常用坐标系转换-分析透彻、浅显易懂
- 格式:ppt
- 大小:1.93 MB
- 文档页数:64
测量中的常用坐标系及坐标转换概述在测量领域中,常用的坐标系包括直角坐标系、极坐标系和球坐标系。
不同的坐标系适用于不同的测量任务和数据处理需求,而坐标转换则是将不同坐标系下的测量数据相互转换的方法。
本文将对常用坐标系及坐标转换进行概述。
1.直角坐标系直角坐标系是最常见的坐标系之一,通常用于描述二维或三维空间中的点的位置。
在二维直角坐标系中,一个点的位置可以由两个坐标值(x,y)表示。
而在三维直角坐标系中,一个点的位置可以由三个坐标值(x,y,z)表示。
直角坐标系中的坐标轴是相互垂直的,可以方便地描述点的位置和进行测量。
2.极坐标系极坐标系是另一种常用的坐标系,通常用于描述平面上的点的位置。
极坐标系由一个极径和一个极角组成。
极径表示点到原点的距离,极角表示点与正x轴的夹角。
在极坐标系中,一个点的位置可以由(r,θ)表示。
极坐标系在一些特定情况下对测量任务更加方便,例如描述圆形或对称物体的位置。
3.球坐标系球坐标系用于描述三维空间中的点的位置。
球坐标系由一个极径、一个极角和一个方位角组成。
极径表示点到原点的距离,极角表示点与正z轴的夹角,方位角表示点在xy平面上的投影与正x轴的夹角。
在球坐标系中,一个点的位置可以由(r, θ, φ)表示。
球坐标系在描述球体或对称物体的位置时非常有用。
在测量中,常常需要在不同的坐标系之间进行转换以满足不同的需求。
以下是常见的坐标转换方法:1.直角坐标系到极坐标系的转换从直角坐标系到极坐标系的转换可以通过以下公式实现:极径 r = sqrt(x^2 + y^2)极角θ = atan2(y, x)其中,sqrt表示平方根,atan2表示求反正切值。
2.极坐标系到直角坐标系的转换从极坐标系到直角坐标系的转换可以通过以下公式实现:x = r * cos(θ)y = r * sin(θ)3.直角坐标系到球坐标系的转换从直角坐标系到球坐标系的转换可以通过以下公式实现:极径 r = sqrt(x^2 + y^2 + z^2)极角θ = acos(z / r)方位角φ = atan2(y, x)4.球坐标系到直角坐标系的转换从球坐标系到直角坐标系的转换可以通过以下公式实现:x = r * sin(θ) * cos(φ)y = r * sin(θ) * sin(φ)z = r * cos(θ)需要注意的是,在进行坐标转换时,要确保所使用的公式和单位系统是一致的,否则会导致转换结果错误。
常用坐标系及其转换
1、常用坐标系
大地坐标系:以地球椭球面为参考面的地球椭球面坐标系(LBH)。
(参心、地心)
空间直角坐标系(XYZ)
站心(局部)直角坐标系(UNE)极坐标系
直角坐标系原点位于测站点
U轴与测站点法线重合,指向天顶
N轴垂直于U轴,指向(北)
E轴形成左手系(东)
站心极坐标系用极距、方位角和高度角表示
常用坐标系及其转换
1、常用坐标系
高斯直角坐标系(xyH)
高斯投影的条件是:
满足正形投影条件(柯西黎曼方程)
中央子午线投影后为直线
中央子午线投影后长度不变(其它线变长)
2、坐标系转换
XYZ LBH(同一参考系下换算)
XYZ NEU(同一参考系下换算,已知站心的大地或空间直角坐标) 不同参考系下坐标系转换(用XYZ转换公式,B 模型和M
模型,七参数-平移量旋转量各3,一个尺度因子;
四参数一般是针对平面坐标的转换-2个平移,一个旋转,一个尺度) LBH xyH(球面化为平面,注意中央子午线选取和分带,H为大地高)
2、坐标系转换
不同坐标系之间常用BURSA 模型,七参数)
2、坐标系转换
局部小范围内,对高斯平面坐标可用四参数模型
四、我国的大地坐标系
(一)、1954年北京坐标系
(二)、1980年国家大地坐标系
(三)、2000中国大地坐标系CGCS2000
(四)、新1954年北京坐标系
(五)、1978地心坐标系
(六)、1988地心坐标系。
坐标系转换方法和技巧1.二维坐标系转换:二维坐标系转换是将平面上的点从一个坐标系转换到另一个坐标系中。
常用的方法有旋转、平移和缩放。
-旋转:通过改变坐标系的旋转角度,可以将点从一个坐标系转换到另一个坐标系。
-平移:通过改变坐标系的平移量,可以将点从一个坐标系平移到另一个坐标系。
-缩放:通过改变坐标系的比例尺,可以将点从一个坐标系缩放到另一个坐标系。
2.三维坐标系转换:三维坐标系转换是将空间中的点从一个坐标系转换到另一个坐标系中。
常用的方法有旋转、平移和缩放。
-旋转:通过改变坐标系的旋转角度,可以将点从一个坐标系转换到另一个坐标系。
-平移:通过改变坐标系的平移量,可以将点从一个坐标系平移到另一个坐标系。
