简述制备生物柴油的主要方法
- 格式:docx
- 大小:36.67 KB
- 文档页数:2
高效制备生物柴油的方法生物柴油是一种绿色可再生能源,可以直接替代传统柴油。
其制备利用生物质作为原料,通过酯化反应将生物质中的油脂酯化成酯化物,再通过转化反应制备成生物柴油。
本文将介绍一种高效制备生物柴油的方法。
1. 原料准备制备生物柴油的首要条件是原料选择,需要选择高含油量的农作物和林产品作为原材料。
在实际操作中,可以选择大豆、油菜籽、棕榈油、花生等作为油脂原料。
2. 酯化反应将原料中的油脂酯化成脂肪酸甲酯,这是制备生物柴油的关键步骤。
可以使用酸性催化剂或碱性催化剂催化酯化反应。
在碱性催化剂中,氢氧化钠是常用的碱性催化剂。
催化剂的选择和用量的优化可以促进反应的进行,提高反应的效率和产率。
3. 精馏与纯化经过酯化反应后,产生的产品中含有残留催化剂和杂质,需要进行精馏和纯化。
还可以使用活性炭和硅胶等吸附剂对生物柴油的pH值、水分和杂质进行调控与去除,提高生物柴油的品质。
4. 洗涤与降温制备生物柴油后,需要进行洗涤和降温。
洗涤可以去除生物柴油中的杂质和其他有害物质。
降温可以让生物柴油的温度降至室温。
在实际生产中,可以使用冷却器等设备进行降温处理。
5. 储存与运输制备出的生物柴油需要进行储存和运输。
在储存和运输过程中,需要避免水分和氧气的接触,以防止生物柴油的氧化和酸化。
同时,需要注意生物柴油的保存温度,存放环境的干燥程度、光照程度和空气质量等因素对生物柴油的品质也有很大的影响。
综上所述,高效制备生物柴油的方法是:通过选取合适的油脂原料、合适的催化剂、优化生产工艺,同时对生产过程中的洗涤、纯化、降温、储存和运输等环节加强管理和控制,制备出高品质、高效率的生物柴油。
生物柴油燃料的制备与应用一、引言生物柴油是一种新兴的可再生能源,具有环保、可持续等特点,因此在能源领域备受关注。
本文将从生物柴油燃料的制备和应用两个方面进行介绍和分析。
二、生物柴油的制备生物柴油可通过多种方法制备,如酯化法、酵母法等。
其中以酯化法最为常见。
1.酯化法酯化法是目前生物柴油主流的工业化生产方法。
该方法是将生物原料如植物油、动物脂肪等与甲醇在一定比例下进行酯化反应,即可得到生物柴油。
该方法在生产时要注重反应条件的控制,如反应温度、反应时间、催化剂种类和催化剂用量等,以提高转化率和产量。
2.酵母法酵母法是一种新的生物柴油制备方法。
该方法是利用酵母菌将生物原料进行酵解,形成甘油和脂肪酸,然后再进行酯化反应,得到生物柴油。
该方法有着独特的优势,如无需催化剂、无废水排放、反应时间短等。
目前,该方法仍在实验室阶段,尚未工业化生产。
3.其他方法生物柴油的制备还有其他的方法,如微藻制备、生物学降解、植物发酵等。
这些方法的特点各异,有些具有良好的环保性和可持续性,但目前尚未应用于大规模的生产中。
三、生物柴油的应用1.替代传统柴油生物柴油具有传统柴油相似的物理化学性质,因此可以替代传统柴油进行燃烧。
生物柴油在燃烧过程中产生的二氧化碳等有害物质比传统柴油少,从而降低了大气污染的程度并减少了温室气体的排放。
2.生物柴油混合燃料生物柴油与传统柴油可以混合使用,形成生物柴油混合燃料。
该混合燃料可以降低传统柴油的排放量,并且在使用过程中无需对现有的柴油发动机进行大的改造或升级,降低了使用成本。
3.其他应用生物柴油的应用不仅仅局限于燃烧。
生物柴油还可以用于制备其他化合物,如涂料、胶粘剂等,具有一定的应用前景。
此外,生物柴油本身在一些行业中也得到了应用,如农业、林业、渔业等领域。
四、生物柴油的发展前景未来,生物柴油将成为新型的低碳环保能源,具有广阔的应用前景。
生物柴油在能源领域的普及和应用,将有力促进可持续发展,改善环境,减少大气污染,保护生态环境。
生物柴油的生产技术与工艺随着全球经济的快速发展以及能源危机的出现,全球对于可再生清洁能源的需求越来越高。
