC=90°以AB 的中点O 为圆心、OA 为半径 的圆交AC 于点D , E 是BC 的中点,连接 DE , OE .(1) 判断DE 与O O 的位置关系,并说明理由;(2) 求证:BC 2=CD?2OE ;(3 )若 cos / BAD= ; BE=6,求 OE 的长.4. (2015?西宁)如图,已知 BC 为O O 的直径,BA 平分/ FBC 交O O 于点A , D 是射 线BF 上的一点,且满足':,过点O 作OM 丄AC 于点E ,交O O 于点M ,连接BM ,BA BCAM .(1) 求证:AD 是O O 的切线;(2) 若 sin /ABM= , AM=6,求O O 的半径.5. (2015?广元)如图,AB 是O O 的弦,D 为半径OA 的中点,过 D 作CD 丄OA 交弦 于点E ,交O O 于点F ,且CE=CB .(1) 求证:BC 是O O 的切线;(2) 连接AF 、BF ,求/ ABF 的度数;(3) 如果 CD=15, BE=10, sinA=±,求O O 的半径.13AB 、CD 为O O 的直径,弦 AE II CD ,连接BE 交CD 于点F ,E 作直线EP 与CD 的延长线交于点 P ,使/ PED=Z C .求证:PE 是O O 的切线;(2) 求证:ED 平分/ BEP ;(3) 若。
一.选择题12.(漳州)已知⊙P的半径为2,圆心在函数y=﹣的图象上运动,当⊙P与坐标轴相切于点D时,则符合条件的点D的个数为()A. 0 B. 1 C. 2 D. 4解:根据题意可知,当⊙P与y轴相切于点D时,得x=±2,把x=±2代入y=﹣得y=±4,∴D(0,4),(0,﹣4);当⊙P与x轴相切于点D时,得y=±2,把y=±2代入y=﹣得x=±4,∴D(4,0),(﹣4,0),∴符合条件的点D的个数为4,故选D.24.(达州)如图,AB为半圆O的在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有()A. 2个B. 3个C. 4个D. 5个解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;∵∠AOD+∠COB=∠AOD+∠ADO=90°,∠A=∠B=90°,∴△AOD∽△BOC,∴===,选项③正确;同理△ODE∽△OEC,∴,选项④错误;故选C.28.(衢州)如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A. 3 B. 4 C.D.解:如图1,连接OD、BD,∵DE⊥BC,CD=5,CE=4,∴DE=,∵AB是⊙O的直径,∴∠ADB=90°,∵S△BCD=BD•CD÷2=BC•DE÷2,∴5BD=3BC,∴,∵BD2+CD2=BC2,∴,解得BC=,∵AB=BC,∴AB=,∴⊙O的半径是;.故选:D.29.(河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A. 6 B. 8 C. 10 D. 12解:∵直线l:y=kx+4与x轴、y轴分别交于A、B,∴B(0,4),∴OB=4,在RT△AOB中,∠OAB=30°,∴OA=OB=×=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=PA,设P(x,0),∴PA=12﹣x,∴⊙P的半径PM=PA=6﹣x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.30.(岳阳)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()A.①②B.①②③C.①④D.①②④解:∵AB为直径,∴∠ADB=90°,∴BD⊥AC,而AB=CB,∴AD=DC,所以①正确;∵AB=CB,∴∠1=∠2,而CD=ED,∴∠3=∠4,∵CF∥AB,∴∠1=∠3,∴∠1=∠2=∠3=∠4,∴△CBA∽△CDE,所以②正确;∵△ABC不能确定为直角三角形,∴∠1不能确定等于45°,∴与不能确定相等,所以③错误;∵DA=DC=DE,∴点E在以AC为直径的圆上,∴∠AEC=90°,∴CE⊥AE,而CF∥AB,∴AB⊥AE,∴AE为⊙O的切线,所以④正确.故选D.一.填空题4.(台州)如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为﹣.解:当这个正六边形的边长最大时,作正方形ABCD的内切圆⊙O.当正六边形EFGHIJ的顶点H与O重合,且点E在线段OA上时,AE最小,如图所示.∵正方形ABCD的边长为1,∴⊙O的半径OE为,AO=AC=×=,则AE的最小值为﹣.故答案为﹣.8.(恩施州)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于5π.解:由图形可知,圆心先向前走OO1的长度即圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:×2π×5+×2π×5=5π,故答案为:5π.21.(河南)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.解:连接OE、AE,∵点C为OC的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形ABO﹣S扇形CDO﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.24.(乐山)如图,已知A(2,2)、B(2,1),将△AOB绕着点O逆时针旋转,使点A旋转到点A′(﹣2,2)的位置,则图中阴影部分的面积为π.解:∵A(2,2)、B(2,1),∴OA=4,OB=,∵由A(2,2)使点A旋转到点A′(﹣2,2),∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,S=S OBC,∴阴影部分的面积等于S扇形A'OA﹣S扇形C'OC=π×42﹣π×()2=,故答案为:π.29.(遵义)如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为(π+﹣)cm2.解:连结OC,过C点作CF⊥OA于F,∵半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,∴OD=OE=1cm,OC=2cm,∠AOC=45°,∴CF=,∴空白图形ACD的面积=扇形OAC的面积﹣三角形OCD的面积=﹣×=π﹣(cm2)三角形ODE的面积=OD×OE=(cm2),∴图中阴影部分的面积=扇形OAB的面积﹣空白图形ACD的面积﹣三角形ODE的面积=﹣(π﹣)﹣=π+﹣(cm2).故图中阴影部分的面积为(π+﹣)cm2.1.(大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=6,AD=4,求EF的长.(1)证明:连接OD,∵AD平分∠CAB,∴∠OAD=∠EAD.∵OE=OA,∴∠ODA=∠OAD.∴∠ODA=∠EAD.∴OD∥AE.∵∠ODF=∠AEF=90°且D在⊙O上,∴EF与⊙O相切.