中考数学-华师版中考数学理和定理内容概况 精品
- 格式:doc
- 大小:20.51 KB
- 文档页数:4
初中数学知识点总结华师一、数与代数1. 整数和有理数- 整数的概念:正整数、负整数、零- 有理数的概念:整数和分数统称为有理数- 有理数的四则运算:加法、减法、乘法、除法- 有理数的比较大小:数轴上的比较、绝对值的概念2. 整式与分式- 整式的概念:单项式、多项式- 整式的加减运算:合并同类项- 乘除运算:分配律、结合律、交换律- 分式的概念:分子、分母、值- 分式的加减运算:通分、约分- 分式的乘除运算:分式乘法、分式除法3. 代数方程- 一元一次方程:解法和解的性质- 二元一次方程组:代入法、消元法- 一元二次方程:开平方法、配方法、公式法、因式分解法4. 不等式- 不等式的概念:严格不等式、非严格不等式- 不等式的解集表示:不等式解集和区间表示法- 一元一次不等式:解法和解的性质- 一元一次不等式组:解集的确定5. 函数- 函数的概念:定义、定义域、值域- 函数的表示方法:解析式、图像、表格- 线性函数:图像、性质、实际应用- 二次函数:图像、顶点、对称轴、实际应用- 函数的基本性质:单调性、奇偶性二、几何1. 平面几何- 点、线、面的基本性质- 角的概念:邻角、对顶角、同位角- 三角形:分类、性质、内角和定理- 四边形:分类、性质、对角线- 圆的基本性质:圆心、半径、直径、弦、弧、切线2. 立体几何- 立体图形的基本概念:多面体、旋转体- 棱柱、棱锥的结构特征- 圆柱、圆锥、球的表面和体积计算3. 几何变换- 平移:概念、性质、图像变化- 旋转:概念、性质、图像变化- 轴对称(反射):概念、性质、图像变化4. 相似与全等- 全等三角形的判定条件:SSS、SAS、ASA、AAS- 相似三角形的判定条件:SAS、SSS、ASA- 相似多边形的判定条件和性质- 几何图形的计算:周长、面积、体积三、概率与统计1. 概率- 随机事件的概念:必然事件、不可能事件、随机事件- 概率的定义:古典概型、几何概型- 概率的计算:加法公式、乘法公式、条件概率2. 统计- 数据的收集和整理:普查、抽样调查- 统计量的概念:平均数、中位数、众数、方差、标准差- 统计图表的绘制和解读:条形图、折线图、饼图四、数列1. 等差数列- 等差数列的概念:首项、公差、通项公式- 等差数列的前n项和公式2. 等比数列- 等比数列的概念:首项、公比、通项公式- 等比数列的前n项和公式以上是初中数学的主要知识点总结,涵盖了数与代数、几何、概率与统计、数列等四个领域的基础知识。
九年级数学知识点华东师范数学作为一门精密而又有趣的学科,对于学生在学术发展中具有重要的意义。
华东师范大学作为国内一流的师范学府,在数学领域积累了丰富的教学经验和优秀的教师资源。
下面我们将结合华东师范大学九年级数学课程的教学内容,探讨九年级数学知识点,帮助同学们全面了解和掌握九年级数学知识。
1. 整数与有理数整数和有理数是九年级数学中的基础概念。
同学们首先需要掌握整数的加减乘除运算法则,包括正负数的相加减和乘除的规律。
然后学习有理数的概念,包括有理数的四则运算和混合运算。
在解决实际问题时,同学们需要将整数与有理数的知识应用到实际情境中,计算出正确的答案。
2. 线性方程和不等式线性方程和不等式是九年级数学中的重要内容。
同学们需要熟练掌握一元一次方程和一元一次不等式的解法,包括用等式和不等式的性质推导解集,解法多样性,并能够解决实际问题中的线性方程和不等式。
3. 几何图形与相似几何图形是九年级数学课程中的另一个重要内容。
同学们需要了解各种几何图形的性质和特点,包括多边形、圆和三角形的性质,并能够应用这些知识解决实际问题。
此外,同学们还需要学习相似三角形的性质和判定方法,以及相似三角形之间的比例关系。
4. 直角三角形与三角函数直角三角形是九年级数学中的一个重要概念,也是三角函数的基础。
同学们需要了解直角三角形的性质和特点,包括勾股定理和正弦定理、余弦定理的应用。
同时,同学们还需要学习正弦函数、余弦函数和正切函数的概念、性质和图像,并能够应用三角函数解决实际问题。
5. 数据与统计数据与统计是九年级数学中的一个实用内容。
同学们需要学习如何收集和整理数据,如何用图表和统计量来描述数据的分布和规律。
同学们还需要学习如何进行概率的计算和应用,包括事件的概念、基本概率公式和条件概率。
综上所述,九年级数学知识点涵盖了整数与有理数、线性方程和不等式、几何图形与相似、直角三角形与三角函数以及数据与统计等内容。
同学们在学习这些知识点时,不仅需要了解其基本概念和性质,还需要在解决实际问题中灵活运用。
九年级华师大版数学知识点详解九年级数学学科是中学数学学科的重要阶段之一,学生将进一步巩固和拓展初中数学的基础知识,并学习一些高中数学的初步内容。
下面将重点介绍九年级华师大版数学的主要知识点,帮助同学们更好地理解和掌握这些内容。
一、代数运算代数运算是数学学科中非常重要的一个部分,它涉及到数字和符号的组合及其运算规则。
在九年级的代数运算中,包括乘法法则、因式分解、代数式的展开与因式分解等内容。
其中,乘法法则是代数运算的基础,学生需要熟练掌握乘法法则,并能够运用到实际问题中。
而因式分解则是将一个多项式拆分成几个较简单的乘积的过程,也是九年级代数运算的重点之一。
二、平面几何在九年级华师大版数学中,平面几何是一个重要的内容。
它主要包括三角形、平行线、相似形和勾股定理等知识点。
在学习这些知识点时,同学们需要了解三角形的定义和性质,并能够应用到解决实际问题中。
平行线的学习中,需要掌握平行线的定义以及平行线的性质,例如平行线间的角和、平行线的判定方法等。
相似形是指形状相似但大小不同的两个图形,学生需要学习相似形的定义、性质以及相似比的计算方法。
勾股定理是解决直角三角形问题的重要定理,同学们需要了解勾股定理的定义和证明过程,并能够熟练应用到解题中。
三、数列与函数数列是由一列数字按照一定规律排列而成的一组数,数列中的每个数字称为项。
在九年级华师大版数学中,学生需要学习数列的概念、性质以及求解数列的问题。