在这样的背景之下,生物柴油逐渐成为了能源领域的重要之一。
生物柴油是一种可再生能源,与传统的石油能源相比,它能够更好地减少温室气体的排放,减少对环境的污染。
同时,生物柴油还是一种高附加值的能源产品,其生产和销售都拥有非常广泛的市场。
一、生物柴油的定义生物柴油,也称为生物燃料,是由动植物油或脂肪酸甲酯制成的燃料,它与传统的石油燃料相比,具有可再生、可降解的特性,以及更低的烟雾排放和更高的环保性能,同时生物柴油也更具有可持续性。
二、生物柴油的生产技术1. 醇法生产方法醇法是生产生物柴油最为常用和主流的一种方法,其主要流程为脂肪酸与甲醇反应生成脂肪酸甲酯(BDF),反应中需要添加催化剂。
催化剂通常采用碱类或酸类催化剂,其作用是促进酯化反应的进行。
BDF是由水解、脱水、甲醇脱出等组成的,并可以被直接用于发动机燃料。
2. 生物油直接燃烧法直接燃烧法是一种简单、方便的生产方法,其主要原料是由胶质(如油菜籽和锦鸡儿)或油类物质(如棕榈油和大豆油)提炼后获得的生物油。
生物油在燃烧时会产生二氧化碳和水,其中水可以被循环再利用。
而生物油直接燃烧法的缺点在于其原料的储存难度大以及热值相对较小。
3. 生物质/废弃物焚烧法生物质/废弃物焚烧法通常采用生物质或废弃物为原料,通过高温氧化反应将原料转化为燃料而制成生物柴油。
这种生产方法的优点在于相对于其他方法,它所使用的原料来源相对更加广泛,使用的过程更加环保,可以有效地减少酸性气体和颗粒物的排放。
三、生物柴油的工艺1. 原料处理生物柴油用的原料一般为植物油和脂肪酸。
在加工过程中,除去杂质和有毒物质是非常关键的。
要想获得高纯度的生物柴油,必须先对原料进行处理,提高其纯度,同时采取一些必要的预处理措施,如调整其酸值、水分等。
这样可以帮助提高反应的转化率,保证生产质量的稳定性,从而也可以提高产量。
生物柴油生产方法3 生物柴油的生产方法到目前为止,制备生物柴油的方法可分为两大类:物理法和化学法。
3.1 物理法包括直接混合法和微乳化法。
其原理均是将植物油与石化柴油及改良剂等按比例混合,但长期使用会导致气阀积碳等不良效应,因此物理法生产的柴油不能称之为合格的生物柴油。
3.1.1 直接混合法。
植物油因为其粘度高而无法直接在柴油发动机上使用。
直接混合法是将天然油脂与石化柴油、化学溶剂或醇类直接混合使用,通过将天然油脂与柴油混合使用低粘度和提高挥发度。
1983年Adams等[9]将脱胶的大豆油与2号柴油以1:2的比例混合,在直接喷射涡轮发动机上进行600h的试验,结果表明可以作为农用机械的替代燃料。
Recep[9]发现在柴油机上可以使用植物油代替柴油,但因为植物油变稠致使粘度增加和低温下有凝胶现象,因此植物油替代柴油仍有问题。
直接使用植物油时,不饱和脂肪酸的聚合和由于氧化或热解时形成的胶会导致不完全燃烧和结炭较厚。
直接混合法的优点是方法简便,可获得良好的动力性,能达到标定功率;但使用植物油存在冷启动难,在贮存和燃烧过程中容易出现凝胶、碳沉积,润滑油粘度增大等缺点。
3.1.2 微乳化法。
微乳化法是将动植物油与溶剂、微乳化剂混合,或者添加表面活性剂降低生物柴油的粘度,制成一种微乳状生物柴油的方法。
Coering[10]用50%的2号柴油、25%的大豆油、20%的1-丁醇和5%的乙醇制成的微乳状液体系通过了EMA (Engine Manufacturers Association)200h的测试,可以用在柴油机上代替柴油使用。
乳液中正丁醇含量愈高,其分散性愈好,粘度愈低。
微乳法的特点是解决了直接混合法的高粘度问题;但在实验室规模的耐久性试验中,碳沉积严重,燃烧不完全,润滑油粘度增加。
3.2 化学法包括热裂解法、酯化法和酯交换法。
目前生物柴油主要是通过酯交换反应或酯化反应来完成。
