三角函数式化简
- 格式:doc
- 大小:177.00 KB
- 文档页数:3
三角函数式化简孙小龙所谓三角函数化简,就是灵活运用公式,对复杂的三角函数式进行变形,从而得到较为简单的三角函数式以便于进行问题讨论,所以三角函数式的化简是研究复杂三角函数式的基础;下面我们一起深入探究如何进行三角函数式化简;方法引导三角函数式化简通常是最让人头疼的一类题型,因为化简没有明确的方向,很难继续进行;其实化简只要遵守“三看”原则,即能顺利化简;一是看角,二是看名,三是看式子的结构和特征;(1) 看角的特点,充分利用角之间的关系,尽量向同角转化,利用已知角构建待求角;如倍角关系、半角关系、互余关系、互补关系等;(2) 看函数名的特点,向同名函数转化,弦切互化;(3) 看式子的结构特点,从整体出发,正用、逆用、变形应用这些公式;另外,根据式子的特点,还可以使用辅助角公式;了解了化简原则之后,下面我们开始化简了;例一 化简fx=2cosxsinx+3π-3sin 2x+sinxcosx分析:首先先看角,式子中的角度不统一,所以首要任务是统一角度,根据式子的结构特点和π3的特殊性,可以运用两角和的正弦公式将式子展开fx =2cos x sin x +3π-3sin2x +sin x cos x−−−−−→用三角公式展开2cos x sin x cos3π+cos x sin 3π-3sin2x +sin x cos x= 2sin x cos x +3cos2x -3sin 2x第一步化简完成后,再次观察式子的结构特点,每一个单项式都是二次的,所以再运用降幂公式把式子变为一次式2sin x cos x +3cos2x -3sin2x −−−−→降幂公式sin2x +3cos2x继续运用辅助角公式进行彻底化简sin2x +3cos2x −−−−→辅助角公式2sin2x +3π.例二 化简:42212cos 2cos 2.2tan()sin ()44x x x x ππ-+-+ 分析:我们还是先从角度入手,分子上角度统一,分母角度不统一,但仔细观察发现分母中两个角呈互余关系,再看函数名的特点,我们可以运用诱导公式进行化简;分子上仔细观察结构,提出12,可以得到完全平方式42212cos 2cos 2.2tan()sin ()44x x x x ππ-+-+诱导公式及完全平方式→ 12(4cos x−4cos x+1)242cot(π4+x)sin (π4+x )2=(2cos x−12)24sin(π4+x)cos(π4+x) 统一角度后,分析式子的结构特点,运用降幂公式进行化简 (2cos x−12)24sin(π4+x)cos(π4+x)降幂公式→ 2cos 2x22sin(π2+2x)=2cos 2x 22cos 2x= 12cos 2x 我们可以通过两个例题发现化简题目中透露出来的隐藏信息,这就是三角函数式化简要求最终形式:正弦型函数通常情况 化简方法: 1、切割化弦; 2、降幂公式;3、用三角公式转化出现特殊角;4、 异角化同角;5、异名化同名;6、高次化低次;7、辅助角公式;8、分解因式;任何三角函数式化简只要掌握了化简的原则和要求,遇到化简题就能轻而易举的攻破了,但首先有个前提:熟练掌握常见三角函数变换公式,如同角三角函数变换公式、诱导公式、两角和与差的余弦正弦正切公式、倍角与半角公式、辅助角公式等;同时还要了解其他三角函数变换公式,如三角函数积化和差和和差化积公式、三倍角公式和万能置换公式等;小试牛刀1. 化简βαβαβα2cos 2cos 21cos cos sin sin 2222-+;2. 化简xxx x x x f 2sin 2cos sin cos sin )(2244-++=3. 已知t a n θ=2,求⎪⎭⎫ ⎝⎛+--θπθθ4sin 21sin 2cos 22的值4. 化简下列各式1⎪⎭⎫ ⎝⎛<<+-παπα2232cos 21212121;利用升次公式,去掉开方符号 242sin 42cos tan 5312sin 2cos 2tan 31--+--++x x xx x x ; 可使用换元化简,令t =t a n x 3se c 2280°-3c s c 2280°.化割为弦小试牛刀答案1. 原式βαβαβα2cos 2cos 21)2cos 1)(2cos 1(41)2cos 1)(2cos 1(41-+++--=)2cos 2cos 2cos 2cos 1(41)2cos 2cos 2cos 2cos 1(41βαβαβαβα+++++--=βα2cos 2cos 21- 212cos 2cos 21)2cos 2cos 1(21=-+=βαβα 2. xxx x x x f 2sin 2cos sin cos sin )(2244-++=)cos sin 1(2cos sin 122x x xx --=212sin 41+=x ; 3. 原式=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-•=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-θπθπθπθππθπθθπθπθθ4sin 4cos 4sin 24sin 4cos 24sin 2sin 2sin 4sin 2sin cos .