-缩放:通过改变坐标系的比例尺,可以将点从一个坐标系缩放到另一个坐标系。
3.地理坐标系转换:地理坐标系转换是将地球表面点的经纬度坐标转换为平面坐标系(如UTM坐标系)或其他地理坐标系中的点。
常用的方法有投影转换和大地坐标转换。
-投影转换:根据不同的地理投影模型,将地理坐标系中的点投影到平面上。
常用的地理投影包括墨卡托投影、兰伯特投影等。
-大地坐标转换:根据椭球模型和大地测量的理论,将地理坐标系中的点转换为具有X、Y、Z三维坐标的点。
常见的大地坐标系包括WGS84和GCJ-02等。
4.坐标系转换的技巧:-精度控制:在坐标系转换过程中,需要注意精度的控制,以确保转换后的坐标满足要求。
-参考点选择:在坐标系转换过程中,选取合适的参考点可以提高转换的准确性和稳定性。
-坐标系转换参数的确定:在进行坐标系转换时,需要确定旋转角度、平移量和比例尺等参数,可以通过多点共面条件、最小二乘法等方法进行确定。
-转换效率优化:针对大规模的坐标系转换,可以采用分块处理、并行计算等技术来提高转换效率。
在进行坐标系转换时,需要根据具体的需求选择适当的方法和技巧,并结合具体的软件工具进行实现。
同时,还需要注意坐标系转换的精度和准确性,确保转换结果符合要求。
测绘中常用的坐标系和坐标转换方法在现代测绘学中,坐标系是不可或缺的工具,用于确定地球表面上的点的位置。
不同的坐标系适用于不同的测绘任务,而坐标转换方法则用于在不同的坐标系之间进行转换。
本文将探讨测绘中常用的坐标系以及常用的坐标转换方法。
一、地理坐标系地理坐标系是最常用的坐标系,用来表示地球表面上点的经度和纬度。
经度表示一个点在东西方向上的位置,纬度表示一个点在南北方向上的位置。
地理坐标系是由地球的形状和大小决定的,因此可以直接用于全球任意地点。
在地理坐标系中,经度的单位是度,范围从-180°到180°,0°经度通过英国伦敦的皇家天文台。
纬度的单位也是度,范围从-90°到90°,0°纬度是赤道。
二、坐标转换方法由于不同的测绘任务可能使用不同的坐标系,因此必须进行坐标转换。
以下是几种常见的坐标转换方法。
1. 大地坐标到平面坐标的转换大地坐标指经纬度坐标,而平面坐标指在地方坐标系或工程坐标系中的直角坐标。
大地坐标到平面坐标的转换涉及到投影算法,其目的是将地球的球面表面投影到一个平面上。
常见的地方坐标系包括高斯-克吕格投影和UTM投影。
高斯-克吕格投影是经常用于大范围区域的投影,它将地球划分为多个分带,每个区域都有一个中央子午线。
UTM投影则是用于较小范围的投影,将地球划分为60个分带,每个区域都有自己的中央子午线。
2. 平面坐标到大地坐标的转换平面坐标到大地坐标的转换方法是大地坐标到平面坐标转换的逆过程。
这个过程同样需要使用到投影算法,通过将平面坐标投影回地球的球面上,得到大地坐标。
转换过程中需要考虑地形和椭球体模型的影响,以及不同坐标系之间的参数转换。
常见的转换方法包括高斯-克吕格逆投影和逆UTM投影。
3. 坐标系之间的转换有时候需要在不同的坐标系之间进行转换。
例如,将大地坐标转换为空间直角坐标系(三维坐标),或将空间直角坐标系转换为大地坐标。
测绘中常用的坐标系与坐标转换方法在测绘学中,坐标系和坐标转换方法是重要的概念。
测绘工程师和地理信息专家经常需要使用不同的坐标系来描述和分析地球表面的特征。
本文将介绍几种常用的坐标系以及常见的坐标转换方法。
首先,让我们来了解一下常见的坐标系。
地球是一个复杂的三维球体,在测绘中我们需要将其简化为二维平面来表示。
为此,人们开发了各种各样的坐标系。
最常见的是地理坐标系和投影坐标系。
地理坐标系以地球的经度和纬度作为坐标来表示地点的位置。
经度是指一个位置相对于地球上的子午线的角度,范围从-180度到180度。
纬度是指一个位置相对于赤道的角度,范围从-90度到90度。
地理坐标系非常适合描述较大范围的地理位置,比如国家、大洲、全球等。
然而,由于地球不是一个完美的球体,而是稍微扁平的。
所以地理坐标系并不适合描述局部地区的位置。
在局部地区,我们更常用的是投影坐标系。
投影坐标系通过将地球表面投影到一个平面上来表示地点的位置。
最常见的投影方法是经纬度投影。
这种方法将地球的经纬度网格映射到一个平面上,以实现局部位置的表示。
常见的经纬度投影有墨卡托投影、兰伯特投影和正轴等距投影等。
当需要在不同坐标系之间进行转换时,我们需要使用坐标转换方法。
常见的坐标转换方法有三角法、相似变换和大地测量等。
三角法是一种基础的坐标转换方法,它使用三角形相似性定理来计算两个坐标系之间的转换参数。
这种方法在测量小范围地区时非常实用,但对于大范围地区的坐标转换则会产生较大的误差。
