三角函数化简技巧
- 格式:doc
- 大小:163.23 KB
- 文档页数:3
三角函数的化简教学方法总结三角函数在高中数学中是一个重要的概念,它们在数理化以及工程学等领域有着广泛的应用。
化简三角函数是解决三角方程、三角恒等式和证明等问题的基础技巧。
本文将总结几种常见的三角函数化简教学方法,帮助学生更好地理解和运用三角函数。
一、借助特殊角的性质1. 利用正弦和余弦的周期性质:正弦函数和余弦函数的周期都是2π。
当我们需要化简一个三角函数时,可以将大角度化为小角度来简化计算。
2. 利用正弦和余弦的对称性质:正弦函数和余弦函数都具有关于y轴对称和关于原点对称的特点。
在化简时,可以利用这些性质来得到简化后的表达式。
3. 利用正弦和余弦的同一性质:正弦函数和余弦函数具有正负号的变化规律。
通过改变角度的正负号,可以得到等价的三角函数表达式。
二、利用三角函数的基本关系1. 正弦函数与余弦函数的关系:利用三角函数的基本定义,我们可以得到sin^2θ + cos^2θ = 1的恒等式。
在化简三角函数表达式时,可以利用这个关系来消去一个三角函数,从而简化计算。
2. 正切函数与余切函数的关系:通过定义和基本关系,可以得到tanθ = sinθ / cosθ和cotθ = cosθ / sinθ的恒等式。
在化简时,我们可以将正切和余切转化为正弦和余弦的形式。
三、使用三角函数的和差化积公式1. 正弦函数的和差化积公式:sin(A ± B) = sinA cosB ± cosA sinB。
当需要化简含有正弦函数的表达式时,可以利用这个公式将和差形式转化为积的形式。
2. 余弦函数的和差化积公式:cos(A ± B) = cosA cosB ∓ sinA sinB。
同样地,当需要简化一个含有余弦函数的表达式时,可以利用这个公式将和差形式转化为积的形式。
四、将三角函数化简为指数函数1. 欧拉公式:e^(ix) = cosx + isinx。
利用欧拉公式,可以将三角函数表示为指数函数,从而简化计算。
第三讲一、三角函数的化简、计算、证明的恒等变形的应用技巧1、网络2、三角函数变换的方法总结(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。
【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。
练习:已知sin(α+β)=,cos(α-β)=,求的值。
2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。
【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。
练习已知,求的值【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α+β)=提示:sin[(α+β)-β]=Asin (α+β)(3)以式代值利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。
这其中以“1”的变换为最常见且最灵活。
“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。
【例4】化简:(4)和积互化积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。
这往往用到倍、半角公式。
数学部分•知识结构与拓展高一使用2021年6月解:原式=化简三甬函懿述的\f3sin12°—3cos12°2sin12°cos12°(2cos212°—1)2^3sin(12°—60°)4V3o當用冇法■廖庆伟三角函数式的化简的常用方法有:直用公式,变用公式,化切为弦,异名化同名,异角化同角,高次化低次等。
下面举例分析,供大家学习与参考。
一、直用公式例1设函数/(rc)=sin 兀7C—sin48°评注:先化切为弦,再利用倍角公式进行转化,最后逆用两角差的正弦公式即可求值。
四、异名化同名例4已知tan0=2,则sin20+sin Ceos0—2cos2^._h亠sin20+sin^cos0一2cos'。
解:原式sin2+cos2tan20+tan Q—2_4+2—2_4tar?e十1=4+1=T°评注:先把分母用sir?。
+cos2。
代换,再把分子、分母同除以cos20即得结果。
五、异角化同角例5函数(乞)=cos(2z+詈)+sin2gTT2cos2—+1,则/X h)的最小正周期为的最大值为解:因为函数/(rc)=sin于工一解:因为jf(;r)=cos2^ccos——sin2h•-|-cos晋:r=sin7T7T,故函数/(工)sin令+—c;s2j*_欝鈕,所以函数的最小正周期为丁=弐=8。
T评注:直接利用差角公式、二倍角的余弦公式即可得到结果。