(2)连接BD,作DG⊥AB于G,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=6,AD=4,∴BD==2,∵OD=OB=3,设OG=x,则BG=3﹣x,∵OD2﹣OG2=BD2﹣BG2,即32﹣x2=22﹣(3﹣x)2,解得x=,∴OG=,∴DG==,∵AD平分∠CAB,AE⊥DE,DG⊥AB,∴DE=DG=,∴AE==,∵OD∥AE,∴△ODF∽△AEF,∴=,即=,∴=,∴EF=.2.(潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.(1)证明:如图,连接OD.∵AB=AC,∴∠B=∠C,∵OD=OC,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴OD⊥DF,∵点D在⊙O上,∴直线DF与⊙O相切;(2)解:∵四边形ACDE是⊙O的内接四边形,∴∠AED+∠ACD=180°,∵∠AED+∠BED=180°,∴∠BED=∠ACD,∵∠B=∠B,∴△BED∽△BCA,∴=,∵OD∥AB,AO=CO,∴BD=CD=BC=3,又∵AE=7,∴=,∴BE=2,∴AC=AB=AE+BE=7+2=9.3.(枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=CD•2OE;(3)若cos∠BAD=,BE=6,求OE的长.(1)证明:连接OD,BD,∵AB为圆O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,即∠C+∠A=90°,∴∠ADO+∠CDE=90°,即∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)证明:∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴=,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC==,又∵BE=6,E是BC的中点,即BC=12,∴AC=15.又∵AC=2OE,∴OE=AC=.4.(西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM.(1)求证:AD是⊙O的切线;(2)若sin∠ABM=,AM=6,求⊙O的半径.(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:连接CM,∵OM⊥AC于点E,OM是半径,∴=,∴∠ABM=∠CBM,AM=CM=6,∴sin∠ABM=sin∠CBM=,∵BC为⊙O的直径,∴∠BMC=90°,在RT△BMC中,sin∠CBM=,∴=,∴BC=10,∴⊙O的半径为5.5.(广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.(1)证明:连接OB∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC又∵CD⊥OA ∴∠A+∠AED=∠A+∠CEB=90°∴∠OBA+∠ABC=90°∴OB⊥BC ∴BC是⊙O的切线.(2)解:如图1,连接OF,AF,BF,∵DA=DO,CD⊥OA,∴AF=OF,∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°∴∠ABF=∠AOF=30°;(3)解:如图2,过点C作CG⊥BE于G,∵CE=CB,∴EG=BE=5,∵∠ADE=∠CGE=90°,∠AED=∠GEC,∴∠GCE=∠A,∴△ADE∽△CGE,∴sin∠ECG=sin∠A=,在R t ECG中,∵CG==12,∵CD=15,CE=13,∴DE=2,∵△ADE∽△CGE,∴,∴AD=,CG=,∴⊙O的半径OA=2AD=.6.(北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.(1)证明:如图,连接OE.∵CD是圆O的直径,∴∠CED=90°.∵OC=OE,∴∠1=∠2.又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵点E在圆上,∴PE是⊙O的切线;(2)证明:∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)解:设EF=x,则CF=2x,∵⊙O的半径为5,∴OF=2x﹣5,在RT△OEF中,OE2=OF2+EF2,即52=x2+(2x﹣5)2,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴=,即=,∴PF=,∴PD=PF﹣DF=﹣2=.7.(莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O在线段AE上,⊙O过B,D 两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.证明:连接OD,可得OB=OD,∵AB=AD,∴AE垂直平分BD,在Rt△BOE中,OB=3,cos∠BOE=,∴OE=,根据勾股定理得:BE==,CE=OC﹣OE=,在Rt△CEB中,BC==4,∵OB=3,BC=4,OC=5,∴OB2+BC2=OC2,∴∠OBC=90°,即BC⊥OB,则BC为圆O的切线.10.(包头)如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径.(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠EDB=∠EAB,∠BDE=∠CBE,∴∠EAB=∠CBE,∴∠ABE+∠CBE=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠ABD=∠DBE,=,∴∠DEA=∠DBE,∵∠EDB=∠BDE,∴△DEF∽△DBE,∴=,∴DE2=DF•DB;(3)解:连接DA、DO,∵OD=OB,∴∠ODB=∠OBD,∵∠EBD=∠OBD,∴∠EBD=∠ODB,∴OD∥BE,∴=,∵PA=AO,∴PA=AO=OB,∴=∴=,∴=,∵DE=2,∴PD=4,∵∠PDA+∠ADE=180°,∠ABE+∠ADE=180°,∴∠PDA=∠ABE,∵OD∥BE,∴∠AOD=∠ABE,∴∠PDA=∠AOD,∵∠P=∠P,∴△PDA∽△POD,∴=,设OA=x,∴PA=x,PO=2x,∴=,∴2x2=16,x=2,∴OA=2.11.(本溪)如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB为直径作⊙O,分别交边AC、BC于点E、点F(1)求证:AD是⊙O的切线;(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与围成的阴影部分的面积S.(1)证明:∵△ABC为等边三角形,∴AC=BC,又∵AC=CD,∴AC=BC=CD,∴△ABD为直角三角形,∴AB⊥AD,∵AB为直径,∴AD是⊙O的切线;(2)解:连接OE,∵OA=OE,∠BAC=60°,∴△OAE是等边三角形,∴∠AOE=60°,∵CB=BA,OA=OB,∴CO⊥AB,∴∠AOC=90°,∴∠EOC=30°,∵△ABC是边长为4的等边三角形,∴AO=2,由勾股定理得:OC==2,同理等边三角形AOE边AO上高是=,S阴影=S△AOC﹣S等边△AOE﹣S扇形EOG==.12.