相似变换是一种更复杂的坐标转换方法,它使用不同比例尺的相似形状来表示两个坐标系之间的转换。
这种方法适用于小范围和中等范围的坐标转换,但对大范围地区的转换也会有误差。
大地测量是一种比较准确的坐标转换方法,它基于地球的椭球体形状和地球椭球体的参数来计算坐标之间的转换。
大地测量方法适用于任意范围的坐标转换,但计算复杂度较高。
除了以上介绍的常用坐标系和坐标转换方法,还有一些其他的坐标系统和转换方法。
测量中常见的坐标转换方法和注意事项在测量工作中,坐标转换是一个非常关键的步骤。
它可以将不同坐标系下的测量数据进行转换,以便更好地进行分析和比较。
本文将讨论测量中常见的坐标转换方法和注意事项,以帮助读者更好地理解和应用这些知识。
一、常见的坐标转换方法1. 直角坐标系与极坐标系的转换直角坐标系和极坐标系是我们常见的两种坐标系,它们在不同的情况下都有各自的优势。
当我们在进行测量时,有时需要将直角坐标系转换为极坐标系,或者反过来。
这时我们可以使用以下公式进行转换:直角坐标系 (x, y) 转换为极坐标系(r, θ):r = √(x^2 + y^2)θ = arctan(y/x)极坐标系(r, θ) 转换为直角坐标系 (x, y):x = r * cosθy = r * sinθ2. 地理坐标系与平面坐标系的转换在地理测量中,我们常常需要将地理坐标系与平面坐标系进行转换。
地理坐标系是以地球表面为基准的坐标系,而平面坐标系则是在局部范围内采用平面近似地球的坐标系。
转换的目的是为了将地球上的经纬度转换为平面上的坐标点,或者反过来。
这时我们可以使用专门的地图投影算法进行转换,例如常见的墨卡托投影、UTM投影等。
3. 坐标系之间的线性转换有时,我们需要将一个坐标系中的点的坐标转换到另一个坐标系中。
这时我们可以通过线性变换来实现。
线性变换定义了一个坐标系之间的转换矩阵,通过乘以这个转换矩阵,我们可以将一个坐标系中的点的坐标转换到另一个坐标系中。
常见的线性变换包括平移、旋转、缩放等操作,它们可以通过矩阵运算进行描述。
二、坐标转换的注意事项1. 坐标系统选择的准确性在进行坐标转换时,必须保证所选择的坐标系统是准确可靠的。
不同的坐标系统有不同的基准面和基准点,选择错误可能导致转换结果出现较大误差。
因此,在进行测量时,我们应该仔细选择坐标系统,了解其基本原理和适用范围。
2. 数据质量的控制坐标转换所依赖的输入数据必须具有一定的质量保证。
测量常用各种坐标系及其转换一、北京54坐标系简介北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,在全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
它是将我国一等锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。
因此,P54可归结为:a.属参心大地坐标系;b.采用克拉索夫斯基椭球的两个几何参数;c.大地原点在原苏联的普尔科沃;d.采用多点定位法进行椭球定位;e.高程基准为1956年青岛验潮站求出的黄海平均海水面;f.高程异常以原苏联1955年大地水准面重新平差结果为起算数据。
按我国天文水准路线推算而得。
坐标参数椭球坐标参数:长半轴a=6378245m;短半轴=6356863.0188m;扁率α=1/298.3。
缺点自P54建立以来,在该坐标系内进行了许多地区的局部平差,其成果得到了广泛的应用。
但是随着测绘新理论、新技术的不断发展,人们发现该坐标系存在如下缺点:1、椭球参数有较大误差。
克拉索夫斯基椭球差数与现代精确的椭球参数相比,长半轴约大109m。
2、参考椭球面与我国大地水准面存在着自西向东明显的系统性的倾斜,在东部地区大地水准面差距最大达+60m。
这使得大比例尺地图反映地面的精度受到影响,同时也对观测量元素的归算提出了严格的要求。
测绘中常用的坐标转换方法与技巧导言:在测绘领域中,坐标转换是一项至关重要的技术工作。
它使不同坐标系之间的数据能够互相转化,从而确保测绘数据的一致性和可靠性。
本文将介绍一些测绘中常用的坐标转换方法与技巧,以助读者深入理解和应用。
一、平面坐标转换平面坐标转换是测绘中常见的转换方式之一。
它利用平面坐标系下的坐标进行转换,主要针对水平面上的测绘数据。
其中,常用的转换方法包括七参数转换、四参数转换和三参数转换。
1. 七参数转换七参数转换是一种较为精确的转换方法,适用于大尺度的测绘工作。
它通过计算平移、旋转和尺度变换等七个参数的值,将一个坐标系的坐标转换到另一个坐标系中。
此方法可用于国际测绘项目或跨国界的测绘任务,可以有效解决坐标系之间的差异问题。