二、变用公式例2当函数夕=sin工—</3"cos h(0W 鼻V2tc)取得最大值时,jc____o解:由》=sin jc一43cos h2(cos守sin工一sin专cos町—2sin h—訂,可知当'7Tsin=1时,此函数取得最大值。
又0W h V2jt,所以rr=警o评注:三角函数公式既可正用,也可变用,变用公式是三角恒等变换的难点。
三角函数的和差化简公式三角函数是数学中的重要概念之一,其和差化简公式也是数学中常用的工具。
通过和差化简公式,我们可以将复杂的三角函数表达式化简为简洁的形式,从而更方便地进行计算和推导。
本文将介绍三角函数的和差化简公式及其应用。
一、和差化简公式的推导在推导和差化简公式之前,我们先来回顾一下三角函数的定义:正弦函数(sin):在一个单位圆上,从原点出发,沿逆时针方向到达指定点所对应的位移的y坐标。
余弦函数(cos):在一个单位圆上,从原点出发,沿逆时针方向到达指定点所对应的位移的x坐标。
根据三角函数的定义可以得到:sin(a+b) = sin(a)cos(b) + cos(a)sin(b)cos(a+b) = cos(a)cos(b) - sin(a)sin(b)这就是常用的和差化简公式。
通过这些公式,我们可以将三角函数的和差式转化为乘积的形式,从而更方便地进行计算和推导。
二、和差化简公式的应用1. 三角函数的和差化简通过和差化简公式,我们可以将一个三角函数的和差式转化为乘积的形式。
这在三角函数的运算和推导中非常有用。
例如,我们可以将sin(a+b)转化为sin(a)cos(b) + cos(a)sin(b),从而简化计算。
2. 三角函数的倍角化简利用和差化简公式,我们还可以将三角函数的倍角式化简。
倍角式是指形如sin(2a),cos(2a)的表达式。
通过和差化简公式,我们可以将其化简为sin(a)cos(a)或cos^2(a)-sin^2(a)等形式,从而简化计算或推导过程。
3. 三角函数的三角恒等式三角函数的和差化简公式也是推导三角恒等式的重要工具。
通过和差化简公式,我们可以将一个三角函数的和差式转化为其他三角函数的形式,从而推导出各种三角恒等式,拓展了三角函数的运算和应用范围。
三、总结三角函数的和差化简公式是数学中常用的工具之一。
通过这些公式,我们可以将复杂的三角函数表达式化简为简洁的形式,方便计算和推导。
三角函数化简技巧将一个三角函数式化简,最终结果一般都是出现两种形式:1、一元一次(即类似B x A y ++=)sin(ϕω)的标准形式;2、一元二次(即类似y=A(cosx+B)2+C )的标准形式。
二、三角化简的通性通法:1、切割化弦;2、降幂公式;3、用三角公式转化出现特殊角;4、 异角化同角;5、异名化同名;6、高次化低次;7、辅助角公式;8、分解因式。
三、例题讲解: (例1)f(x)=2cosxsin(x+3π)-3sin 2x+sinxcosx 解:f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x −−−−−→用三角公式展开2cos x (sin x cos 3π+cos x sin 3π)-3sin 2x +sin x cos x −−−−→降幂公式sin2x +3cos2x −−−−→辅助角公式2sin(2x +3π).(例2)y =2cos 2x -2a cos x -(2a +1) 解:y =2cos 2x -2a cos x -(2a +1) −−−→配方2(cos x -2a )2-2242+-a a . (例3)若tan x =2,则xx x x cos sin 1sin 2cos 22+--=_______.(例4)sin 4α+cos 4α=_______.解:sin 4α+cos 4α−−→(sin 2α+cos 2α)2-2sin 2αcos 2α−−→1-21sin 22α−−→1-11-cos222α⋅ =13cos 244α+. (例5)函数y =5sin x +cos2x 的最大值是_______.(例6)函数y =sin (3π-2x )+sin2x 的最小正周期是(例7)f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间[0,2π]上的最小值为-4,那么a 的值等于 A.4 B.-6 C.-4D.-3(例8)求函数f (x )=xx x x x 2sin 2cos sin cos sin 2244-++的最小正周期、最大值和最小值.(例9)f (x )=-sin 2x +sin x +a(例10)函数y =sin 4x +cos 2x 的最小正周期为( ) A.4π B.2π C.π D.2π y =sin 4x +cos 2x −−−−−−−−−−→异角化同角+高次化低次+异角化同角(22cos 1x -)2+22cos 1x +−−→432cos 2+x −−−−→高次化低次424cos 1x++43=81cos4x +87(例11)2、函数22y sin x x =-的最小正周期 ( ) A 、2π B 、π C 、3π D 、4π(例12)化简:42212cos 2cos 2.2tan()sin ()44x x x x ππ-+-+(例13)设3177cos(),45124x x πππ+=<<,求2sin 22sin 1tan x x x +-的值。
