6.第六章 期权定价公式
- 格式:ppt
- 大小:1.10 MB
- 文档页数:103
期权价格计算公式股票的价格变化遵循一维维纳过程,其微分方程如下 dz t s b dt t s a ds ),(),(+=式中:dz 的差分∆Z 满足如下条件的正态分布t z ∆=∈∆在一般情况下,ds 可用下式表示:sdz sdt ds σμ+=----------- (1)或表示为:dz dt sds σμ+= 式中:s μ股票价格的期望漂移率,μ 为一个恒定参数;2)(s σ为股票价格波动的方差, σ 为股票价格的波动率,可以通过观察股票价格的动态系列数据获得。
如果存在一个变量 G ,它是股票S 的一种衍生证卷,它的价格是S 和 t 的函数,G(s,t),那么,S 和G 都受到同一个基本的不确定性因素的影响。
根据ITO 定理,函数G 的行为遵循如下微分方程描述的过程:Sdz S G dt S S G t G S S G dG σσμ∂∂+∂∂+∂∂+∂∂=)21(2222 -------------(2)函数G 的漂移率为222221S SG t G S S G σμ∂∂+∂∂+∂∂ 方差为222)(S SG σ∂∂如果G 代表股票S 的一种期权,我们想用S 和G 构造一组风险中性的证卷组合。
为此,首先将公式(1)、(2)改写成对应的差分形式:z S t S S ∆+∆=∆σμ ---------------(3)z S SG t S G t G S S G G ∆∂∂+∆∂∂+∂∂+∂∂=∆σμ)21(22 ----------(4) 由于公式(3)、(4)中的z ∆t ∆=∈()是相同的维纳过程,只要证卷数量的搭配合理,整卷组合就可以消除z ∆。
恰当的证卷组合是:-1; 卖空一个期权S G∂∂+;买入期权价值变化对股票价格的敏感度,也就是他的偏微分那样多的股票。
定义这个证卷组合的价值为∏,表达式为 S S G G ∏∂∂+-= ---------(5)t ∆时间后,这个证卷组合的价值变化为:S S G G ∆∂∂+∆-=∆∏ -----------(6)将(3)、(4)带入(6),消去z ∆,得:t S S G t G ∆∂∂-∂∂-=∆∏)21(2222σ ---------(7)由于这个证卷组合是风险中性的,所以,它的收益一定与任何一个无风险证卷的收益相同,就是∏∏∆=∆t r ---------(8)将(5)、(7)带入(8),得:t S SG G r t S S G t G ∆∂∂-=∆∂∂+∂∂)()21(2222σ 将上式进一步化简,得:rG S G S S G rS t G =∂∂+∂∂+∂∂222221σ --------(9)这就是获得诺贝尔奖的Black-Scholes 微分方程。
期权定价—期权定价公式什么是期权定价?期权定价是指确定期权在市场上的合理价格的过程。
期权是一种金融工具,它授予买方在未来某一特定时间点购买或出售标的资产的权利,而不是义务。
期权的价格取决于多种因素,包括标的资产价格、行使价格、到期时间、无风险利率和波动率等。
期权定价的目标是确定一个公平的市场价格,使得买卖双方在交易中均获得合理回报。
对于买方来说,期权的价格应该对应于未来可能获得的收益;对于卖方来说,期权的价格应该对应于承担的风险以及可能获得的收益。
期权定价公式的重要性期权定价公式是用于计算期权合理价格的数学模型。
它基于一些假设和前提条件,通过对相关变量进行运算,得出期权的价格。
期权定价公式对于市场参与者来说具有重要意义,它为投资者提供了一个参考,可以帮助他们做出更明智的投资决策。
期权定价公式的提出可以追溯到20世纪70年代初,当时经济学家Fischer Black 和 Myron Scholes 提出了著名的Black-Scholes模型。
该模型基于一些假设,包括期权在到期前不支付股息、标的资产价格在特定时间内的变动是连续且满足几何布朗运动以及市场不存在无风险套利机会等。
Black-Scholes模型是第一个用于计算期权价格的理论模型,它提供了一个简单而有效的方法来评估期权的价格。
在此之后,许多其他的期权定价模型相继被提出,如Binomial模型、Trinomial模型、Monte Carlo模拟和Heston模型等。
这些模型都是基于不同的假设和计算方法,用于满足不同的情景和需求。
期权定价公式的基本要素期权定价公式通常包括以下几个基本要素:1.标的资产价格(S):标的资产是期权所关联的基础资产,它可以是股票、商品、外汇等。
标的资产价格是期权定价的一个重要变量,它代表了期权的内在价值。
2.行使价格(X):行使价格是期权合约约定的价格,买方可以在到期时基于该价格购买或者出售标的资产。
行使价格与标的资产价格之间的差异会影响期权的价值。