2. 四参数转换四参数转换是一种常用的坐标转换方法,广泛应用于工程测绘中。
它主要考虑了平移和旋转两个参数,通过对原始坐标进行线性变换,将其转换为目标坐标。
四参数转换的精度较高,适用于小尺度的测绘工作。
3. 三参数转换三参数转换是一种简化的坐标转换方法,适用于较小范围的测绘任务。
它只考虑了平移的影响,通过计算水平和垂直方向上的平移参数,将原始坐标转换为目标坐标。
由于只考虑了平移,因此在大尺度或跨国界的测绘项目中,精度可能会有所降低。
二、大地坐标转换大地坐标转换是另一种常见的转换方式,主要针对球面坐标系下的测绘数据。
该方法可以将球面坐标系下的经纬度坐标转换为平面坐标系下的直角坐标,或者反之。
1. 大地转直角大地转直角是一种常用的大地坐标转换方法,适用于将经纬度坐标转换为平面坐标的情况。
该方法通过计算椭球面上的曲率半径和正常方向等参数,将经纬度转换为平面坐标系下的东北坐标。
在大范围测绘中,由于地球的曲率影响,转换精度可能存在一定的误差。
2. 直角转大地直角转大地是将平面坐标系下的坐标转换为经纬度坐标的方法。
它主要考虑了椭球面的曲率半径和正常方向等因素,通过逆向计算,将平面坐标转换为经纬度坐标。
地理坐标系转换公式地理坐标系一般采用经纬度坐标来表示一个地理位置,其中经度表示东西方向的位置,纬度表示南北方向的位置。
常见的地理坐标系有WGS84(世界大地坐标系)、GCJ-02(火星坐标系)、BD-09(百度坐标系)等。
下面将介绍一些常见的地理坐标系之间的转换公式。
1.WGS84坐标系和GCJ-02坐标系之间的转换公式:WGS84转GCJ-02:转换公式:var lon = 经度, lat = 纬度;var dLat = transformLat(lon - 105.0, lat - 35.0);var dLon = transformLon(lon - 105.0, lat - 35.0);var radLat = lat / 180.0 * PI;var magic = Math.sin(radLat);magic = 1 - ee * magic * magic;var sqrtMagic = Math.sqrt(magic);dLat = (dLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * PI);dLon = (dLon * 180.0) / (a / sqrtMagic * Math.cos(radLat) * PI);var mgLat = lat + dLat;var mgLon = lon + dLon;其中,transformLat和transformLon是辅助函数,可以通过以下公式计算:transformLat(lat, lon) = -100.0 + 2.0 * lat + 3.0 * lon + 0.2 * lon * lon + 0.1 * lat * lon + 0.2 *Math.sqrt(Math.abs(lat));transformLon(lat, lon) = 300.0 + lat + 2.0 * lon + 0.1 * lat * lat + 0.1 * lat * lon + 0.1 * Math.sqrt(Math.abs(lat));GCJ-02转WGS84:如果需要将GCJ-02坐标系转换为WGS84坐标系,可以使用以下的逆转换公式:转换公式:var lon = 经度, lat = 纬度;var dLat = transformLat(lon - 105.0, lat - 35.0);var dLon = transformLon(lon - 105.0, lat - 35.0);var radLat = lat / 180.0 * PI;var magic = Math.sin(radLat);magic = 1 - ee * magic * magic;var sqrtMagic = Math.sqrt(magic);dLat = (dLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * PI);dLon = (dLon * 180.0) / (a / sqrtMagic * Math.cos(radLat) * PI);var mgLat = lat + dLat;var mgLon = lon + dLon;var dz = 0.006;var mglng = mgLon - dz;var mglat = mgLat - dz;其中,transformLat和transformLon同上。