三角函数的化简1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。
一、化简 【例1】求值:︒+︒︒⋅︒+︒+︒80cot 40csc 10sin 20tan 10cos 20sin 2.【变式】1、求值()︒+︒︒+︒+︒10cos 110tan 60tan 110cos 40cos 2【变式】2、求0020210sin 21)140cos 1140sin 3(⋅-。
【例2】(三兄弟)已知23523sin cos παπαα<<=-,且,求αααtan 1sin 22sin 2-+的值【变式】(05天津)已知727sin(),cos 241025παα-==,求sin α及tan()3πα+.【例3】(最值辅助角)已知函数f (x )=2a sin 2x -23a sin x cos x +a +b -1,(a 、b 为常数,a <0),它的定义域为[0,2π],值域为[-3,1],试求a 、b 的值。
三角函数中的化简求值模型【问题背景】三角函数的化简求值几乎是高考的必考内容之一,化简三角函数式是为了更清楚地显示式中所含量之间的关系,以便于某种要求的应用.一般从函数名、角、运算三方面进行差异分析,遵循化繁为简、清除差异的原则,常用的方法技巧有:切割化弦,降幂,用三角公式转化出现特殊角,异角化同角,异名化同名,高次化低次等.【解决方法】【典例1】(2024高三下·全国·专题练习)已知角α,β的顶点均为坐标原点,始边均与x 轴的非负半轴重合,终边分别过点()1,2A ,()2,1B -,则tan 2αβ+=.【答案】3-【分析】利用三角函数的定义求得tan 2α=,1tan 2β=-,可求得()tan αβ+,再利用二倍角的正切公式解得tan2αβ+,进而确定2αβ+的范围,求得tan2αβ+的值.【套用模型】第一步:因为角α,β的终边分别过点()1,2A ,()2,1B -,所以tan 2α=,1tan 2β=-,(提示:若角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边过点()(),0x y x ≠,则tan y xα=),第二步:因此()tan tan 3tan 1tan tan 4αβαβαβ++==-,又()22tan32tan 41tan 2αβαβαβ++==+-,所以tan32αβ+=-或1tan23αβ+=.第三步:因为角α的终边过点()1,2A ,因此112,242k k ππαππ⎛⎫∈++⎪⎝⎭,1k ∈Z ,因为角β的终边()2,1B -,因此2232,24k k πβπππ⎛⎫∈++ ⎪⎝⎭,2k ∈Z ,所以3,224k k αβππππ+⎛⎫∈++ ⎪⎝⎭,k ∈Z ,所以tan 32αβ+=-.【典例2】(2024·山西晋城·二模)已知tan 2tan αβ=,1sin()4αβ+=,则)in(s βα-=.【答案】112-【分析】由tan 2tan αβ=切化弦可得sin cos 2cos sin αβαβ=,结合两角和差公式分析求解.【套用模型】第一步:因为tan 2tan αβ=,即sin 2sin cos cos αβαβ=,可得sin cos 2cos sin αβαβ=,第二步:又因为()1sin sin cos cos sin 3cos sin 4αβαβαβαβ+=+==,可得1cos sin 12αβ=,第三步:所以()sin cos sin sin cos cos sin 112βααβαβαβ-=-=-=-.故答案为:112-.【典例3】(2024·全国·模拟预测)在ABC 中,tan A ,tan B 是方程2670x x -+=的两个根,则C 的值是.【答案】4π/45︒【分析】根据根与系数的关系及两角和的正切公式求得()tan A B +,再利用诱导公式求解.【套用模型】第一步:由题意,tan tan 6A B +=,tan tan 7A B ⋅=,第二步:所以tan tan 6tan ()11tan tan 17A B A B A B ++===--⋅-,第三步:在ABC 中,()()tan tan πtan 1C A B A B =-+=-+=⎡⎤⎣⎦,由0πC <<,可知π4C =.故答案为:π4(2024·全国·二模)1.