(常德)已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF∥AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;(2)如图2,∵⊙O的半径为3,∴AO=CO=EO=3,∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°,∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=,∵在Rt△ACD中,∠ACD=90°,CD=,AC=6,∴AD=.13.(武汉)如图,AB是⊙O的直径,∠ABT=45°,AT=AB.(1)求证:AT是⊙O的切线;(2)连接OT交⊙O于点C,连接AC,求tan∠TAC.解:(1)∵∠ABT=45°,AT=AB.∴∠TAB=90°,∴TA⊥AB,∴AT是⊙O的切线;(2)作CD⊥AT于D,∵TA⊥AB,TA=AB=2OA,设OA=x,则AT=2x,∴OT=x,∴TC=(﹣1)x,∵CD⊥AT,TA⊥AB∴CD∥AB,∴==,即==,∴CD=(1﹣)x,TD=2(1﹣)x,∴AD=2x﹣2(1﹣)x=x,∴tan∠TAC===.15.(攀枝花)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若OF:OB=1:3,⊙O的半径R=3,求的值.(1)证明:连结OD,如图,∵EF=ED,∴∠EFD=∠EDF,∵∠EFD=∠CFO,∴∠CFO=∠EDF,∵OC⊥OF,∴∠OCF+∠CFO=90°,而OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:∵OF:OB=1:3,∴OF=1,BF=2,设BE=x,则DE=EF=x+2,∵AB为直径,∴∠ADB=90°,∴∠ADO=∠BDE,而∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DAE,∴△EBD∽△EDA,∴==,即==,∴x=2,∴==.16.(河池)如图,AB为⊙O的直径,CO⊥AB于O,D在⊙O上,连接BD,CD,延长CD与AB的延长线交于E,F在BE上,且FD=FE.(1)求证:FD是⊙O的切线;(2)若AF=8,tan∠BDF=,求EF的长.(1)证明:连结OD,如图,∵CO⊥AB,∴∠E+∠C=90°,∵FE=FD,OD=OC,∴∠E=∠FDE,∠C=∠ODC,∴∠FDE+∠ODC=90°,∴∠ODF=90°,∴OD⊥DF,∴FD是⊙O的切线;(2)解:连结AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∵∠BDF+∠ODB=90°,∴∠A=∠BDF,而∠DFB=∠AFD,∴△FBD∽△FDA,∴=,在Rt△ABD中,tan∠A=tan∠BDF==,∴=,∴DF=2,∴EF=2.23.(厦门)已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB,延长DA,CB相交于点E.(1)如图1,EB=AD,求证:△ABE是等腰直角三角形;(2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.(1)证明:∵对角线AC平分∠DCB,∴∠ACD=∠ABC,∴=,∴AD=AB,∵EB=AD,∴AB=EB,∵∠EBA=∠ADC=90°,∴△ABE是等腰直角三角形(2)解:直线EF与⊙O相离.理由如下:∵∠DCB<90°,∠ACD=∠ABC,∵∠ACE≥30°,∴60°≤∠DCE<90°,∴∠AEC≤30°,∴AE≥AC,∵OE>AE,∴OE>AC,作OH⊥EF于H,如图,在Rt△OEH中,∵∠OEF=30°,∴OH=OE,∴OH>OA,∴直线EF与⊙O相离.26.(营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP 交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=cm,AC=8cm,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.(1)证明:如图1,连接OC,∵PA切⊙O于点A,∴∠PAO=90°,∵BC∥OP,∴∠AOP=∠OBC,∠COP=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP,在△PAO和△PCO中,,∴△PAO≌△PCO,∴∠PCO=∠PAO=90°,∴PC是⊙O的切线;(2)解:由(1)得PA,PC都为圆的切线,∴PA=PC,OP平分∠APC,∠ADO=∠PAO=90°,∴∠PAD+∠DAO=∠DAO+∠AOD,∴∠PAD=∠AOD,∴△ADP∽△PDA,∴,∴AD2=PD•DO,∵AC=8,PD=,∴AD=AC=4,OD=3,AO=5,由题意知OD为△的中位线,∴BC=6,OD=6,AB=10.∴S阴=S⊙O﹣S△ABC=﹣24;(3)解:如图2,连接AE、BE,作BM⊥CE于M,∴∠CMB=∠EMB=∠AEB=90°,∵点E是的中点,∴∠ECB=∠CBM=∠ABE=45°,CM=MB=3,BE=AB•cos45°=5,∴EM==4,则CE=CM+EM=7.27.(宜宾)如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A.(1)求证:直线BC是⊙O的切线;(2)若AE=2,tan∠DEO=,求AO的长.解:(1)连接OD,∵DE∥BO,∴∠1=∠4,∠2=∠3,∵OD=OE,∴∠3=∠4,∴∠1=∠2,在△DOB与△COB中,,∴△DOB≌△COB,∴∠OCB=∠ODB,∵BD切⊙O于点D,∴∠ODB=90°,∴∠OCB=90°,∴AC⊥BC,∴直线BC是⊙O的切线;(2)∵∠DEO=∠2,∴tan∠DEO=tan∠2=,设;OC=r,BC=r,由(1)证得△DOB≌△COB,∴BD=BC=r,由切割线定理得:AD2=AE•AC=2(2+r),∴AD=2,∵DE∥BO,∴,∴,∴r=1,∴AO=3.30.(广安)如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若=,且OC=4,求PA的长和tanD的值.资料内容仅供您学习参考,如有不当之处,请联系改正或者删除(1)证明:连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB ,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O 的切线;(2)连接BE,∵=,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO==2,∴AE=2OA =4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC•PC,解得:PC=9,∴OP=PC+OC=13,在Rt △APO中,由勾股定理得:AP==3,∴PB=PA=3,∵AC=BC,OA=OE,∴OC=BE,OC∥BE,∴BE=2OC=8,BE∥OP ,∴△DBE ∽△DPO,∴,即,解得:BD=,在Rt △OBD中,tanD===.----完整版学习资料分享----。