=2232121tan 1tan 14tan 1+-=+-=+-=⎪⎭⎫⎝⎛+θθθπ4. 1∵αααπαπcos |cos |2cos 2121,223==+∴<<, 又∵2sin ,2sin |2sin |cos 2121,243ααααπαπ=∴==-∴<<原式. 2令t =t a n x ,则原式=41811531121)1(231222222-+-+-+--+++-+t t t t tttt t t=x tt t t t t t t t t 2sec 212)1()1)(53()1)(51()1)(31()1()31(2222=-+=+++++-++•+ 3原式=csc 210°-3se c 210°=csc10°+3sec10°·csc10°-3sec10°=︒︒-︒•︒+︒=︒︒︒-︒•︒•︒︒+︒20sin )1030sin()1030sin(1610cos 10sin 10sin 310cos 10cos 10sin 10sin 310cos 2=32cos20°.。
第九讲: 三角函数的化简与求值一、知识要点1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. 二、方法点拨三角变换是运算化简过程中运用较多的变换, 也是历年高考命题的热点.提高三角变换能力, 要学会设置条件, 灵活运用三角公式, 掌握运算、化简的方法和技能.常用的数学思想方法技巧如下: 1. 角的变换: 在三角化简、求值、证明中, 表达式往往出现较多的相异角, 可根据角与角之间的和差、倍半、互补、互余的关系, 运用角的变换, 沟通条件与结论中的差异, 使问题获解.对角的变形如下:角的变换:β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β)2()2()(,2304560304515α-β-β+α=β-β+α=α=-=-=,)4()4()()(2α-π-α+π=β-α+β+α=α,)4(24α-π-π=α+π特别地, α+π4与α-π4为互余角, 它们之间可以互相转化, 在三角变形中使用频率高.2. 函数名称变换: 三角变形中, 常常需要变函数名称为同名函数. 如在三角函数中正余弦是基础, 通常化切、割为弦, 变异名为同名.3. 常数代换: 在三角函数运算、求值、证明中, 有时需要将常数转化为三角函数值, 例如常数“1”的代换变形有: α-α=α-α=α+α=222222cot csc tan sec cos sin 1.4. 幂的变换: 降幂是三角变换时常用方法, 对次数较高的三角函数式, 一般采用降幂处理的方法. 常用降幂公式有:1cos sin ,22cos 1cos ,22cos 1sin 2222=α+αα+=αα-=α 等, 三角变换时, 有时需要升幂, 如对无理式α+cos 1常用升幂化为有理式, 升幂公式与降幂公式是相对而言的.5. 公式变形式: 根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.三角公式是变换的依据, 应熟练掌握三角公式的直接应用,逆用以及变形式的应用.如:)tan tan 1)(tan(tan tan ,sin 22sin cos β⋅αβ±α=β±ααα=α 等. 三、典型例题讲解:考点一、三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan ⎝⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向. 【训练1】 化简:(sin α+cos α-1)(sin α-cos α+1)sin 2α.考点二、三角函数式的求值【例1】已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.训练1】 已知α,β∈⎝ ⎛⎭⎪⎫0,π2,sin α=45,tan(α-β)=-13,求cos β的值. 训练2】已知cos(α-6π)+sin α=354,则sin(α+67π)的值是( )训练3】已知tan ⎝ ⎛⎭⎪⎫x +π4=2,则tan x tan 2x 的值为________训练4】已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________考点三、三角函数的求角问题【例1】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【训练1】 已知α,β∈⎝ ⎛⎭⎪⎫-π2,π2,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.【训练2】已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.考点四、 三角函数的综合应用【例1】►设0<θ<2π,曲线x 2sin θ+y 2cos θ=1和x 2cos θ-y 2sin θ=1有4个不同的交点。
