测量中的常用坐标系及坐标转换概述
- 格式:ppt
- 大小:177.50 KB
- 文档页数:17
测量中的常用坐标系及坐标转换概述在测量领域中,常用的坐标系包括直角坐标系、极坐标系和球坐标系。
不同的坐标系适用于不同的测量任务和数据处理需求,而坐标转换则是将不同坐标系下的测量数据相互转换的方法。
本文将对常用坐标系及坐标转换进行概述。
1.直角坐标系直角坐标系是最常见的坐标系之一,通常用于描述二维或三维空间中的点的位置。
在二维直角坐标系中,一个点的位置可以由两个坐标值(x,y)表示。
而在三维直角坐标系中,一个点的位置可以由三个坐标值(x,y,z)表示。
直角坐标系中的坐标轴是相互垂直的,可以方便地描述点的位置和进行测量。
2.极坐标系极坐标系是另一种常用的坐标系,通常用于描述平面上的点的位置。
极坐标系由一个极径和一个极角组成。
极径表示点到原点的距离,极角表示点与正x轴的夹角。
在极坐标系中,一个点的位置可以由(r,θ)表示。
极坐标系在一些特定情况下对测量任务更加方便,例如描述圆形或对称物体的位置。
3.球坐标系球坐标系用于描述三维空间中的点的位置。
球坐标系由一个极径、一个极角和一个方位角组成。
极径表示点到原点的距离,极角表示点与正z轴的夹角,方位角表示点在xy平面上的投影与正x轴的夹角。
在球坐标系中,一个点的位置可以由(r, θ, φ)表示。
球坐标系在描述球体或对称物体的位置时非常有用。
在测量中,常常需要在不同的坐标系之间进行转换以满足不同的需求。
以下是常见的坐标转换方法:1.直角坐标系到极坐标系的转换从直角坐标系到极坐标系的转换可以通过以下公式实现:极径 r = sqrt(x^2 + y^2)极角θ = atan2(y, x)其中,sqrt表示平方根,atan2表示求反正切值。
2.极坐标系到直角坐标系的转换从极坐标系到直角坐标系的转换可以通过以下公式实现:x = r * cos(θ)y = r * sin(θ)3.直角坐标系到球坐标系的转换从直角坐标系到球坐标系的转换可以通过以下公式实现:极径 r = sqrt(x^2 + y^2 + z^2)极角θ = acos(z / r)方位角φ = atan2(y, x)4.球坐标系到直角坐标系的转换从球坐标系到直角坐标系的转换可以通过以下公式实现:x = r * sin(θ) * cos(φ)y = r * sin(θ) * sin(φ)z = r * cos(θ)需要注意的是,在进行坐标转换时,要确保所使用的公式和单位系统是一致的,否则会导致转换结果错误。
测绘中常用的坐标系和坐标转换方法在现代测绘学中,坐标系是不可或缺的工具,用于确定地球表面上的点的位置。
不同的坐标系适用于不同的测绘任务,而坐标转换方法则用于在不同的坐标系之间进行转换。
本文将探讨测绘中常用的坐标系以及常用的坐标转换方法。
一、地理坐标系地理坐标系是最常用的坐标系,用来表示地球表面上点的经度和纬度。
经度表示一个点在东西方向上的位置,纬度表示一个点在南北方向上的位置。
地理坐标系是由地球的形状和大小决定的,因此可以直接用于全球任意地点。
在地理坐标系中,经度的单位是度,范围从-180°到180°,0°经度通过英国伦敦的皇家天文台。
纬度的单位也是度,范围从-90°到90°,0°纬度是赤道。
二、坐标转换方法由于不同的测绘任务可能使用不同的坐标系,因此必须进行坐标转换。
以下是几种常见的坐标转换方法。
1. 大地坐标到平面坐标的转换大地坐标指经纬度坐标,而平面坐标指在地方坐标系或工程坐标系中的直角坐标。
大地坐标到平面坐标的转换涉及到投影算法,其目的是将地球的球面表面投影到一个平面上。
常见的地方坐标系包括高斯-克吕格投影和UTM投影。
高斯-克吕格投影是经常用于大范围区域的投影,它将地球划分为多个分带,每个区域都有一个中央子午线。
UTM投影则是用于较小范围的投影,将地球划分为60个分带,每个区域都有自己的中央子午线。
2. 平面坐标到大地坐标的转换平面坐标到大地坐标的转换方法是大地坐标到平面坐标转换的逆过程。
这个过程同样需要使用到投影算法,通过将平面坐标投影回地球的球面上,得到大地坐标。