2015中考数学真题分类汇编:圆(7)一.解答题(共30小题)1.(2015•六盘水)如图,在Rt△ACB中,∠ACB=90°,点O是AC边上的一点,以O为圆心,OC为半径的圆与AB相切于点D,连接OD.(1)求证:△ADO∽△ACB.(2)若⊙O的半径为1,求证:AC=AD•BC.2.(2015•东营)已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.(1)求证:AC•AD=AB•AE;(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.3.(2015•遂宁)如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.(1)求证:∠ADC=∠ABD;(2)求证:AD2=AM•AB;(3)若AM =,sin∠ABD =,求线段BN的长.4.(2015•丽水)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.5.(2015•泸州)如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.(1)求证:四边形ABCE是平行四边形;(2)若AE=6,CD=5,求OF的长.6.(2015•咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.7.(2015•乌鲁木齐)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB =,AB=3,求BD的长.8.(2015•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O 的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.9.(2015•温州)如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E,DF切半圆于点F.已知∠AEF=135°.(1)求证:DF∥AB;(2)若OC=CE,BF =,求DE的长.10.(2015•黄冈)已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.(1)求证:∠BCP=∠BAN(2)求证:=.11.(2015•巴彦淖尔)如图,AB是⊙O的直径,点C 是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OC =,求BH的长.12.(2015•通辽)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ 交⊙O于点H,E 为上一点,连接ME,NE,NE交MQ于点F,且ME2=EF•EN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q =,求⊙O的半径.13.(2015•临沂)如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).14.(2015•梅州)如图,直线l经过点A(4,0),B(0,3).(1)求直线l的函数表达式;(2)若圆M的半径为2,圆心M在y轴上,当圆M与直线l相切时,求点M的坐标.15.(2015•聊城)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB =,求⊙O半径的长.16.(2015•天津)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E ,与交于点F,连接AF,求∠FAB的大小.17.(2015•铜仁市)如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.18.(2015•珠海)五边形ABCDE中,∠EAB=∠ABC=∠BCD=90°,AB=BC,且满足以点B为圆心,AB长为半径的圆弧AC与边DE相切于点F,连接BE,BD.(1)如图1,求∠EBD的度数;(2)如图2,连接AC,分别与BE,BD相交于点G,H,若AB=1,∠DBC=15°,求AG•HC的值.19.(2015•天水)如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB于点E,连结AC,与DE交于点P.求证:(1)AC•PD=AP•BC;(2)PE=PD.20.(2015•丹东)如图,AB是⊙O 的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD =2,求阴影部分的面积;(2)求证:DE=DM.21.(2015•贵港)如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB =4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.22.(2015•柳州)如图,已知四边形ABCD是平行四边形,AD与△ABC的外接圆⊙O恰好相切于点A,边CD与⊙O相交于点E,连接AE,BE.(1)求证:AB=AC;(2)若过点A作AH⊥BE于H,求证:BH=CE+EH.23.(2015•玉林)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E 为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.24.(2015•黔西南州)如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.25.(2015•兰州)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)26.(2015•酒泉)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):或者.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.27.(2015•安顺)如图,等腰三角形ABC中,AC=BC=10,AB=12,以BC 为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求cos∠E的值.28.(2015•呼和浩特)如图,⊙O是△ABC的外接圆,P是⊙O外的一点,AM是⊙O的直径,∠PAC=∠ABC(1)求证:PA是⊙O的切线;(2)连接PB与AC交于点D,与⊙O交于点E,F为BD上的一点,若M为的中点,且∠DCF=∠P ,求证:==.29.(2015•泰州)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.30.