3.2.1 高温热裂解法高温热裂解法是在常压、快速加热、超短反应时间的条件下,使生物质中的有机高聚物迅速断裂为短链分子,并使结炭和产气降到最小限度,从而最大限度地获得燃料油。
技术|地沟油制备生物柴油的技术方法目前,生物柴油的制备技术方法主要有直接混合法、微乳法、热解法和酯交换法。
我国地沟油的来源广且分散,具有含固体杂质多、含水分高、酸值高的特点。
地沟油制备生物柴油一般要先经过除水、机械除杂、除酸、脱色等预处理,然后利用酯交换法或加氢裂化法制备成生物柴油。
酯交换法制备生物柴油张勇以废弃地沟油为原料,经预处理后采用两步酯化工艺将其转化为生物柴油,第一步为酸催化预酯化反应,主要是将地沟油中的游离脂肪酸转化为脂肪酸甲酯;第二步为酸催化转酯化反应,进一步将地沟油中的甘三酯转化为甲酯和甘油。
通过正交实验得到预酯化反应的最佳条件为:醇油摩尔比10∶1、催化剂用量1%、反应温度70℃、反应时间4小时;转酯化反应的最佳条件为:醇油摩尔比20∶1、催化剂用量6%、反应温度70℃、反应时间4小时。
在最佳反应条件下,甘三酯的酯化率可达到86.89%。
利用该方法制备的生物柴油在闪点、冷滤点等方面要优于0号柴油,在储运过程中更安全;同时能够在更宽的温度范围内使用。
研究同时发现将利用该方法制备的生物柴油与0号柴油按照B20调和后,不仅能够大大降低生物柴油的黏度,使挥发性得到改善,同时使0号柴油的闪点提高,凝点和冷滤点降低,使储运过程更加安全,低温性能得到改善,有利于在更宽的温度范围内使用,可以满足使用要求。
地沟油酸催化法制备生物柴油是利用地沟油与甲醇或乙醇等低碳醇在酸性催化剂条件下进行酯交换反应,生成相应脂肪酸甲酯或乙酯。
姚亚光等以酸作为催化剂,首先对地沟油进行除杂、脱胶、脱色、脱水的预处理,在酸催化条件下利用地沟油制备生物柴油,通过对地沟油与甲醇、乙醇酯化反应进行正交实验,实验确定了酸催化地沟油制备生物柴油的最佳反应条件为:甲醇温度为70℃,油醇摩尔比为1∶40,催化剂浓度为7%,反应时间为6小时,级差顺序依次是:油醇摩尔比、反应时间、催化剂浓度、温度;乙醇温度为80℃,油醇摩尔比为1∶30,催化剂浓度为5%,反应时间为6小时,级差顺序依次是:油醇摩尔比、温度、催化剂浓度、反应时间。
生物柴油的制备方法主要有 4 种: 直接混合法( 或稀释法) 、微乳化法、高温热裂解法和酯交换法。
前两种方法属于物理方法, 虽简单易行, 能降低动植物油的黏度, 但十六烷值不高, 燃烧中积炭及润滑油污染等问题难以解决。
高温裂解法过程简单,没有污染物产生, 缺点是在高温下进行, 需催化剂,裂解设备昂贵, 反应程度难控制, 且高温裂解法主要产品是生物汽油, 生物柴油产量不高。
酯交换法又分为碱催化酯交换法、酸催化酯交换法、生物酶催化酯交换法和超临界酯交换法。
酯交换法是目前研究最多并已工业化生产的方法但生物酶催化酯交换法目前存在着甲酯转化率不高, 仅有40%~60%, 短链醇( 甲醇、乙醇) 对脂肪酶毒性较大,酶寿命缩短; 生成的甘油对酯交换反应产生副作用,短期内要实现生物酶法生产生物柴油, 还是比较困难。
超临界酯交换法由于设备成本较高, 反应压力、温度也高, 一程度上影响了该技术的工业化, 目前主要处于试验室研究阶段。
1 生物柴油生产工艺目前, 国内采用的原料主要有地沟油、酸化油、混合脂肪酸、废弃的植物和动物油等, 根据不同的原料应采用不同的工艺组合来生产生物柴油。
因目前国内企业的日处理量不是很大( 大多为5~50t /d 不等) , 酯交换( 酯化) 工序一般采用反应釜间歇式的; 分离、水洗工序有采用罐组间歇式的, 也有采离心机进行连续分离、水洗的。
1 地沟油制取生物柴油地沟油水分大、杂质含量多, 酸值较高, 酸值一般在20(KOH) /(mg/g) 油左右。
由地沟油制得的生物柴油颜色较深, 一般需经过脱色或蒸馏工序、添加剂调配工序处理。