已知6cos tan 7sin ααα=-,则cos2α=.(2024·云南昆明·一模)2.已知cos α=π0,2α⎛⎫∈ ⎪⎝⎭,则tan 2α=.(2024·宁夏银川·一模)3.已知3cos si 2n x x +=,则sin 2πcos 4xx =⎛⎫- ⎪⎝⎭.(2024·青海·模拟预测)4.若3π4αβ+=,tan 2α=,则tan β=.(2024·山东·二模)5.在平面直角坐标系中,角α的始边与x轴非负半轴重合,终边经过点()2,则πsin 3α⎛⎫+=⎪⎝⎭.(2024·内蒙古呼伦贝尔·二模)6.已知tan α,tan β是方程2530x x +-=的两个根,则()()22cos sin αβαβ+=-.(2024·广西·二模)7.已知2sin sin2αα=,则πtan 4α⎛⎫+=⎪⎝⎭.(2024·全国·模拟预测)8.已知点()()()cos ,sin A βαβα--与点5π5πcos ,sin 1212B ββ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于原点对称,则sin cos αα+=.(2024·全国·模拟预测)9.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若2222024a b c +=,则2tan tan tan (tan tan )A BC A B =+.(2024·陕西安康·模拟预测)10.若()2tan 2024π3α-=,则2sin cos 2cos cos2αααα-=.(2024·山西朔州·一模)11.若πtan 26α⎛⎫-= ⎪⎝⎭,则2ππ1tan cos 362αα⎛⎫⎛⎫-+--=⎪ ⎪⎝⎭⎝⎭.(2024·全国·模拟预测)12.在平面直角坐标系中,若角π3α-的顶点为原点,始边为x 轴非负半轴,终边经过点()3,4P --,则πtan 23α⎛⎫+=⎪⎝⎭.(2024·陕西安康·模拟预测)13.已知π,,π2αβ⎛⎫∈ ⎪⎝⎭,且πsin2sin 21cos21sin αβαβ⎛⎫+ ⎪⎝⎭-=+,则tan tan21tan tan 2βαβα+=-.(2024·河北沧州·模拟预测)14.已知1cos sin 63παα⎛⎫--= ⎪⎝⎭,则πcos 23α⎛⎫+=⎪⎝⎭.(2024·上海嘉定·二模)15.已知()22sin cos f x x x =+,π0,2x ⎛⎫∈ ⎪⎝⎭,则函数()y f x =的最小值为.(2024·吉林长春·模拟预测)16.已知tan 3,2sin cos 1tan 2ααββ==,则()2tan αβ+=.(2024·全国·模拟预测)17.已知锐角三角形ABC 的内角,,A B C 的对边分别为,,a b c ,若sin 2A =则a b 的取值范围是.(2024·全国·模拟预测)18.已知,αβ为锐角,满足()1sin sin ,cos 69αβαβ+=+=-,则sin2αβ+=,()cos αβ-=.(2024·全国·模拟预测)19.已知πtan ,74x x ⎛⎫+= ⎪⎝⎭为第二象限角,则10πsin 21x ⎛⎫+=⎪⎝⎭.(2024·上海·一模)20.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.三角函数中的化简求值模型解析:1.725##0.28【分析】切化弦,然后整理可得sin α,再利用倍角公式计算即可.【详解】6cos sin tan 7sin cos ααααα==-,得()()226co 7sin s 61n s s n i i αααα==--,解得3sin 5α=或sin 2α=-(舍)所以2237cos212sin 12525αα⎛⎫=-=-⨯= ⎪⎝⎭.故答案为:725.2.-【分析】根据同角三角函数关系式求出sin α,tan α,再利用二倍角正切公式求解.【详解】由cos απ0,2α⎛⎫∈ ⎪⎝⎭,sin 3α∴,sin tan cos ααα∴==,22tan tan 21tan 1ααα∴==---.故答案为:-3.73-【分析】由倍角公式和差角公式、平方关系求解即可.【详解】sin 2πcos 4x x =⎛⎫- ⎪⎝⎭2273133⎡⎤⎛+-⎢⎥=-=- ⎢⎥⎝⎭⎣⎦,故答案为:73-..4.3【分析】由已知条件可得3π4βα=-,根据两角和的正切公式化简即可求解.【详解】因为3π4αβ+=,所以3π4βα=-,所以3πtan tan 3π4tan tan 3π41tan tan 4αβαα⎛⎫- ⎪⎛⎫⎝⎭=-= ⎪⎛⎫⎝⎭+⋅ ⎪⎝⎭,又因为tan 2α=,3πtan 14⎛⎫=- ⎪⎝⎭,所以上式可化为:12tan 312β--==-.故答案为:35.14-##【分析】先利用角α的终边所经过的点求出sin ,cos αα,再求πsin 3α⎛⎫+ ⎪⎝⎭.