转换过程中需要考虑地形和椭球体模型的影响,以及不同坐标系之间的参数转换。
常见的转换方法包括高斯-克吕格逆投影和逆UTM投影。
3. 坐标系之间的转换有时候需要在不同的坐标系之间进行转换。
例如,将大地坐标转换为空间直角坐标系(三维坐标),或将空间直角坐标系转换为大地坐标。
测绘中常用的坐标系与坐标转换方法在测绘学中,坐标系和坐标转换方法是重要的概念。
测绘工程师和地理信息专家经常需要使用不同的坐标系来描述和分析地球表面的特征。
本文将介绍几种常用的坐标系以及常见的坐标转换方法。
首先,让我们来了解一下常见的坐标系。
地球是一个复杂的三维球体,在测绘中我们需要将其简化为二维平面来表示。
为此,人们开发了各种各样的坐标系。
最常见的是地理坐标系和投影坐标系。
地理坐标系以地球的经度和纬度作为坐标来表示地点的位置。
经度是指一个位置相对于地球上的子午线的角度,范围从-180度到180度。
纬度是指一个位置相对于赤道的角度,范围从-90度到90度。
地理坐标系非常适合描述较大范围的地理位置,比如国家、大洲、全球等。
然而,由于地球不是一个完美的球体,而是稍微扁平的。
所以地理坐标系并不适合描述局部地区的位置。
在局部地区,我们更常用的是投影坐标系。
投影坐标系通过将地球表面投影到一个平面上来表示地点的位置。
最常见的投影方法是经纬度投影。
这种方法将地球的经纬度网格映射到一个平面上,以实现局部位置的表示。
常见的经纬度投影有墨卡托投影、兰伯特投影和正轴等距投影等。
当需要在不同坐标系之间进行转换时,我们需要使用坐标转换方法。
常见的坐标转换方法有三角法、相似变换和大地测量等。
三角法是一种基础的坐标转换方法,它使用三角形相似性定理来计算两个坐标系之间的转换参数。
这种方法在测量小范围地区时非常实用,但对于大范围地区的坐标转换则会产生较大的误差。
相似变换是一种更复杂的坐标转换方法,它使用不同比例尺的相似形状来表示两个坐标系之间的转换。
这种方法适用于小范围和中等范围的坐标转换,但对大范围地区的转换也会有误差。
大地测量是一种比较准确的坐标转换方法,它基于地球的椭球体形状和地球椭球体的参数来计算坐标之间的转换。
大地测量方法适用于任意范围的坐标转换,但计算复杂度较高。
除了以上介绍的常用坐标系和坐标转换方法,还有一些其他的坐标系统和转换方法。
7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。
同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。
对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。
现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。
同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。
、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5上式表明了 2种基本坐标系之间的关系。
加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。
问: 请阐述机器视觉测量中的各坐标系及其转换关系.答:1)图像坐标系(Pixel coordinate system)摄像机采集的数字图像在计算机内可以存储为数组,数组中的每一个元素(象素,pixel)的值即是图像点的亮度(灰度)。
如图4.1所示,在图像上定义直角坐标系u-v ,每一象素的坐标(u,v)分别是该象素在数组中的列数和行数。
故(u,v)是以象素为单位的图像坐标系坐标。
2)成像平面坐标系(Retinal coordinate system) 由于图像坐标系只表示象素位于数字图像的列数和行数,并没有用物理单位表示出该象素在图像中的物理位置,因而需要再建立以物理单位(例如厘米)表示的成像平面坐标系x-y ,如图4.1所示。
我们用(x,y)表示以物理单位度量的成像平面坐标系的坐标。