碱法催化制备生物柴油工艺流程氢氧化钠→甲醇粗甘油→脱溶→精制→甘油↓↑地沟油→过滤→干燥→酯交换→分离→脱溶→水洗→干燥→生物柴油2酸化油制取生物柴油酸化油的机械杂质含量较大( 如细白土颗粒) , 酸值一般在80~160(KOH) /(mg/g) 油间, 国内有一步酸催化法和先酸催化后碱催化两步法来制备生物柴油。
生物柴油制备技术介绍目前,生物柴油的制备方法主要有直接混合法、微乳化法、高温裂解法和酯交换法。
前两种方法属于物理方法,虽然简单易行,能降低动植物油的粘度,但十六烷值不高,燃烧中积炭及润滑油污染等问题难以解决。
高温裂解法过程简单,没有污染物产生,缺点是在高温下进行,需催化剂,裂解设备昂贵,反应程度难控制,且高温裂解法主要产品是生物汽油,生物柴油产量不高。
工业上生产生物柴油主要方法是酯交换法。
在酯交换反应中,油料主要成分三甘油酯与各种短链醇在催化剂作用下发生酯交换反应得到脂肪酸甲酯和甘油。
可用于酯交换的醇包括甲醇、乙醇、丙醇、丁醇和戊醇,其中最常用的是甲醇,这是由于甲醇价格较低,碳链短,极性强,能够很快与脂肪酸甘油酯发生反应,且碱性催化剂易溶于甲醇。
酯交换反应是可逆反应,过量的醇可使平衡向生成物的方向移动,所以醇的实际用量远大于其化学计量比。
反应所使用的催化剂可以是碱、酸或酶催化剂等,它可加快反应速率以提高产率。
酯交换反应是由一系列串联反应组成,三甘油酯分步转变为二甘油酯、单甘油酯,最后转变成甘油,每一步反应均产生一个酯。
酯交换法包括酸催化、碱催化、生物酶催化和超临界酯交换法等。
(1)酸催化法。
酸催化法用到的催化剂为酸性催化剂,主要有硫酸、盐酸和磷酸等。
在酸催化法条件下,游离脂肪酸会发生酯化反应,且酯化反应速率要远快与酯交换速率,因此该法适用于游离脂肪酸和水分含量高的油脂制备生物柴油,其产率高,但反应温度和压力高,甲醇用量大,反应速度慢,反应设备需要不锈钢材料。
工业上酸催化法受到关注程度远小于碱催化法。
(2)碱催化法。
碱催化法采用的催化剂为碱性催化剂,一般为NaOH、KOH、NaOH 以及有机胺等。
在无水情况下,碱性催化剂酯交换活性通常比酸性催化剂高。
传统的生产过程是采用在甲醇中溶解度较大的碱金属氢氧化物作为均相催化剂,它们的催化活性与其碱度相关。
碱金属氢氧化物中,KOH比NaOH具有更高的活性。
用KOH作催化剂进行酯交换反应典型的条件是:甲醇用量5%-21%,KOH用量0.1%~1%,反应温度25-60℃,而用NaOH 作催化剂通常要在60℃下反应才能得到相应的反应速率。
1用地沟油制备生物柴油的方法前言:本发明涉及一种用地沟油制备生物柴油的方法,按重量百分比,A.将97~99.8%的地沟油和0.2~3%的多孔载体的固体酸催化剂加入反应釜内,反应温度控制在>95℃至130℃,常压下通入气相甲醇,搅拌1~4小时进行酯化反应,反应结束后,分离出固体酸催化剂;B.将酯化反应后70~80%的液体、15~25%的甲醇以及1~5%的固体碱催化剂放入反应釜内,反应温度控制在50℃~65℃,常压下搅拌0.5~2小时进行酯交换反应;C.酯交换反应完成后,将液体静置或进行离心分离,上层即为制备的生物柴油,下层为甘油、固体碱催化剂以及甲醇。
本发明具有酯化反应充分,能耗低,工艺简单,收率高的特点,能满足工业化规模生产。
制造生物柴油的反应釜前言:本发明涉及一种制造生物柴油的反应釜,包括釜体和安装在釜体上的搅拌装置,所述的釜体为具有夹层的夹套式结构,釜体上的蒸汽进口和冷凝水出口与夹层相通,釜体上分别设有的原料进料口、出料口、催化剂进口以及溶剂进口与釜体反应腔相通,所述原料进料口和催化剂进口分别设置在釜体的上部,出料口设置在釜体的底部,而溶剂进口设置在釜体的底部或/和下部。
本发明的反应釜结构简单,设备投资少,酯化反应充分,生产效率高,能满足工业化规模生产。
反应釜:又称反应器或反应锅。
是化工生产中用于进行化学反应的一种容器。