【详解】因为角α的始边与x轴非负半轴重合,终边经过点()2,所以sin 7α=,cos 7α==-;πππsin sin cos cos sin 33314ααα⎛⎫+=+=- ⎪⎝⎭.故答案为:6.1637【分析】利用韦达定理可得tan tan 5αβ+=-,tan tan 3αβ=-,再利用两角和差公式和三角函数的商数关系求解即可.【详解】因为tan α,tan β是方程2530x x +-=的两个根,所以tan tan 5αβ+=-,tan tan 3αβ=-,则cos cos 0αβ≠,所以()()2222cos cos cos sin sin 1tan tan sin sin cos cos sin tan tan αβαβαβαβαβαβαβαβ+⎛⎫⎛⎫--=== ⎪ ⎪---⎝⎭⎝⎭()2161637tan tan 4tan tan αβαβ=+-.故答案为:16377.1或3-【分析】由已知可得sin 0α=或sin 2cos αα=,从而可求出πtan 4α⎛⎫+ ⎪⎝⎭的值.【详解】由2sin sin2αα=可得2sin 2sin cos ααα=,所以sin 0α=或sin 2cos αα=,即tan 0α=或tan 2α=,当tan 0α=时,πtan 1tan 141tan ααα+⎛⎫+== ⎪-⎝⎭当tan 2α=时,πtan 1tan 341tan ααα+⎛⎫+==- ⎪-⎝⎭,故答案为:1或3-.8.22【分析】根据题意,列出方程组,求得7π2π,Z 12k k αββ-=+-∈,得到7π2π,Z 12k k α=+∈,结合πsin cos 4ααα⎛⎫+=+ ⎪⎝⎭,即可求解.【详解】因为点()()()cos ,sin A βαβα--与点5π5πcos ,sin 1212B ββ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于原点对称,所以()()5πcos cos 125πsin sin 12βαββαβ⎧⎛⎫-=-+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪-=-+ ⎪⎪⎝⎭⎩,即()()5πcos cos π125πsin sin π12αββαββ⎧⎡⎤⎛⎫-=-+⎪ ⎪⎢⎥⎝⎭⎪⎣⎦⎨⎡⎤⎛⎫⎪-=-+ ⎪⎢⎥⎪⎝⎭⎣⎦⎩,所以7π2π,Z 12k k αββ-=+-∈,解得7π2π,Z 12k k α=+∈,所以π7ππ5π2sin cos 412462ααα⎛⎫⎛⎫+=+=+== ⎪ ⎪⎝⎭⎝⎭.故答案为:22.9.2023【分析】将已知条件切化弦,然后结合两角和的正弦公式、正余弦定理,将等量关系转化为2a ,2b ,2c 间的关系,则问题可解.【详解】2tan tan 2211cos cos tan (tan tan )tan tan tan tan sin sin A BB AC A B C C B A B A ==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2sin sin 2sin sin 2sin sin tan (sin cos cos sin )tan sin()tan sin A B A B A B C A B A B C A B C C ===++222sin sin cos 2cos sin A B C ab CC c ==,由余弦定理有:222222cos ab C a b c c c +-=,又2222024a b c +=,所以原式22220242023c c c -==.故答案为:202310.3215-【分析】利用诱导公式求出tan α,再由二倍角公式及同角三角函数的基本关系将弦化切,最后代入计算可得.【详解】因为()2tan 2024π3α-=,所以2tan 3α=-,所以2sin cos 2cos cos 2αααα-222sin cos 2cos cos sin ααααα=--2tan 121tan αα=--221323215213-=-=-⎛⎫-- ⎪⎝⎭.故答案为:3215-11.8310-+【分析】根据同角三角函数关系求出2π1cos 65α⎛⎫-= ⎪⎝⎭,利用正切差角公式得到πtan 3α⎛⎫- ⎪⎝⎭,从而求出答案.【详解】由题意得ππsin 2cos 66αα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,又22ππsin cos 166αα⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得2π1cos 65α⎛⎫-= ⎪⎝⎭,ππtan tan 2πππtan tan 8666ππ31tan tan 666αααα⎛⎫-- ⎪⎡⎤⎛⎫⎛⎫⎝⎭-=--==- ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+- ⎪⎝⎭2ππ111tan cos 8362283510αα⎛⎫⎛⎫-+--=-++-=-+ ⎪ ⎪⎝⎭⎝⎭故答案为:8310-+12.247-【分析】先利用三角函数的定义得到πtan 3α⎛⎫- ⎪⎝⎭,再利用倍角公式和诱导公式进行转化求得πtan 23α⎛⎫+ ⎪⎝⎭.