(2015•资阳)如图,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E为BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接AE,若∠C=45°,求sin∠CAE的值.2015中考数学真题分类汇编:圆(7)参考答案与试题解析一.解答题(共30小题)1.(2015•六盘水)如图,在Rt△ACB中,∠ACB=90°,点O是AC边上的一点,以O为圆心,OC为半径的圆与AB相切于点D,连接OD.(1)求证:△ADO∽△ACB.(2)若⊙O的半径为1,求证:AC=AD•BC.考点:切线的性质;相似三角形的判定与性质.分析:(1)由AB是⊙O的切线,得到OD⊥AB,于是得到∠C=∠ADO=90°,问题可证;(2)由△ADO∽△ACB列比例式即可得到结论.解答:(1)证明:∵AB是⊙O的切线,∴OD⊥AB,∴∠C=∠ADO=90°,∵∠A=∠A,∴△ADO∽△ACB;(2)解:由(1)知:△ADO∽△ACB.∴,∴AD•BC=AC•OD,∵OD=1,∴AC=AD•BC.点评:本题考查了切线的性质,相似三角形的判定和性质,熟记定理是解题的关键.2.(2015•东营)已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.(1)求证:AC•AD=AB•AE;(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.考点:切线的性质;相似三角形的判定与性质.分析:(1)连接DE,根据圆周角定理求得∠ADE=90°,得出∠ADE=∠ABC,进而证得△ADE∽△ABC,根据相似三角形对应边成比例即可求得结论;(2)连接OD,根据切线的性质求得OD⊥BD,在RT△OBD中,根据已知求得∠OBD=30°,进而求得∠BAC=30°,根据30°的直角三角形的性质即可求得AC的长.解答:(1)证明:连接DE,∵AE是直径,∴∠ADE=90°,∴∠ADE=∠ABC,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴=,∴AC•AD=AB•AE;(2)解:连接OD,∵BD是⊙O的切线,∴OD⊥BD,在RT△OBD中,OE=BE=OD,∴OB=2OD,∴∠OBD=30°,同理∠BAC=30°,在RT△ABC中,AC=2BC=2×2=4.点评:本题考查了圆周角定理的应用,三角形相似的判定和性质,切线的性质,30°的直角三角形的性质等,作出辅助线构建直角三角形是解题的关键.3.(2015•遂宁)如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.(1)求证:∠ADC=∠ABD;(2)求证:AD2=AM•AB;(3)若AM =,sin∠ABD =,求线段BN的长.考点:切线的性质;相似三角形的判定与性质.分析:(1)连接OD,由切线的性质和圆周角定理即可得到结果;(2)由已知条件证得△ADM∽△ABD,即可得到结论;(3)根据三角函数和勾股定理代入数值即可得到结果.解答:(1)证明:连接OD,∵直线CD切⊙O于点D,∴∠CDO=90°,∵AB为⊙O的直径,∴∠ADB=90°,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,∵OB=OD,∴∠3=∠4,∴∠ADC=∠ABD;(2)证明:∵AM⊥CD,∴∠AMD=∠ADB=90°,∵∠1=∠4,∴△ADM∽△ABD,∴,∴AD2=AM•AB;(3)解:∵sin∠ABD =,∴sin∠1=,∵AM =,∴AD=6,∴AB=10,∴BD ==8,∵BN⊥CD,∴∠BND=90°,∴∠DBN+∠BDN=∠1+∠BDN=90°,∴∠DBN=∠1,∴sin∠NBD =,∴DN =,∴BN ==.点评:本题考查了圆的切线性质,等腰三角形的性质,圆周角定理,解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.4.(2015•丽水)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.考点:切线的性质;扇形面积的计算.分析:(1)连接OD,易得∠ABC=∠ODB,由AB=AC,易得∠ABC=∠ACB,等量代换得∠ODB=∠ACB,利用平行线的判定得OD∥AC,由切线的性质得DF⊥OD,得出结论;(2)连接OE,利用(1)的结论得∠ABC=∠ACB=67.5°,易得∠BAC=45°,得出∠AOE=90°,利用扇形的面积公式和三角形的面积公式得出结论.解答:(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE =4π,S△AOE=8,∴S阴影=4π﹣8.点评:本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.5.(2015•泸州)如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.(1)求证:四边形ABCE是平行四边形;(2)若AE=6,CD=5,求OF的长.考点:切线的性质;平行四边形的判定.分析:(1)根据切线的性质证明∠EAC=∠ABC,根据等腰三角形等边对等角的性质和等量代得到∠EAC=∠ACB,从而根据内错角相等两直线平行的判定得到AE∥BC,结合已知AB∥CD即可判定四边形ABCD是平行四边形;(2)作辅助线,连接AO,交BC于点H,双向延长OF分别交AB,CD于点N,M,根据切割线定理求得EC=4,证明四边形ABDC是等腰梯形,根据对称性、圆周角定理和垂径定理的综合应用证明△OFH∽△DMF∽△BFN,并由勾股定理列式求解即可.解答:(1)证明:∵AE与⊙O相切于点A,∴∠EAC=∠ABC,∵AB=AC∴∠ABC=∠ACB,∴∠EAC=∠ACB,∴AE∥BC,∵AB∥CD,∴四边形ABCE是平行四边形;(2)解:如图,连接AO,交BC于点H,双向延长OF分别交AB,CD与点N,M,∵AE是⊙O的切线,由切割线定理得,AE2=EC•DE,∵AE=6,CD=5,∴62=CE(CE+5),解得:CE=4,(已舍去负数),由圆的对称性,知四边形ABDC是等腰梯形,且AB=AC=BD=CE=4,又根据对称性和垂径定理,得AO垂直平分BC,MN垂直平分AB,DC,设OF=x,OH=Y,FH=z,∵AB=4,BC=6,CD=5,∴BF =BC﹣FH=3﹣z,DF=CF =BC+FH=3+z,易得△OFH∽△DMF∽△BFN,∴,,即,①②,①+②得:,①÷②得:,解得,∵x2=y2+z2,∴,∴x =,∴OF =.点评:本题考查了切线的性质,圆周勾股定理,等腰三角形的性质,平行的判定,平行四边形的判定和性质,等腰梯形的判定和性质,垂径定理,相似判定和性质,勾股定理,正确得作出辅助线是解题的关键.6.(2015•咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.解答:(1)证明:如图1,连接OD、OE、ED.∵BC与⊙O相切于一点D,∴OD⊥BC,∴∠ODB=90°=∠C,∴OD∥AC,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AOE是等边三角形,∴AE=AO=0D,∴四边形AODE是平行四边形,∵OA=OD,∴四边形AODE是菱形.