常配备必要的传热装置和搅拌装置以达到强化生产的目的。
反应釜分为间歇式、半连续式和连续式三种。
搅拌器主要用于染料和制药工业,也用于其他工业,如烧碱生产中的苛化桶等。
使两种或多种物料进行混合的操作。
有机械搅拌和空气搅拌等方法。
可以促进物理变化和化学反应。
通常在搅拌器中进行。
温度控制以温度作为被控变量的开环或闭环控制系统。
其控制方法诸如温度闭环控制,具有流量前馈的温度闭环控制,温度为主参数、流量为副参数的串级控制等。
在分布参数系统中,温度控制是以控制温度场中温度分布为目标的。
脂肪酸温控容器结晶分离法利用油脂化学品固化点的差别进行分离的最早方法。
生物柴油的研制及其应用生物柴油(Biodiesel),是一种由动物脂肪或植物油脂经过简单化学反应得到的燃料。
与传统的石油柴油相比,生物柴油无毒、无臭、燃烧清洁,在环保、可再生等方面拥有巨大优势。
因此,近年来生物柴油的研制和应用受到越来越多的关注。
一、生物柴油的研制1. 原料种类制取生物柴油的原料主要包括动植物油、动物脂肪、食用油等。
其中,动植物油是最常用的原料。
植物油包括大豆油、菜籽油、棕榈油等,动物油包括牛油、猪油等。
2. 制备方法生物柴油的制备方法主要有酯化法、超临界法和光化学法等。
其中,以酯化法为最常用的制备方法。
其过程为将油脂与醇反应,去除水分,在催化剂的作用下,生成脂肪酸甲酯,即生物柴油。
3. 质量监控生物柴油质量的监测主要涉及以下几个方面:碘值、酸值、动力粘度、水分含量、密度、铜片腐蚀等。
通过实验室的检测可以保证生物柴油品质的稳定和可靠。
二、生物柴油的应用1. 替代传统石油柴油生物柴油可以直接替代传统的石油柴油,汽车、摩托车、农用车等车辆都可以使用。
与石油柴油相比,生物柴油燃烧更加充分,在排放污染物时减少相应的废气污染,对空气环境的污染也比石油柴油更加低。
2. 农业生产生物柴油可以作为农业机械的燃料,如拖拉机等,不仅可为农业机械生产提供可靠的燃料,还能有效减少废气对麦田、森林等周边环境的污染。
3. 交通运输业生物柴油被广泛应用于公交车、出租车等城市公共交通工具,与传统石油柴油相比,生物柴油的使用有利于提高城市环境的质量,减少空气污染。
4. 工业领域生物柴油可广泛应用于工业领域,如发电厂、电厂、机械制造等领域,成为现代化工地的重要的清洁燃料。
总的来说,生物柴油的研制与应用带来了巨大的环境效益和经济效益,对于缓解环境污染、减少化石燃料的使用、保护能源资源等方面发挥了积极作用。
未来,需要进一步加强对生物柴油发展的研究与开发,推广其在各个领域中的应用,以达到更好的利用动植物油脂的目标。
简述制备生物柴油的主要方法
生物柴油的主要制备方法包括以下步骤:
1.植物油或动物脂肪的提取
提取植物油或动物脂肪是制备生物柴油的第一步。
一般来说,常用的
植物油包括油菜籽油、大豆油、棕榈油等,常用的动物脂肪包括猪油、牛油、鸡油等。
提取的原料中必须含有高含量的油脂。
2.预处理
植物油或动物脂肪在提取后需要进行预处理,主要是去除水分、杂质
和游离脂肪酸等。
这一步骤可以通过压榨、过滤、脱水和脱臭等方式
进行。
3.转化反应
将经过预处理的植物油或动物脂肪与醇类或甲醛等反应,生成脂肪酯。
这一步是制备生物柴油的关键,常用的反应方式包括碱催化法、酸催
化法、酯化法等。
4.分离和净化
经过转化反应后生成的脂肪酯需要进行分离和净化。
这一步可以通过
重力分离、离心分离和蒸馏分离等方式进行。
5.加工调配
分离和净化好的脂肪酯需要进行加工调配,主要是将不同类型的脂肪
酯混合,以满足各种不同的使用要求。
6.生物柴油储存和前置处理
加工调配好的生物柴油需要进行储存和前置处理。
前置处理包括过滤、脱水和脱氧等步骤,以去除水分、杂质和氧化物等。
7.生物柴油使用
生物柴油可以作为替代传统石油柴油的燃料使用,在汽车、船舶、发
电机等领域都有广泛应用。
其优点包括绿色环保、可再生等。