【详解】由三角函数的定义,得π4tan 33α⎛⎫-= ⎪⎝⎭,所以πππtan 2tan 2πtan2333ααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2π82tan 243316π711tan 93αα⎛⎫- ⎪⎝⎭===-⎛⎫--- ⎪⎝⎭.故答案为:247-13.1【分析】利用二倍角公式,同角关系,两角和与差的正切公式变形求解.【详解】由πsin2sin 21cos21sin αβαβ⎛⎫+ ⎪⎝⎭-=+得1cos2cos sin 21sin αβαβ-=+,22222cos sin 2sin 222sin cos cos sin 2sin cos 2222ββαββββαα-=++,所以cossinsin 22cos cos sin 22ββαββα-=+,即π1tantantan π242tan tan()π421tan 1tan tan242βββαββ--==-++,又π,,π2αβ⎛⎫∈ ⎪⎝⎭,所以ππ42βα=-+,即5π24βα+=,所以tan tan5π2tan()tan 1241tan tan 2βαβαβα+=+==-.故答案为:1.14.79-【分析】根据题意,由余弦的和差角公式展开可得π1 cos 63α⎛⎫+= ⎪⎝⎭,再由二倍角公式,即可得到结果.【详解】因为π1cos sin 63αα⎛⎫--= ⎪⎝⎭,整理得ππ1cos cos sin sin sin 663ααα+-=,11sin 23αα-=,所以π1cos 63α⎛⎫+= ⎪⎝⎭,所以2ππ17cos 22cos 1213699αα⎛⎫⎛⎫+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故答案为:79-15.【分析】令πsin cos )4t x x x =+=+,可求t 的范围,利用同角的基本关系对已知函数化简计算,结合函数的单调性即可求解.【详解】由题意知,222(sin cos )()sin cos sin cos x x f x x x x x+=+=,令πsin cos 4t x x x =+=+,由π02x <<,得ππ3π444x <+<,所以2πsin()124x <+≤,则1t <≤由sin cos t x x =+,得22(sin cos )12sin cos t x x x x =+=+,所以21sin cos 2t x x -=,则原函数可化为22244()1112ttg t t t t t ===---,又函数1,y t y t ==-在上单调递增,所以1y t t =-在上单调递增,故当t 时,1y t t =-取得最大值22,此时()g t取得最小值故答案为:16.2511##3211【分析】根据同角三角函数关系,结合已知条件求得cos sin αβ,以及()sin αβ+,()2sin αβ+,()2cos αβ+,再求结果即可.【详解】由tan 3tan 2αβ=可得:sin cos 3cos sin 2αβαβ=,又2sin cos 1αβ=,即1sin cos 2αβ=,则1cos sin 3αβ=,故()115sin sin cos cos sin 236αβαβαβ+=+=+=,()225sin 36αβ+=,则()()2211cos 1sin 36αβαβ+=-+=,故()()()22225sin 2536tan 11cos 1136αβαβαβ++===+.故答案为:2511.17.【分析】由二倍角公式可得cos 2c bA b-=,利用正弦定理边化角,结合和差公式整理可得()sin sin B A B =-,可得2A B =,根据三角形ABC 为锐角三角形求出角B 的范围,然后利用正弦定理和二倍角公式可得2cos aB b=,可得范围.【详解】因为sin2A 23sin 24A b c b -=,所以2cos 12sin 22A c b A b -=-=,由正弦定理得sin sin cos 2sin C B A B -=,即2sin cos sin sin B A C B =-,所以()2sin cos sin sin B A A B B =+-,所以sin cos cos sin sin A B A B B -=,即()sin sin B A B =-,所以B A B =-或πB A B +-=(舍去),因为三角形ABC 为锐角三角形,所以π20,2A B ⎛⎫=∈ ⎪⎝⎭,又π3,π2A B B ⎛⎫+=∈ ⎪⎝⎭,解得64ππ,B ⎛⎫∈ ⎪⎝⎭,所以cos 22B ⎛⎫∈ ⎪ ⎪⎝⎭.