)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β;(5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β. 2.二倍角的正弦、余弦、正切公式.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(3)T 2α:tan 2α=2tan α1-tan 2α. 3.有关公式的逆用、变形等.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β);(2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin èæøöα±π4. =α+β2-α-β2;α-β2=èæøöα+β2-èæøöα2+β.原则: 用已知表示待求用已知表示待求 (2) 化简技巧:切化弦、“1”的代换等.的代换等. 6 三个变化三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:变名:通过变换函数名称达到减少函数种类的目的,通过变换函数名称达到减少函数种类的目的,通过变换函数名称达到减少函数种类的目的,其手法通常有其手法通常有“切化弦”、“升幂与降幂”等.等.(3)等.等.二 典型题目1 三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan èæøöπ4-x sin 2èæøöπ4+x. 【训练1】 化简 (sin cos 1)(sin cos 1)sin 2a a a a a+--+:. 1三角三角函数式函数式的化简求值训练 一.重要公式与方法技巧:1 两角和与差的两角和与差的正弦正弦、余弦、正切公式、余弦、正切公式(1)C (α-β):cos(α-β4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2c os(α-φ),其中φ可由a ,b 的值唯一确定.的值唯一确定. 5两个技巧两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与分解与组合组合”、“配方与配方与平方平方”<π2<α<π,且cos èæøöα-β2=-19,sin èæøöα2-β=23,求cos(α+β)的值.的值.【训练2】 已知α,β∈èæøö0,π2,sin α=45,tan(α-β)=-13,求cos β的值.的值.三 三角函数的求角问题三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β. 【训练3】 已知α,β∈èæøö-π2+33x +4=0的两个根,求α+β的值.的值.四 三角函数的综合应用三角函数的综合应用【例4】►已知函数f (x )=2cos 2x +sin 2x .(1)求f èæø-π62二 三角三角函数式函数式的求值的求值【例2】►已知0<β,π2,且tan α,tan β是方程x 2öπ3的值;(2)求f (x )的最大值和最小值.和最小值.【训练4】 已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;的最小正周期;(2)求f (x )在区间ëéûù,π2上的最大值和最小值.上的最大值和最小值.一、给值求值一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的求另外一些角的三角函数值三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式把所求角用含已知角的式子表示子表示,求解时要注意角的范围的讨论.角的范围的讨论.3【示例】►已知tan èæøöx +π4=2,则tan =12,tan β,π2. (1)求sin θ和cos θ的值;的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.的值.【课后巩固】1.81cos sin =×a a ,且4p <a <2p,则a a sin cos -的值为:的值为:A 、23B 、23-C 、43D 、43-2.已知a a aa a cos 3sin 2cos sin ,2tan +--=则的值是的值是A 、-1 B 、1 C 、-3 D 、3 3.已知=-=+-=-)sin(,21sin cos ,43cos sin a b b a b a 则A 、3219B 、3219-C 、0 D 、1916-4.已知 5.已知3sin(),45x p -=则sin 2x 的值为的值为 ( )A.1925 B.1625 C.1425 D.7256.已知1sin cos 5q q -=,则sin 2q 的值是的值是A 、45B 、45-C 、2425D 、-24257.