在数列的学习中,同学们需要了解等差数列和等比数列的定义,并能够计算其通项、前n项和等差(比)等相关内容。
函数是数学中的一种基本概念,是将一个数集的每个元素都对应到另一个数集中的元素的关系。
在九年级数学中,学生将进一步学习函数的概念以及函数的性质和运算。
此外,同学们还需要学习函数的图像、函数关系的表示和函数的应用等内容。
四、概率与统计概率与统计是应用数学的重要分支,它涉及到随机事件和数据的收集与分析。
在九年级华师大版数学中,学生将学习概率的基本概念和性质,以及概率的计算方法和应用。
附录华师9下常用数学公式、性质及定理-2019年九年级数学下册(华师大版)一、数的性质及运算定理1. 相反数的性质两个数互为相反数,它们的和为0。
例如:若数a和数b互为相反数,那么a + b = 0。
2. 加法的性质•加法交换律:a + b = b + a;•加法结合律:(a + b) + c = a + (b + c);•加法的零元素:任何数加0等于这个数本身。
3. 减法的性质减法是加法的逆运算,a - b 等于 a + (-b)。
4. 乘法的性质•乘法交换律:a × b = b × a;•乘法结合律:(a × b) × c = a × (b × c);•乘法的单位元素:任何数乘以1等于这个数本身。
5. 除法的性质除法是乘法的逆运算,a ÷ b 等于a × (1 ÷ b)。
6. 分配律对于任意实数a、b和c,有以下两个分配律:•左分配律:a × (b + c) = (a × b) + (a × c);•右分配律:(a + b) × c = (a × c) + (b × c)。
7. 数的指数运算性质•a^m × a^n = a^(m+n);•a^m ÷ a^n = a^(m-n);•(a m)n = a^(m×n);•(ab)^n = a^n × b^n。
二、数列的性质及定理1. 等差数列的通项公式对于等差数列an,如果已知首项a1和公差d,那么第n项an的值可以计算为:an = a1 + (n - 1) × d。
2. 等差数列前n项求和公式对于等差数列an,如果已知首项a1、末项an和项数n,那么前n项和Sn的值可以计算为:Sn = (a1 + an) × n / 2。
3. 等比数列的通项公式对于等比数列bn,如果已知首项b1和公比q,那么第n项bn的值可以计算为:bn = b1 × q^(n - 1)。
数学九年级华师知识点数学九年级,是中学数学学科的重要阶段之一,也是学生们深入学习数学的关键时期。
华师作为一所知名的师范大学,其数学学科在教学和研究方面都享有盛誉。
本文将介绍数学九年级的华师知识点,帮助读者更好地掌握这些重要概念和技巧。
一、代数1. 方程与不等式在九年级数学中,方程和不等式是重要的代数内容。
涉及到线性方程、二次方程以及一元一次不等式、一元二次不等式等。
通过解方程和不等式,可以培养学生的逻辑思维和问题解决能力。
2. 函数函数是数学中的重要概念,也是九年级华师数学的重点内容。
学生需要学习函数的定义、性质、图像以及函数的运算等知识点,从而掌握函数的基本概念和应用。
二、几何1. 数字、图形与变换几何中的数字与图形是九年级华师数学的核心内容。
学生需要熟练掌握空间几何与图形的性质,包括直线、线段、角、三角形、四边形和多边形等。
同时,学生还需要学会利用平移、旋转、翻转等几何变换来解决问题。
2. 三角学三角学是数学中的重要分支,也是九年级华师几何的重点内容。
学生需要学习三角形的正弦定理、余弦定理以及面积公式等,以及应用三角学知识解决实际问题。
三、数据与统计1. 统计分析在数据与统计方面,九年级华师数学要求学生具备数据的收集、整理和分析能力。
学生需要学会使用频数表、频率表以及直方图、折线图等图表来展示和解读数据,并能灵活运用这些知识进行统计分析。
2. 概率概率是九年级华师数学中的重要内容,它涉及到随机事件和概率计算。
学生需要学习事件的概念、概率的定义和性质,以及概率的运算法则,并能应用概率解决实际问题。
综上所述,数学九年级华师知识点主要包括代数、几何和数据与统计三个方面。
通过学习这些知识点,学生可以提高数学思维能力,培养逻辑思维和问题解决能力。
华师作为数学教育的领军者,为学生提供了全面深入的数学学习环境,帮助他们在数学领域不断取得进步。
华师版初中数学知识内容概况公理和定理一、线与角1、两点之间,线段最短.2、经过两点有一条直线,并且只有一条直线3、对顶角相等4、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
5、(1)经过已知直线外一点,有且只有一条直线与已知直线平行。
(2)如果两条直线都和第三条直线平行,那么这两条直线也平行.6、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行.7、平行线的特征:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
8、角平分线的性质:角平分线上的点到这个角的两边的距离相等.角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.9、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.二、三角形、多边形10、三角形中的有关公理、定理:(1)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360°.(2)三角形内角和定理:三角形的内角和等于180°.(3)三角形的任何两边的和大于第三边(4)三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半.11、多边形中的有关公理、定理:(1)多边形的内角和定理:n边形的内角和等于( n-2)×180°.(2)多边形的外角和定理:任意多边形的外角和都为360°.