氨基酸蛋白质的构件分子
- 格式:ppt
- 大小:461.00 KB
- 文档页数:57
生物化学(第三版)课后习题详细解答第三章氨基酸提要α-氨基酸是蛋白质的构件分子,当用酸、碱或者蛋白酶水解蛋白质时可获得它们。
蛋白质中的氨基酸都是L型的。
但碱水解得到的氨基酸是D型与L型的消旋混合物。
参与蛋白质构成的基本氨基酸只有20种。
此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成。
除参与蛋白质构成的氨基酸外,还有很多种其他氨基酸存在与各类组织与细胞中,有的是β-、γ-或者δ-氨基酸,有些是D 型氨基酸。
氨基酸是两性电解质。
当pH接近1时,氨基酸的可解离基团全部质子化,当pH在13左右时,则全部去质子化。
在这中间的某一pH(因不一致氨基酸而异),氨基酸以等电的兼性离子(H3N+CHRCOO-)状态存在。
某一氨基酸处于净电荷为零的兼性离子状态时的介质pH称之该氨基酸的等电点,用pI 表示。
所有的α-氨基酸都能与茚三酮发生颜色反应。
α-NH2与2,4-二硝基氟苯(DNFB)作用产生相应的DNP-氨基酸(Sanger反应);α-NH2与苯乙硫氰酸酯(PITC)作用形成相应氨基酸的苯胺基硫甲酰衍生物( Edman反应)。
胱氨酸中的二硫键可用氧化剂(如过甲酸)或者还原剂(如巯基乙醇)断裂。
半胱氨酸的SH基在空气中氧化则成二硫键。
这几个反应在氨基酸荷蛋白质化学中占有重要地位。
除甘氨酸外α-氨基酸的α-碳是一个手性碳原子,因此α-氨基酸具有光学活性。
比旋是α-氨基酸的物理常数之一,它是鉴别各类氨基酸的一种根据。
参与蛋白质构成的氨基酸中色氨酸、酪氨酸与苯丙氨酸在紫外区有光汲取,这是紫外汲取法定量蛋白质的根据。
核磁共振(NMR)波谱技术在氨基酸与蛋白质的化学表征方面起重要作用。
氨基酸分析分离方法要紧是基于氨基酸的酸碱性质与极性大小。
常用方法有离子交换柱层析、高效液相层析(HPLC)等。
习题1.写出下列氨基酸的单字母与三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸与酪氨酸。
1.氨基酸:蛋白质的构件分子,有20种标准氨基酸。
丙氨酸、精氨酸、天门冬酰胺、天门冬氨酸、半胱氨酸、谷氨酸、谷氨酰胺、甘氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、蛋氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸、缬氨酸2.脂肪族基团氨基酸:侧链为脂肪烃侧链的氨基酸,包括甘氨酸侧链基团为氢原子、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸。
甘氨酸侧链基团为氢原子,丙氨酸、缬氨酸、亮氨酸、异亮氨酸带有饱和脂肪烃链。
脯氨酸有一个环状饱和烃侧链。
3.芳香族基团氨基酸:含有芳香环侧链的氨基酸。
苯丙氨酸有苯基的氨基酸,酪氨酸带有酚基的氨基酸,色氨酸带有双环的吲哚基。
4.含硫基团的氨基酸:侧链含有硫的氨基酸,蛋氨酸侧链上带有一个非极性甲硫醚基,是疏水氨基酸,半胱氨酸侧链上含有一个巯基。
5.含醇基基团氨基酸:侧链含不带电荷的β-羟基的氨基酸。
丝氨酸和苏氨酸具有一级和二级醇的弱的离子化特性。
6.碱性基团的氨基酸:侧链带有含氮碱基基团的氨基酸,在生理pH下带净正电荷。
包括组氨酸、赖氨酸、精氨酸。
组氨酸侧链有一个咪唑环,赖氨酸是一个双氨基酸,精氨酸侧链含有胍基基团。
7.酸性基团的氨基酸:侧链带有羧基的氨基酸,生理pH下带净负电荷。
都含有α-羧基,天冬氨酸还有β-羧基,谷氨酸还有γ-羧基。
8.含酰胺基团的氨基酸:天冬酰胺(α-氨基- β-羧基丙酰胺)和谷氨酰胺(α-氨基- γ-羧基丁酰胺)分别是天冬氨酸和谷氨酸的酰胺化产物,侧链不带电荷,但极性很强,可与水相互作用,因而经常出现在蛋白质表面,可以与其他的极性氨基酸的侧链上的原子形成氢键9.谷胱甘肽:动植物细胞中都含有的一种三肽,即-谷氨酸-半胱氨酸-甘氨酸,谷胱甘肽有还原型和氧化型两种类型,还原型谷胱甘肽在体内主要作用是保护含巯基的蛋白质脑肽:Met-及Leu-脑啡呔,都是五肽,它们在中枢神经系统中形成,是体内自己产生的一类鸦片剂。