已知54)cos(-=-b a 54)cos(=+b a ),2(p p b a Î-)2,23(p p b a Î+则cos2a =( ) xtan 2x 的值为________.二、给值求角二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式把所求角用含已知角的式子表示子表示,由所得的函数值结合该函数的单调由所得的函数值结合该函数的单调区间区间求得角.求得角.【示例】►已知tan(α-β)=-17,且α,β∈(0,π),求2α-β的值.的值. ▲三角恒等变换与▲三角恒等变换与向量向量的综合问题的综合问题 两角和与差的两角和与差的正弦正弦、余弦、正切公式作为解题工具,是每年余弦、正切公式作为解题工具,是每年高考高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.高考的一个新考查方向.【示例】► 已知向量a =(sin θ,-2)与b =(1,cos θ)互相互相垂直垂直,其中θ∈èæøö0q tam 和)4(q p-tam 是方程02=++q px x 的两根,则p 、q 间的关系是:间的关系是: A 、01=+-q p B 、01=++q p C 、01=-+q p D 、01=--q p4A 、257-B 、257C 、1-D 、1 8.22cos 75cos 15cos75cos15++ 的值等于(的值等于( ) A 、62 B 、32 C 、54D 、1+349.已知tan(α+β)=52,tan(β-4p )=41,那么tan(α+4p )的值是的值是A .1813 B .223 C .2213 D .18310.若,(0,)2pa b Î,3cos()22ba -=,1sin()22a b -=-,则cos()a b +的值等于 (A )32-(B )12- (C )12(D )32 11、已知tan 2a =,求2212sin cos cos sin a a a a +-12.求tan200+tan400+3tan200tan400的值. 13.已知3110,tan 4tan 3pa p a a<<+=-(Ⅰ)求tan a的值;(Ⅱ)求225sin 8sin cos 11cos 822222sin 2a a a a p a ++-æö-ç÷èø 14.已知40,sin 25pa a <<=(Ⅰ)求22sin sin 2cos cos 2a a a a++的值;(Ⅱ)求5tan()4pa -的值。
数学部分•知识结构与拓展高一使用2021年6月解:原式=化简三甬函懿述的\f3sin12°—3cos12°2sin12°cos12°(2cos212°—1)2^3sin(12°—60°)4V3o當用冇法■廖庆伟三角函数式的化简的常用方法有:直用公式,变用公式,化切为弦,异名化同名,异角化同角,高次化低次等。
下面举例分析,供大家学习与参考。
一、直用公式例1设函数/(rc)=sin 兀7C—sin48°评注:先化切为弦,再利用倍角公式进行转化,最后逆用两角差的正弦公式即可求值。
四、异名化同名例4已知tan0=2,则sin20+sin Ceos0—2cos2^._h亠sin20+sin^cos0一2cos'。
解:原式sin2+cos2tan20+tan Q—2_4+2—2_4tar?e十1=4+1=T°评注:先把分母用sir?。
+cos2。
代换,再把分子、分母同除以cos20即得结果。
五、异角化同角例5函数(乞)=cos(2z+詈)+sin2gTT2cos2—+1,则/X h)的最小正周期为的最大值为解:因为函数/(rc)=sin于工一解:因为jf(;r)=cos2^ccos——sin2h•-|-cos晋:r=sin7T7T,故函数/(工)sin令+—c;s2j*_欝鈕,所以函数的最小正周期为丁=弐=8。
T评注:直接利用差角公式、二倍角的余弦公式即可得到结果。
二、变用公式例2当函数夕=sin工—</3"cos h(0W 鼻V2tc)取得最大值时,jc____o解:由》=sin jc一43cos h2(cos守sin工一sin专cos町—2sin h—訂,可知当'7Tsin=1时,此函数取得最大值。
又0W h V2jt,所以rr=警o评注:三角函数公式既可正用,也可变用,变用公式是三角恒等变换的难点。
三角函数的化简与证明三角函数是数学中的重要概念之一,它在解析几何、物理学、工程学等领域中有广泛应用。
在使用三角函数时,我们经常面临的一个问题就是如何将复杂的三角函数化简为简单形式,或者证明两个三角函数之间的等式。
本文将探讨三角函数的化简和证明方法。
一、三角函数的化简1. 三角恒等式三角恒等式是三角函数化简的基础。
它是一种等式关系,使得两个或多个三角函数能够互相转化。
下面是一些常见的三角恒等式:- 余弦函数的平方加正弦函数的平方等于1:$cos^2θ + sin^2θ = 1$- 2倍角公式:$cos(2θ) = cos^2θ - sin^2θ$- 倍角公式:$sin(2θ) = 2sinθcosθ$- 三角和差公式等通过运用这些恒等式,我们可以将复杂的三角函数化简为简单的形式,便于计算和理解。
2. 其他化简方法除了三角恒等式,还有一些其他的化简方法。