(2)解:设⊙O的半径为r.∵OD∥AC,∴△OBD∽△ABC.∴,即10r=6(10﹣r).解得r =,∴⊙O 的半径为.如图2,连接OD、DF.∵OD∥AC,∴∠DAC=∠ADO,∵OA=OD,∴∠ADO=∠DAO,∴∠DAC=∠DAO,∵AF是⊙O的直径,∴∠ADF=90°=∠C,∴△ADC∽△AFD,∴,∴AD2=AC•AF,∵AC=6,AF =,∴AD2=×6=45,∴AD ==3.点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.7.(2015•乌鲁木齐)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB =,AB=3,求BD的长.考点:切线的性质;勾股定理;解直角三角形.分析:(1)利用切线的性质结合等腰三角形的性质得出∠DCE=∠E,进而得出答案;(2)设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,利用勾股定理得出BD的长.解答:(1)证明:连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ACO=∠DCE=90°,又∵ED⊥AD,∴∠EDA=90°,∴∠EAD+∠E=90°,∵OC=OA,∴∠ACO=∠EAD,故∠DCE=∠E,∴DC=DE,(2)解:设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,在Rt△EAD中,∵tan∠CAB =,∴ED =AD =(3+x),由(1)知,DC =(3+x),在Rt△OCD中,OC2+CD2=DO2,则1.52+[(3+x)]2=(1.5+x)2,解得:x1=﹣3(舍去),x2=1,故BD=1.点评:此题主要考查了切线的性质以及以及勾股定理和等腰三角形的性质等知识,熟练应用切线的性质得出∠OCD=90°是解题关键.8.(2015•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O 的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.考点:切线的性质;勾股定理;相似三角形的判定与性质.分析:(1)根据切线的性质,和等角的余角相等证明即可;(2)根据勾股定理和相似三角形进行解答即可.解答:(1)证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,∴∠ABE=90°,∴∠BAE+∠E=90°,∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD=∠E;(2)解:连接BC,如图:∵AB是⊙O的直径,∴∠ACB=90°,∵AC=8,AB=2×5=10,∴BC =,∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC∽△EAB,∴,∴,∴BE =.点评:本题考查了切线的性质、相似三角形等知识点,关键是根据切线的性质和相似三角形的性质分析.9.(2015•温州)如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E,DF切半圆于点F.已知∠AEF=135°.(1)求证:DF∥AB;(2)若OC=CE,BF =,求DE的长.考点:切线的性质.分析:(1)证明:连接OF,根据圆内接四边形的性质得到∠AEF+∠B=180°,由于∠AEF=135°,得出∠B=45°,于是得到∠AOF=2∠B=90°,由DF切⊙O于F,得到∠DFO=90°,由于DC⊥AB,得到∠DCO=90°,于是结论可得;(2)过E作EM⊥BF于M,由四边形DCOF是矩形,得到OF=DC=OA,由于OC=CE,推出AC=DE,设DE=x,则AC=x,在Rt△FOB中,∠FOB=90°,OF=OB,BF =2,由勾股定理得:OF=OB=2,则AB=4,BC=4﹣x,由于AC=DE,OCDF=CE,由勾股定理得:AE=EF,通过Rt△ECA≌Rt△EMF,得出AC=MF=DE=x,在Rt△ECB和Rt△EMB中,由勾股定理得:BC=BM,问题可得.解答:(1)证明:连接OF,∵A、E、F、B四点共圆,∴∠AEF+∠B=180°,∵∠AEF=135°,∴∠B=45°,∴∠AOF=2∠B=90°,∵DF切⊙O于F,∴∠DFO=90°,∵DC⊥AB,∴∠DCO=90°,即∠DCO=∠FOC=∠DFO=90°,∴四边形DCOF是矩形,∴DF∥AB;(2)解:过E作EM⊥BF于M,∵四边形DCOF是矩形,∴OF=DC=OA,∵OC=CE,∴AC=DE,设DE=x,则AC=x,∵在Rt△FOB中,∠FOB=90°,OF=OB,BF =2,由勾股定理得:OF=OB=2,则AB=4,BC=4﹣x,∵AC=DE,OCDF=CE,∴由勾股定理得:AE=EF,∴∠ABE=∠FBE,∵EC⊥AB,EM⊥BF∴EC=EM,∠ECB=∠M=90°,在Rt△ECA和Rt△EMF中∴Rt△ECA≌Rt△EMF,∴AC=MF=DE=x,在Rt△ECB和Rt△EMB中,由勾股定理得:BC=BM,∴BF=BM﹣MF=BC﹣MF=4﹣x﹣x =2,解得:x=2﹣,即DE=2﹣.点评:本题考查了圆周角性质,圆内接四边形的性质,全等三角形的性质和判定,角平分线性质,矩形的性质和判定的应用,正确的作出辅助线是解题的关键.10.(2015•黄冈)已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.(1)求证:∠BCP=∠BAN(2)求证:=.考点:切线的性质;相似三角形的判定与性质.专题:证明题.分析:(1)由AC为⊙O直径,得到∠NAC+∠ACN=90°,由AB=AC,得到∠BAN=∠CAN,根据PC是⊙O的切线,得到∠ACN+∠PCB=90°,于是得到结论.(2)由等腰三角形的性质得到∠ABC=∠ACB,根据圆内接四边形的性质得到∠PBC=∠AMN,证出△BPC∽△MNA,即可得到结论.解答:(1)证明:∵AC为⊙O直径,∴∠ANC=90°,∴∠NAC+∠ACN=90°,∵AB=AC,∴∠BAN=∠CAN,∵PC是⊙O的切线,∴∠ACP=90°,∴∠ACN+∠PCB=90°,∴∠BCP=∠CAN,∴∠BCP=∠BAN;(2)∵AB=AC,∴∠ABC=∠ACB,∵∠PBC+∠ABC=∠AMN+∠ACN=180°,∴∠PBC=∠AMN,由(1)知∠BCP=∠BAN,∴△BPC∽△MNA,∴.点评:本题考查了切线的性质,等腰三角形的性质,圆周角定理,相似三角形的判定和性质,圆内接四边形的性质,解此题的关键是熟练掌握定理.11.(2015•巴彦淖尔)如图,AB是⊙O的直径,点C 是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OC =,求BH的长.考点:切线的性质.分析:(1)连接OC,由C 是的中点,AB是⊙O的直径,则CO⊥AB,再由BD是⊙O的切线,得BD⊥AB,从而得出OC∥BD,即可证明AC=CD;(2)根据点E是OB的中点,得OE=BE,可证明△COE≌△FBE(ASA),则BF=CO,即可得出BF=2,由勾股定理得出AF =,由AB是直径,得BH⊥AF,可证明△ABF∽△BHF,即可得出BH的长.