期权定价公式期权定价公式是:期权价格=内在价值+时间价值。
期权定价模型,由布莱克与斯科尔斯在20世纪70年代提出。
该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关。
模型表明,期权价格的决定非常复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。
期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品的选择权。
期权价格是期权合约中唯一随市场供求变化而改变的变量,其高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。
在国际衍生金融市场的形成发展过程中,期权的合理定价是困扰投资者的一大难题。
随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。
简单期权定价模型。
我们把股价随机末态简化为两个等效的等概率量子态,要么50%的概率上涨到+1X的右边一个标准差处,要么50%的概率下跌到-1X的左边一个标准差处。
显然,对于认购期权,在-1X末态的行权收益是0;在+1X末态的行权收益是S*(1+σ)-K。
其中S是当前(初态)股价,K是到期日的行权价。
根据初态=末态期望值的原理,认购期权价格C=0.5*0+0.5*[S*(1+σ)-K]= 0.5*[S*(1+σ)-K]。
这对于平值和浅度虚值期权是适用的。
对于平值期权K=S,C=0.5*S*σ。
比如,当前股价S=3.3元,月波动率为σ=6%,那么行权价K=3.3元,剩余T=30天期限的平值认购期权价格就是,C=0.5*3.3*6%=0.0990元。
对于深度实值期权,当股价末态为-1X处,仍然会有行权收益。
所以,认购期权价格C=0.5*[S*(1-σ)-K]+0.5*[S*(1+σ)-K]=S-K。
比方说,对于深度实值期权实三K=3.0元,当股价从当前价S=3.3元下跌至末态(-1X处)ST=3.1元,仍然会有3.1-3.0=0.1元的行权收益。
所以,实三期权价格C=S-K=3.3-3.0=0.3元。
431金融学综合公式大全金融学综合公式是金融学中非常重要的一部分,它们被广泛应用于金融市场的理论与实践中。
以下是一些常用的金融学综合公式:1.期货价格公式:期货价格=现货价格×(1+无风险利率-履约价格)2.期权定价公式(布莱克-斯科尔斯定价模型):期权价格=现货价格×N(d1)-履约价格×e^(-r×T)×N(d2)其中,d1 = [ln(S/K) + (r + (σ^2)/2) × T] / (σ × √T)d2=d1-σ×√TS为现货价格,K为履约价格,r为无风险利率,σ为资产价格的年化波动率,T为期权到期时间,N为标准正态分布的累积函数。
3.股票估值模型(戴维·格拉恩贝格模型):股票价格=[EPS×(1+g)]/(r-g)其中,EPS为每股收益,g为盈利增长率,r为资本成本。
4.资本资产定价模型(CAPM):预期收益率=无风险利率+β×(市场风险溢价)其中,β为资产的贝塔系数,市场风险溢价为市场的平均收益率减去无风险利率。
5.黄金定价公式:黄金价格=客观价值+市场情绪+无风险利率6.黑-斯科尔斯模型(债券定价模型):债券价格=[C×(1-(1/(1+r)^n))]/r+(F/(1+r)^n)其中,C为每期支付的利息,F为债券的面值,r为市场利率,n为剩余期限。
7.盈利质量指标(韦恩多尔夫盈余模型):盈利质量=未经审核的盈余/未经审核的收益以上是一部分金融学综合公式,它们在金融学的理论与实践中起着重要的作用。
这些公式的应用可以帮助金融从业人员进行分析决策,对金融市场进行定价与估值,以及评估投资风险和回报。
当然,在实际应用过程中,还需要结合实际情况进行适当的调整和修正。
期权价格计算公式
期权价格计算公式:
期权价值=内在价值+时间溢价
内在价值:是指期权立即执行产生的经济价值。
时间溢价:时间带来的“波动的价值”,是未来存在不确定性而产生的价值。
期权的内在价值的影响因素:
内在价值的大小,取决于期权标的资产的现行市价与期权执行价格的高低。
期权价值的影响因素:
股票市价、无风险利率:与看涨期权价值同向变动,看跌期权价值反向变动。
无风险利率越高,执行价格的现值越低。
执行价格、预期红利:与看涨期权价值反向变动,看跌期权价值同向变动。
期权有效期内预期红利发放,会降低股价。
到期期限:对于美式期权来说,到期期限越长,其价值越大;对于欧式期权来说,较长的时间不一定能增加期权价值。
股价波动率:股价的波动率增加会使期权价值增加。
在期权估值过程中,价格的变动性是最重要的因素。
如果一种股票的价格变动性很小,其期权也值不了多少钱。