因为sin sin22cos sin sin a A B B b B B ===,所以a b 的取值范围为.故答案为:18.14##0.25【分析】由,2222αβαβαβαβαβ+-+-=+=-,利用两角和与差的正弦公式和余弦的二倍角公式,求出sin 2αβ+;再用余弦的二倍角公式求出()cos αβ-.【详解】因为,2222αβαβαβαβαβ+-+-=+=-,所以sin sin sin 22αβαβαβ+-⎛⎫+=++ ⎪⎝⎭sin 2sin cos 2222αβαβαβαβ+-+-⎛⎫-=⋅ ⎪⎝⎭,又sin sin αβ+=sin cos 2212αβαβ+-=,因为,αβ为锐角,所以2αβ+为锐角,又()21cos 12sin 29αβαβ++=-=-,所以sin 2αβ+=又52sin cos 2212αβαβ+-=,所以cos 2αβ-=,所以()2101cos 2cos 1212164αβαβ--=-=⨯-=.故答案为:3;14.19【分析】由π2tan 74x ⎛⎫+= ⎪⎝⎭及同角三角函数的基本关系可求得ππsin ,cos 77x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,再根据10πππ2173x x ⎛⎫+=++ ⎪⎝⎭并结合两角和的正弦公式即可得解.【详解】 π2tan 74x ⎛⎫+= ⎪⎝⎭,π2πsin cos 747x x ⎛⎫⎛⎫∴+=-+ ⎪ ⎪⎝⎭⎝⎭,2222ππππsin cos cos 7777x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴+++=-+++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦29πcos 187x ⎛⎫=+= ⎪⎝⎭,x 为第二象限角,∴πcos 7x ⎛⎫+= ⎪⎝⎭,π1sin 73x ⎛⎫∴+= ⎪⎝⎭,10πππππππsin sin sin cos cos sin 21737373x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴+=++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1122312632326-=⨯-=.20.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan 3A =>=,又函数tan y x =在π(0,2上单调递增,则π3A >,此时3πABC A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B C B C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:6。
三角函数式的化简三角函数式的化简是指利用诱导公式、同角基本关系式、和与差的三角函数公式、二倍角公式等,将 较复杂的三角函数式化得更简洁、更清楚地显示出式子的结果.化简三角函数式的基本要求是:(1)能求出 数值的要求出数值;(2)使三角函数式的项数最少、次数最低、角与函数的种类最少;(3)分式中的分母尽量 不含根式等.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成 同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降 低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中 的差异,再选择适当的三角公式恒等变形.(一) 知识点 1、辅助角公式tzsin a+bcos a =yja + /72sin(«+cp),"cos (p= _______________ ,其中v si“0= ------------------------ ,btan 一, V Y a2、降幕公式:・2sins= _________________, cos a= _________________ (二)例题讲解⑴求./(X )的最小正周期;(2)当«e[0,兀]时,若./(«) = 1,求a 的值.审题视角(1)在/(X )的表达式中,有平方、有乘积,而且还表现为有不同角,所以要考虑到化同角、 降幕等转化方法.(2)当/(x )=dsinx+方cosx 的形式时,可考虑辅助角公式.=-\/3cos 2r+sin xcos x —萌 siiFx+sin xcos 兀所以最小正周期T=n.(2)由 /((X )— 1,得 2sin (2a+守=1,厂 *7又 aW[0,兀],所以 2c (+je 专,-y 所以2a+|=y 或2°+申=晋,角卩称为辅助角.sin a cos a - ___________xcos x.[2分][6分][8分]例1、(12分)已知函数y (x )=2cosin 2x+sin ⑴因为X%)=2cossin 2x+sin xcosx1 • (2010-福建)计算 sin 43°cos 13°B 誓—cos 43°sin 13。