解答:(1)证明:连接OC,∵C 是的中点,AB是⊙O的直径,∴CO⊥AB,∵BD是⊙O的切线,∴BD⊥AB,∴OC∥BD,∵OA=OB,∴AC=CD;(2)解:∵E是OB的中点,∴OE=BE,在△COE和△FBE 中,,∴△COE≌△FBE(ASA),∴BF=CO,∵OB =,∴BF =,∴AF ==5,∵AB是直径,∴BH⊥AF,∴△ABF∽△BHF,∴,∴AB•BF=AF•BH,∴BH ===2.点评:本题考查了切线的性质以及全等三角形的判定和性质、勾股定理,是中档题,难度不大.12.(2015•通辽)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ 交⊙O于点H,E 为上一点,连接ME,NE,NE交MQ于点F,且ME2=EF•EN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q =,求⊙O的半径.考点:切线的性质;相似三角形的判定与性质.分析:(1)如图1,通过相似三角形(△MEF∽△MEN)的对应角相等推知,∠1=∠EMN;又由弦切角定理、对顶角相等证得∠2=∠3;最后根据等角对等边证得结论;(2)如图2,连接OE交MQ于点G,设⊙O的半径是r.根据(1)中的相似三角形的性质证得∠EMF=∠ENM,所以由“圆周角、弧、弦间的关系”推知点E是弧MH的中点,则OE⊥MQ;然后通过解直角△MNE求得cos∠Q=sin∠GMO ==,则可以求r的值.解答:(1)证明:如图1,∵ME2=EF•EN,∴=.又∵∠MEF=∠MEN,∴△MEF∽△MEN,∴∠1=∠EMN.∵∠1=∠2,∠3=∠EMN,∴∠2=∠3,∴QN=QF;(2)解:如图2,连接OE交MQ于点G,设⊙O的半径是r.由(1)知,△MEF∽△MEN,则∠4=∠5.∴=.∴OE⊥MQ,∴EG=1.∵cos∠Q =,且∠Q+∠GMO=90°,∴sin∠GMO =,∴=,即=,解得,r=2.5,即⊙O的半径是2.5.点评:本题考查切线的性质和相似三角形的判定与性质.在(1)中判定△MEF∽△MEN是解题的关键,在(2)中推知点E是弧MH的中点是解题的关键.13.(2015•临沂)如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).考点:切线的性质;扇形面积的计算.分析:(1)由Rt△ABC中,∠C=90°,⊙O切BC于D,易证得AC∥OD,继而证得AD平分∠CAB.(2)如图,连接ED,根据(1)中AC∥OD和菱形的判定与性质得到四边形AEDO是菱形,则△AEM≌△DMO,则图中阴影部分的面积=扇形EOD的面积.解答:(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴∠AEO是等边三角形,∴AE =OA ,∠AOE =60°,∴AE =A 0=OD ,又由(1)知,AC ∥OD 即AE ∥OD ,∴四边形AEDO 是菱形,则△AEM ≌△DMO ,∠EOD =60°,∴S△AEM =S △DMO ,∴S 阴影=S 扇形EOD ==.点评:此题考查了切线的性质、等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.14.(2015•梅州)如图,直线l 经过点A (4,0),B (0,3).(1)求直线l 的函数表达式;(2)若圆M 的半径为2,圆心M 在y 轴上,当圆M 与直线l 相切时,求点M的坐标.考点:切线的性质;待定系数法求一次函数解析式.分析:(1)把点A (4,0),B (0,3)代入直线l 的解析式y =kx +b ,即可求出结果.(2)先画出示意图,在Rt △ABM 中求出sin ∠BAM ,然后在Rt △AMC 中,利用锐角三角函数的定义求出AM ,继而可得点M 的坐标.解答:解:(1)∵直线l 经过点A (4,0),B (0,3),∴设直线l 的解析式为:y =kx +b ,∴∴.∴直线l 的解析式为:y =﹣x +3;(3)设M 坐标为(0,m )(m >0),即OM =m ,若M 在B 点下边时,BM =3﹣m ,∵∠MBN ʹ=∠ABO ,∠MN ʹB =∠BOA =90°,∴△MBN ʹ∽△ABO ,∴=,即=,解得:m =,此时M(0,);若M在B点上边时,BM=m﹣3,同理△BMN∽△BAO ,则有=,即=,解得:m =.此时M(0,).点评:本题考查了用待定系数法求函数的解析式,切线的性质,解答本题的关键是画出示意图,熟练掌握切线的性质及锐角三角函数的定义,难度一般.15.(2015•聊城)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB =,求⊙O半径的长.考点:切线的性质;解直角三角形.分析:(1)本题可连接OD,由PD切⊙O于点D,得到OD⊥PD,由于BE⊥PC,得到OD∥BE,得出∠ADO=∠E,根据等腰三角形的性质和等量代换可得结果;(2)由(1)知,OD∥BE,得到∠POD=∠B,根据三角函数的定义即可得到结果.解答:(1)证明:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠E,∴AB=BE;(2)解:有(1)知,OD∥BE,∴∠POD=∠B,∴cos∠POD=cosB =,在Rt△POD中,cos∠POD ==,∵OD=OA,PO=PA+OA=2+OA,∴,∴OA=3,∴⊙O半径=3.点评:本题考查了切线的性质,等腰三角形性质以及等边三角形的判定等知识点,正确的画出辅助线是解题的关键.16.(2015•天津)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E ,与交于点F,连接AF,求∠FAB的大小.考点:切线的性质;平行四边形的性质.分析:(Ⅰ)由CD是⊙O的切线,C为切点,得到OC⊥CD,即∠OCD=90°由于四边形OABC是平行四边形,得到AB∥OC,即AD∥OC,根据平行四边形的性质即可得到结果.(Ⅱ)如图,连接OB,则OB=OA=OC,由四边形OABC是平行四边形,得到OC=AB,△AOB是等边三角形,证得∠AOB=60°,由OF∥CD,又∠ADC=90°,得∠AEO=∠ADC=90°,根据垂径定理即可得到结果.解答:解:(Ⅰ)∵CD是⊙O的切线,C为切点,∴OC⊥CD,即∠OCD=90°∵四边形OABC是平行四边形,∴AB∥OC,即AD∥OC,有∠ADC+∠OCD=180°,∴∠ADC=180°﹣∠OCD=90°;(Ⅱ)如图②,连接OB,则OB=OA=OC,∵四边形OABC是平行四边形,∴OC=AB,∴OA=OB=AB,即△AOB是等边三角形,∴∠AOB=60°,由OF∥CD,又∠ADC=90°,得∠AEO=∠ADC=90°,∴OF⊥AB,∴,∴∠FOB=∠FOA =∠AOB=30°,∴.点评:本题考查了切线的性质,平行四边形的性质,垂径定理,等边三角形的判定,熟练掌握定理是解题的关键.17.(2015•铜仁市)如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.考点:切线的性质.分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE ,得到比例式,列方程可得结果.