Met-脑啡呔的氨基酸序列是:酪氨酸-甘氨酸-甘氨酸-苯丙氨酸-蛋氨酸Leu-脑啡呔的氨基酸序列是:酪氨酸-甘氨酸-甘氨酸-苯丙氨酸-亮氨酸10.肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合脱去一分子水形成酰胺键,将两个氨基酸连接在一起,这个酰胺键称为肽键11.肽单位:肽键是一种酰胺键,通常用羧基碳和酰胺氮之间的单键表示,肽键中的酰胺基(-CO-NH-)称为肽基或肽单位12.肽平面:羰基氧原子,酰胺氢原子以及两个相邻的Cα原子构成了一个肽平面。
第三章氨基酸第3章氨基酸四大类生物分子中蛋白质是生物功能的主要载体,而氨基酸(amino acid)是蛋白质的构件分子。
自然界中存成千上万在的种蛋白质,在结构和功能上的惊人的多样性归根结底是由20种常见氨基酸的内在性质造成的。
这些性质包括①聚合能力,②特有的酸碱性质,③侧链的结构及其化学功能的多样性,④手性。
本章主要讲述这些性质,它们是讨论蛋白质和酶的结构、功能以及许多其他有关问题的基础。
一、氨基酸—蛋白质的构件分子(一)蛋白质的水解一百多年前就开始了关于蛋白质的化学研究。
在早期的研究中,水解作用提供了关于蛋白质组成和结构的极其价值的资料。
蛋白质可以被酸、碱或蛋白酶催化水解。
在水解过程中,逐渐降解成相对分子质量越来越小的肽段(peptide fragment),直到最后成为氨基酸的混合物。
根据蛋白质的水解程度,可分为完全水解和部分水解两种情况。
完全水解或称彻底水解,得到的水解产物是各种氨基酸的混合物。
部分水解即不完全水解,得到的产物是各种大小不等的肽段和氨基酸。
下面简略地介绍酸、碱和酶3种水解方法及其优缺点:⑴酸水解常用H2SO4或HCl进行水解。
一般6mol/L HCl,4mol/L H2SO4;回流煮沸20h左右可使蛋白质完全水解。
酸水解的优点是不引起消旋作用(racemization),得到的是L-氨基酸。
缺点是色氨酸完全被沸酸所破坏,羟基氨基酸(丝氨酸及苏氨酸)有一小部分被分解,同时天冬氨酸和谷氨酰胺的酰胺基被水解下来。
⑵碱水解一般与5mol/L NaOH共煮10~20h,即可使蛋白质完全水解。
水解过程中多数氨基酸遭到不同程度的破坏,并且产生消旋现象,所得产物是D-和L-氨基酸的混合物,称消旋物(见本章氨基酸的光学活性部分)。
此外,碱水解所需时间较长。
因此酶法主要用于部分水解。
常用的蛋白酶有胰蛋白酶(trypsin)、胰凝乳蛋白酶或称糜蛋白酶(chymotrypsin)以及胃蛋白酶(pepsin)等,它们主要用于蛋白质一级结构分析以获得蛋白质的部分水解产物。
名词解释及答案生物化学文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]1.氨基酸(amino acid):是含有一个碱性氨基(-NH)和一个酸性羧基(-COOH)2的有机化合物,氨基一般连在α-碳上。
氨基酸是蛋白质的构件分子。
2.必需氨基酸(essential amino acid):指人(或其它脊椎动物)自己不能合成,需要从食物中获得的氨基酸。
3.非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。
4.等电点(pI, isoelectric point):使氨基酸处于兼性离子状态,分子的静电荷为零,在电场中不迁移的pH值。
5.肽键(peptide bond):一个氨基酸的羧基与另一个的氨基酸的氨基缩合,除去一分子水形成的酰氨键。
6.肽(peptide):两个或两个以上氨基酸通过肽键共价连接形成的聚合物。
7.茚三酮反应(ninhydrin reaction):在加热条件下,α-氨基酸或肽与茚三酮反应生成紫色(与脯氨酸及羟脯氨酸反应生成黄色)化合物的反应。
8.层析(chromatography):按照在移动相和固定相(可以是气体或液体)之间的分配比例将混合成分分开的技术。
9.离子交换层析(ion-exchange column):使用带有固定的带电基团的聚合树脂或凝胶层析柱。
一种用离子交换树脂作支持剂的层析技术。
10.透析(dialysis):利用蛋白质分子不能通过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖等分开的一种分离纯化技术。
11.凝胶过滤层析(gel filtration chromatography,GPC):也叫做分子排阻层析/凝胶渗透层析。
一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。
12.亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。