例如,使用欧拉公式,将三角函数转化为复指数函数进行化简。
这个方法可以将三角函数的复杂计算转化为简单的指数函数计算,能够提高计算效率。
在实际问题中,我们还可以利用对称性、周期性等性质进行化简。
这需要根据具体问题进行分析和推导,找到合适的化简方法。
二、三角函数的证明1. 等式的证明证明三角函数之间的等式是数学中的重要问题。
通过证明三角函数之间的等式,可以建立它们之间的联系,拓宽我们对三角函数的理解。
在证明三角函数等式时,我们可以运用三角恒等式、代数运算、数学归纳法等方法。
具体的证明过程需要根据问题的要求和条件进行推导。
2. 不等式的证明除了等式的证明,我们还经常需要证明三角函数之间的不等式。
三角函数的不等式证明在数学分析和优化等领域中有广泛应用。
在证明三角函数不等式时,我们可以使用极限、导数、积分和数学归纳法等方法。
通过分析三角函数的性质和变化趋势,找到合适的不等式证明方法。
需要注意的是,在证明过程中,要严谨而准确地推导,避免出现漏洞和错误,确保证明的有效性和可靠性。
三角函数化简求值的技巧
一、三角函数的重要性质:
1、正弦函数sin x、余弦函数cos x、正切函数tanx和其逆函数的
关系:
sin x=1/cos x,cos x=1/sin x,tan x=1/cot x,cot x=1/tan x,cos x=1/csc x,csc x=1/cos x。
2、三角函数的基本性质:
sin2x+cos2x=1,sin2x=2sin(x/2)cos(x/2),cos2x=cos2(x/2)
-sin2(x/2),2sin xcos x=sin2x+cos2x=2sin2(x/2)=2cos2(x/2)。
3、三角函数的对称性:
sin(-x)=-sin x,cos(-x)=cos x,tan(-x)=-tan x,cot(-x)=-cot x,csc(-x)=-csc x。
二、用三角函数化简求值的常用方法:
1、用公式和定义:
用三角函数的基本公式来把表达式中的各个项拆分开明确每个项的意义,然后把各个项的值累加求值。
2、用对称性:
对变量进行绝对值化,然后利用三角函数的对称性变换变量或表达式,从而达到化简的目的。
3、用反函数求值:
把表达式中的三角函数换成其对应的反函数,然后利用反函数的性质进行化简,获得原函数的表达式。
四、利用三角函数化简求值的实例:
例1:求Sin(60°)
解:
1、用公式求值:
可以用公式sin 2x=2sin xcos x来求值。
简单的三角恒等变换——化简与证明学习目标:能正确地运用三角函数的有关公式进行三角函数式的求值,化简与恒等式的证明. 学习重点:三角函数的有关公式的灵活应用和一些简单的变性技巧.学习过程一、知识清单1.证明了cos()a b -= ®cos()a b += ®cos()2p a -= ,cos()2p a += ®sin()a b += sin()a b -= ®tan()a b += ,tan()a b -= 2. cos (+)a b = ®cos 2a = = = sin()a b += ®sin 2a = tan()a b += ®tan 2a =3.倍角的相对性sin a = ,cos a = ,tan a =4.要掌握这些公式的推导和联系,用时注意公式的“正用”,“逆用”和“变用”.如:降幂扩角公式 2sin a = ;2cos a = ; 1cos a += ;1cos a -= ;1sin a += ;1sin a -= .5. 划一公式:sin cos a x b x += (其中tan f = ,f 所在象限由 确定).二、范例解析题型一 三角函数式的化简和证明1.三角函数式的化简要求:通过对三角函数式的恒等变形使最后所得到的结果中:①所含函数和角的名称或种类最少;②各项的次数尽可能地低;③出现的项数最少; ④一般应使分母和根号不含三角函数式;⑤对能求出具体数值的,要求出值.2.三角变换的三项基本原则:(1)角的变换:划同角(角的拆分,配角和凑角,1的变换);(2)函数名称的变换:划同名(正切划弦);(3)幂指数的变换:划同次(升幂、降幂公式,同角公式).例1化简下列各式 ; ②1sin 2cos 21sin 2cos 2a a a a+-=++ ; ③2sin 2cos 1cos 2a a a-=+ ; ④222cos 12tan()sin ()44a p p a a -=-+ ; 例2 证明下列各式(从左到右或从右到左或左右开攻中间会师,一般化繁为简)①22tan 2sin 1tan 2a a a =+ ②221tan 2cos 1tan 2a a a -=+③sin 1cos tan21cos sin a a a a a -==+ ④[]1sin cos sin()sin()2a b a b a b =++-⑤sin sin 2sincos 22q f q f q f +-+=.三、课下练习: 课本142P 2 ; 143P A 组 1, 2, 3, 4;B 组 1; 146P 8;147P 5.。