解答:(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC ===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD ==,∴OC ==,∴⊙O的半径=.点评:本题考查了切线的性质,勾股定理,相似三角形的判定和性质,圆周角定理,平行线的判定和性质,正确的作出辅助线是解题的关键.18.(2015•珠海)五边形ABCDE中,∠EAB=∠ABC=∠BCD=90°,AB=BC,且满足以点B为圆心,AB长为半径的圆弧AC与边DE相切于点F,连接BE,BD.(1)如图1,求∠EBD的度数;(2)如图2,连接AC,分别与BE,BD相交于点G,H,若AB=1,∠DBC=15°,求AG•HC的值.考点:切线的性质;相似三角形的判定与性质.分析:(1)如图1,连接BF,由DE与⊙B相切于点F,得到BF⊥DE,通过R t△BAE≌R t△BEF,得到∠1=∠2,同理∠3=∠4,于是结论可得;(2)如图2,连接BF并延长交CD的延长线于P,由△ABE≌△PBC,得到PB=BE =,求出PF =,通过△AEG∽△CHD,列比例式即可得到结果.解答:解:(1)如图1,连接BF,∵DE与⊙B相切于点F,∴BF⊥DE,在R t△BAE与R t△BEF 中,,∴R t△BAE≌R t△BEF,∴∠1=∠2,同理∠3=∠4,∵∠ABC=90°,∴∠2+∠3=45°,即∠EBD=45°;(2)如图2,连接BF并延长交CD的延长线于P,∵∠4=15°,由(1)知,∠3=∠4=15°,∴∠1=∠2=30°,∠PBC=30°,∵∠EAB=∠PCB=90°,AB=1,∴AE =,BE =,在△ABE与△PBC 中,,∴△ABE≌△PBC,∴PB=BE =,∴PF =,∵∠P=60°,∴DF=2﹣,∴CD=DF=2﹣,∵∠EAG=∠DCH=45°,∠AGE=∠BDC=75°,∴△AEG∽△CHD,∴,∴AG•CH=CD•AE,∴AG•CH=CD•AE=(2﹣)•=.点评:本题考查了切线的性质,全等三角形的判定和性质,相似三角形的判定和性质,画出辅助线构造全等三角形是解题的关键.19.(2015•天水)如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB于点E,连结AC,与DE交于点P.求证:(1)AC•PD=AP•BC;(2)PE=PD.考点:切线的性质;相似三角形的判定与性质.专题:证明题.分析:(1)首先根据AB是⊙O的直径,BC是切线,可得AB⊥BC,再根据DE⊥AB,判断出DE∥BC,△AEP∽△ABC ,所以=;然后判断出=,即可判断出ED=2EP,据此判断出PE=PD即可.(2)首先根据△AEP∽△ABC,判断出;然后根据PE=PD,可得,据此判断出AC•PD=AP•BC即可.解答:解:(1)∵AB是⊙O的直径,BC是切线,∴AB⊥BC,∵DE⊥AB,∴DE∥BC,∴△AEP∽△ABC,∴=…①,又∵AD∥OC,∴∠DAE=∠COB,∴△AED∽△OBC,∴===…②,由①②,可得ED=2EP,∴PE=PD.(2)∵AB是⊙O的直径,BC是切线,∴AB⊥BC,∵DE⊥AB,∴DE∥BC,∴△AEP∽△ABC,∴,∵PE=PD,∴,∴AC•PD=AP•BC.点评:(1)此题主要考查了切线的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)此题还考查了相似三角形的判定和性质的应用,要熟练掌握.20.(2015•丹东)如图,AB是⊙O 的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD =2,求阴影部分的面积;(2)求证:DE=DM.考点:切线的性质;扇形面积的计算.分析:(1)连接OD,根据已知和切线的性质证明△OCD为等腰直角三角形,得到∠DOC=45°,根据S阴影=S△OCD﹣S扇OBD计算即可;(2)连接AD,根据弦、弧之间的关系证明DB=DE,证明△AMD≌△ABD,得到DM=BD,得到答案.解答:(1)解:如图,连接OD ,∵CD 是⊙O 切线,∴OD ⊥CD ,∵OA =CD =2,OA =OD ,∴OD =CD =2,∴△OCD 为等腰直角三角形,∴∠DOC =∠C =45°,∴S 阴影=S△OCD ﹣S扇OBD =﹣=4﹣π;(2)证明:如图,连接AD ,∵AB 是⊙O 直径,∴∠ADB =∠ADM =90°,又∵=,∴ED =BD ,∠MAD =∠BAD ,在△AMD 和△ABD 中,,∴△AMD ≌△ABD ,∴DM =BD ,∴DE =DM.点评:本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.21.(2015•贵港)如图,已知AB 是⊙O 的弦,CD 是⊙O 的直径,CD ⊥AB ,垂足为E ,且点E 是OD 的中点,⊙O 的切线BM 与AO 的延长线相交于点M ,连接AC ,CM .(1)若AB =4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.考点:切线的性质;菱形的判定;弧长的计算.专题:计算题.分析:(1)连接OB ,由E 为OD 中点,得到OE 等于OA 的一半,在直角三角形AOE 中,得出∠OAB =30°,进而求出∠AOE 与∠AOB 的度数,设OA =x ,利用勾股定理求出x 的值,确定出圆的半径,利用弧长公式即可求出的长;(2)由第一问得到∠BAM =∠BMA ,利用等角对等边得到AB =MB ,利用SAS 得到三角形OCM 与三角形OBM 全等,利用全等三角形对应边相等得到CM =BM ,等量代换得到CM =AB ,再利用全等三角形对应角相等及等量代换得到一对内错角相等,进而确定出CM 与AB 平行,利用一组对边平行且相等的四边形为平行四边形得到ABMC为平行四边形,最后由邻边相等的平行四边形为菱形即可得证.解答:(1)解:∵OA=OB,E为AB的中点,∴∠AOE=∠BOE,OE⊥AB,∵OE⊥AB,E为OD中点,∴OE =OD =OA,∴在Rt△AOE中,∠OAB=30°,∠AOE=60°,∠AOB=120°,设OA=x,则OE =x,AE =x,∵AB =4,∴AB=2AE =x =4,解得:x=4,则的长l ==;(2)证明:由(1)得∠OAB=∠OBA=30°,∠BOM=∠COM=60°,∠AMB=30°,∴∠BAM=∠BMA=30°,∴AB=BM,∵BM为圆O的切线,∴OB⊥BM,在△COM和△BOM 中,,∴△COM≌△BOM(SAS),∴CM=BM,∠CMO=∠BMO=30°,∴CM=AB,∠CMO=∠MAB,∴CM∥AB,∴四边形ABMC为菱形.点评:此题考查了切线的性质,菱形的判断,全等三角形的判定与性质,以及弧长公式,熟练掌握切线的性质是解本题的关键.22.(2015•柳州)如图,已知四边形ABCD是平行四边形,AD与△ABC的外接圆⊙O恰好相切于点A,边CD与⊙O相交于点E,连接AE,BE.(1)求证:AB=AC;(2)若过点A作AH⊥BE于H,求证:BH=CE+EH.考点:切线的性质;平行四边形的性质.分析:(1)根据弦切角定理和圆周角定理证明∠ABC=∠ACB,得到答案;(2)作AF⊥CD于F,证明△AEH≌△AEF,得到EH=EF,根据△ABH≌△ACF,得到答案.。