三角函数化简技巧
一、化简要求:
将一个三角函数式化简,最终结果一般都是出现两种形式:1、一元一次(即类似
B x A y ++=)sin(ϕω)的标准形式;2、一元二次(即类似y=A(cosx+B)2
+C )的标准形式。
二、三角化简的通性通法:
1、切割化弦;
2、降幂公式;
3、用三角公式转化出现特殊角;
4、 异角化同角;
5、异名化同名;
6、高次化低次;
7、辅助角公式;
8、分解因式。
三、例题讲解:
(例1)f(x)=2cosxsinx+
x
x x x
cos sin 1sin 2cos 22
+--=_y=A(cosx+B)2+C B x A y ++=)sin(ϕω
(三角函数化简技巧)-3sin 2
x+sinxcosx 解:f (x )=2cos x sin(x +3
π)-3sin 2x +sin x cos x −−−−−
→用三角公式展开
2cos x (sin x cos 3π+cos x sin 3
π
)-3sin 2x +sin x cos x −−−−→降幂公式
sin2x +
3cos2x
−−−−→辅助角公式
2sin(2x +3π).
(例2)y =2cos 2
x -2a cos x -(2a +1)
解:y =2cos 2
x -2a cos x -(2a +1) −−−→配方
2(cos x -2
a )2-2242+-a a .
(例3)若tan x =2,则
x
x x x
cos sin 1sin 2cos 22
+--=_______.
(例4)sin 4α+cos 4α=_______.
解:sin 4α+cos 4α−−
→(sin 2α+cos 2α)2-2sin 2αcos 2α−−→1-2
1
sin 22α−−
→1-11-cos222α
⋅
=13cos 244
α+. (例5)函数y =5sin x +cos2x 的最大值是_______.
(例6)函数y =sin (3
π
-2x )+sin2x 的最小正周期是
(例7)f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间[0,2
π
]上的最小值为-4,那么a 的值等于
A.4
B.-6
C.-4
D.-3
(例8)求函数f (x )=x
x
x x x 2sin 2cos sin cos sin 2244-++的最小正周期、最大值和最小值.
(例9)f (x )=-sin 2x +sin x +a
(例10)函数y =sin 4x +cos 2x 的最小正周期为( )
A.4
π
B.
2
π C.π D.2π
y =sin 4
x +cos 2
x −−−−−−−−−−→异角化同角+高次化低次+异角化同角
(22cos 1x -)2+2
2cos 1x
+−−→
432cos 2+x −−−−→高次化低次424cos 1x
++43=81cos4x +8
7 (例11)2、
函数222
y sin x x =--+的最小正周期 ( ) A 、2π B 、π C 、3π D 、4π
(例12)化简:
42212cos 2cos 2.2tan()sin ()
44
x x x x ππ-+
-+
(例13)设3177cos(),45124
x x πππ
+=<<
,求2sin 22sin 1tan x x x +-的值。
(例14)已知函数2()2sin sin 2,[0,2].f x x x x =+∈π求使()f x 为正值的x 的集合.
(例15)已知函数f (x )=-3sin 2
x +sin x cos x .
(Ⅰ) 求f (256
π)的值; (Ⅱ) 设α∈(0,π),f (2α)=41
-2,求sin α的值.
(例16)已知cos(4
π
+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值.
(例17)已知 )2(cot tan 2
2≥=+m m x x ,求x
x
4cos 14cos 3-+的值。
(例18)化简表达式:)]24tan(2)
2
4(cos 2cos 3)[sin 1(2x
x x x -π--π+ (例19)
x
x
x x x x cos 1sin cos 1cos 2cos 12sin -⋅
+⋅+的最简形式为 .。