在x-y 坐标系中,原点1O 定义在摄像机光轴和图像平面的交点处,称为图像的主点(principal point),该点一般位于图像中心处,但由于摄像机制作的原因,可能会有些偏离,1O 在坐标系下的坐标为(u0,v0),每个象素在x 轴和y 轴方向上的物理尺寸为dx 、dy ,两个坐标系的关系如下:其中s'表示因摄像机成像平面坐标轴相互不正交引出的倾斜因子(skew factor)。
3)摄像机坐标系(Camera coordinate system)摄像机成像几何关系可由图4.2表示,其中O 点称为摄像机光心,c X 轴和C Y 轴与成像平面坐标系的x 轴和y 轴平行,C Z 轴为摄像机的光轴,和图像平面垂直。
光轴与图像平面的交点为图像主点O',由点O 与,,C C C X Y Z 轴组成的直角坐标系称为摄像机坐标系。
OO'为摄像机焦距。
4)世界坐标系(World coordinate system)在环境中还选择一个参考坐标系来描述摄像机和物体的位置,该坐标系称为世界坐标系。
摄像机坐标系和世界坐标系之间的关系可用旋转矩阵R 与平移向量t 来描述。
测量中常见的坐标转换方法和注意事项在测量工作中,坐标转换是一个非常关键的步骤。
它可以将不同坐标系下的测量数据进行转换,以便更好地进行分析和比较。
本文将讨论测量中常见的坐标转换方法和注意事项,以帮助读者更好地理解和应用这些知识。
一、常见的坐标转换方法1. 直角坐标系与极坐标系的转换直角坐标系和极坐标系是我们常见的两种坐标系,它们在不同的情况下都有各自的优势。
当我们在进行测量时,有时需要将直角坐标系转换为极坐标系,或者反过来。
这时我们可以使用以下公式进行转换:直角坐标系 (x, y) 转换为极坐标系(r, θ):r = √(x^2 + y^2)θ = arctan(y/x)极坐标系(r, θ) 转换为直角坐标系 (x, y):x = r * cosθy = r * sinθ2. 地理坐标系与平面坐标系的转换在地理测量中,我们常常需要将地理坐标系与平面坐标系进行转换。
地理坐标系是以地球表面为基准的坐标系,而平面坐标系则是在局部范围内采用平面近似地球的坐标系。
转换的目的是为了将地球上的经纬度转换为平面上的坐标点,或者反过来。
这时我们可以使用专门的地图投影算法进行转换,例如常见的墨卡托投影、UTM投影等。
3. 坐标系之间的线性转换有时,我们需要将一个坐标系中的点的坐标转换到另一个坐标系中。
这时我们可以通过线性变换来实现。
线性变换定义了一个坐标系之间的转换矩阵,通过乘以这个转换矩阵,我们可以将一个坐标系中的点的坐标转换到另一个坐标系中。
常见的线性变换包括平移、旋转、缩放等操作,它们可以通过矩阵运算进行描述。
二、坐标转换的注意事项1. 坐标系统选择的准确性在进行坐标转换时,必须保证所选择的坐标系统是准确可靠的。
不同的坐标系统有不同的基准面和基准点,选择错误可能导致转换结果出现较大误差。
因此,在进行测量时,我们应该仔细选择坐标系统,了解其基本原理和适用范围。
2. 数据质量的控制坐标转换所依赖的输入数据必须具有一定的质量保证。
7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系 大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。
同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。
对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。
现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。
同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。
、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;上式表明了 2种基本坐标系之间的关系。
BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。