三角函数的化简1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。
一、化简 【例1】求值:︒+︒︒⋅︒+︒+︒80cot 40csc 10sin 20tan 10cos 20sin 2.【变式】1、求值()︒+︒︒+︒+︒10cos 110tan 60tan 110cos 40cos 2【变式】2、求0020210sin 21)140cos 1140sin 3(⋅-。
【例2】(三兄弟)已知23523sin cos παπαα<<=-,且,求αααtan 1sin 22sin 2-+的值【变式】(05天津)已知727sin(),cos 241025παα-==,求sin α及tan()3πα+.【例3】(最值辅助角)已知函数f (x )=2a sin 2x -23a sin x cos x +a +b -1,(a 、b 为常数,a <0),它的定义域为[0,2π],值域为[-3,1],试求a 、b 的值。
三角函数式的化简三角函数式的化简是指利用诱导公式、同角基本关系式、和与差的三角函数公式、二倍角公式等,将 较复杂的三角函数式化得更简洁、更清楚地显示出式子的结果.化简三角函数式的基本要求是:(1)能求出 数值的要求出数值;(2)使三角函数式的项数最少、次数最低、角与函数的种类最少;(3)分式中的分母尽量 不含根式等.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成 同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降 低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中 的差异,再选择适当的三角公式恒等变形.(一) 知识点 1、辅助角公式tzsin a+bcos a =yja + /72sin(«+cp),"cos (p= _______________ ,其中v si“0= ------------------------ ,btan 一, V Y a2、降幕公式:・2sins= _________________, cos a= _________________ (二)例题讲解⑴求./(X )的最小正周期;(2)当«e[0,兀]时,若./(«) = 1,求a 的值.审题视角(1)在/(X )的表达式中,有平方、有乘积,而且还表现为有不同角,所以要考虑到化同角、 降幕等转化方法.(2)当/(x )=dsinx+方cosx 的形式时,可考虑辅助角公式.=-\/3cos 2r+sin xcos x —萌 siiFx+sin xcos 兀所以最小正周期T=n.(2)由 /((X )— 1,得 2sin (2a+守=1,厂 *7又 aW[0,兀],所以 2c (+je 专,-y 所以2a+|=y 或2°+申=晋,角卩称为辅助角.sin a cos a - ___________xcos x.[2分][6分][8分]例1、(12分)已知函数y (x )=2cosin 2x+sin ⑴因为X%)=2cossin 2x+sin xcosx1 • (2010-福建)计算 sin 43°cos 13°B 誓—cos 43°sin 13。
三角函数式化简
孙小龙
所谓三角函数化简,就是灵活运用公式,对复杂的三角函数式进行变形,从而得到较为简单的三角函数式以便于进行问题讨论,所以三角函数式的化简是研究复杂三角函数式的基础。
下面我们一起深入探究如何进行三角函数式化简。
方法引导
三角函数式化简通常是最让人头疼的一类题型,因为化简没有明确的方向,很难继续进行。
其实化简只要遵守“三看”原则,即能顺利化简。
一是看角,二是看名,三是看式子的结构和特征。
(1) 看角的特点,充分利用角之间的关系,尽量向同角转化,利用已知角构建待求角;如
倍角关系、半角关系、互余关系、互补关系等;
(2) 看函数名的特点,向同名函数转化,弦切互化;
(3) 看式子的结构特点,从整体出发,正用、逆用、变形应用这些公式。
另外,根据式子
的特点,还可以使用辅助角公式。
了解了化简原则之后,下面我们开始化简了。
例一 化简f(x)=2cosxsin(x+3
π
)-3sin 2x+sinxcosx
分析:首先先看角,式子中的角度不统一,所以首要任务是统一角度,根据式子的结构特点和的特殊性,可以运用两角和的正弦公式将式子展开
f (x )=2cos x sin(x +3
π)-3sin
2
x +sin x cos x
−−−−−→用三角公式展开2cos x (sin x cos
3
π
+cos x sin 3
π)-3sin
2
x +sin x cos x
= 2sin x cos x +3cos
2
x -3sin 2
x
第一步化简完成后,再次观察式子的结构特点,每一个单项式都是二次的,所以再运用降幂公式把式子变为一次式
2sin x cos x +
3cos
2
x -3sin
2
x −−−−
→降幂公式
sin2x +3cos2x
继续运用辅助角公式进行彻底化简
sin2x +
3cos2x −−−−
→辅助角公式
2sin(2x +3
π
).
例二 化简:
42212cos 2cos 2.2tan()sin ()
44
x x x x ππ-+
-+ 分析:我们还是先从角度入手,分子上角度统一,分母角度不统一,但仔细观察发现分母中两个角
呈互余关系,再看函数名的特点,我们可以运用诱导公式进行化简;分子上仔细观察结构,提出,可以得到完全平方式
42212cos 2cos 2.2tan()sin ()
44
x x x x ππ-+
-+ =
统一角度后,分析式子的结构特点,运用降幂公式进行化简
==
我们可以通过两个例题发现化简题目中透露出来的隐藏信息,这就是三角函数式化简要求 最终形式:正弦型函数(通常情况) 化简方法: 1、切割化弦; 2、降幂公式;
3、用三角公式转化出现特殊角;
4、 异角化同角;
5、异名化同名;
6、高次化低次;
7、辅助角公式;
8、分解因式。
任何三角函数式化简只要掌握了化简的原则和要求,遇到化简题就能轻而易举的攻破了,但首先有个前提:熟练掌握常见三角函数变换公式,如同角三角函数变换公式、诱导公式、两角和与差的余弦正弦正切公式、倍角与半角公式、辅助角公式等。
同时还要了解其他三角函数变换公式,如三角函数积化和差和和差化积公式、三倍角公式和万能置换公式等。
小试牛刀
1. 化简βαβαβα2cos 2cos 2
1
cos cos sin sin 2222-+。
2. 化简x
x
x x x x f 2sin 2cos sin cos sin )(2244-++=
不要小看第一题,它能有四种解法,你会几种呢?
3. 已知t a n θ=2,求
⎪
⎭
⎫
⎝⎛+--θπ
θθ
4sin 21sin 2
cos 22
的值
4. 化简下列各式
(1)⎪⎭
⎫ ⎝⎛<<+-παπα2232cos 21212121;(利用升次公式,去掉开方符号) (2)
4
2sin 42cos tan 5312sin 2cos 2tan 31--+-
-++x x x
x x x ; (可使用换元化简,令t =t a n x ) (3)se c 2280°-3c s c 2280°.(化割为弦)
小试牛刀答案
1. 原式
βαβαβα2cos 2cos 2
1
)2cos 1)(2cos 1(41)2cos 1)(2cos 1(41-+++--=)2cos 2cos 2cos 2cos 1(41
)2cos 2cos 2cos 2cos 1(41βαβαβαβα+++++--=
βα2cos 2cos 2
1- 212cos 2cos 21
)2cos 2cos 1(21=-+=
βαβα 2. x
x
x x x x f 2sin 2cos sin cos sin )(2244-++=
)
cos sin 1(2cos sin 122x x x
x --=
2
12sin 41+=
x 。
3. 原式=⎪
⎭
⎫ ⎝⎛+⎪
⎭⎫
⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-•=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-θπθπθπθππθπθθπθπθθ4sin 4cos 4sin 24sin 4cos 24sin 2sin 2sin 4sin 2sin cos .
=
2232
12
1tan 1tan 14tan 1+-=+-=+-=
⎪⎭
⎫
⎝⎛+θθθπ
4. (1)∵
αααπαπcos |cos |2cos 2
121,223==+∴<<, 又∵
2
sin ,2sin |2sin |cos 2121,243α
αααπαπ=∴==-∴<<原式. (2)令t =t a n x ,则原式=
41811531
121)1(231222
2
22-+-+-+--+++-+t t t t t
t t
t t t =
x t t t t t t t t t t 2sec 212
)1()1)(53()1)(51()1)(31()1()31(2
222=-+=+++++-++•+ (3)原式=csc 210°-3se c 210°=(csc10°+3sec10°)·(csc10°-3sec10°
)
=
︒
︒-︒•︒+︒=
︒︒︒-︒•︒•︒︒+︒20sin )
1030sin()1030sin(1610cos 10sin 10sin 310cos 10cos 10sin 10sin 310cos 2 =32cos20°.。