(3)欧拉公式:顶点数 + 面数-棱数=2.12、如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.13、等腰三角形中的有关公理、定理:(1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)(3)等腰三角形的“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”.(4)等边三角形的各个内角都相等,并且每一个内角都等于60°.14、直角三角形的有关公理、定理:(1)直角三角形的两个锐角互余;(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.(4)直角三角形斜边上的中线等于斜边的一半.(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.三、特殊四边形15、平行四边形的性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分.16、平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形;(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.17、平行线之间的距离处处相等.18、矩形的性质:(1)矩形的四个角都是直角;(2)矩形的对角线相等且互相平分.19、矩形的判定:有三个角是直角的四边形是矩形.20、菱形的性质:(1)菱形的四条边都相等;(2)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.21、菱形的判定:四条边相等的四边形是菱形.22、正方形的性质:(1)正方形的四个角都是直角;(2)正方形的四条边都相等;(3)正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角.23、正方形的判定:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.24、等腰梯形的判定:(1)同一条底边上的两个内角相等的梯形是等腰梯形;(2)两条对角线相等的梯形是等腰梯形.25、等腰梯形的性质:(1)等腰梯形的同一条底边上的两个内角相等;(2)等腰梯形的两条对角线相等.26、梯形的中位线平行于梯形的两底边,并且等于两底和的一半.四、相似形与全等形27、相似多边形的性质:(1)相似多边形的对应边成比例;(2)相似多边形的对应角相等;(3)相似多边形的面积比等于相似比的平方.28、相似三角形的判定:(1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.29、全等多边形的对应边、对应角分别相等.30、全等三角形的判定:(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(S.S.S.).(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.(S.A.S.)(3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(A.S.A.).(4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(A.A.S.)(5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等.(H.L.)五、圆31、(1)半圆或直径所对的圆周角都相等,都等于90°(直角);(2)90°的圆周角所对的弦是圆的直径.32、在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.33、不在同一条直线上的三个点确定一个圆.34、经过半径的外端且垂直于这条半径的直线是圆的切线.35、从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.。
七年级上第二章 有理数1.相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2.正数和负数像+21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-43等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3.有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1) 按有理数的定义分类 2)按正负分类正整数 正整数 整数 0 正有理数 有理数 负整数 有理数 正分数 正分数 0 负整数 分数 负有理数负分数 负分数【注】有限循环小数叫做分数。
(3)数集 把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a 的相反数是—a 。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
如果“-”号是奇数个,则结果为负; 如果是偶数个,则结果为正。
可简写为“奇负偶正”。
九年级数学华师版知识点九年级数学是学生在初中阶段数学学科的最后一个学年。
对于九年级学生而言,数学既是一门基础学科,也是连接高中数学的桥梁。
在这一学年,学生将进一步学习和巩固之前所学的数学知识,并学习一些新的内容。
本文将回顾和总结九年级数学华师版的主要知识点。
一、有理数与无理数九年级数学学科的首要内容之一是有理数与无理数。
有理数包括正整数、负整数、正分数和负分数,可以用整数表示,也可以用分数表示。
无理数是不能用有理数表示的数,如根号2、圆周率等。
在这一部分,学生将学习有理数与无理数的加减乘除运算,以及它们在数轴上的位置关系。
二、代数式与方程式代数式与方程式是数学中的重要概念。
代数式是由数、变量和运算符号组成的式子,可以通过运算得到一个数值。
方程式是一个含有未知数的等式,学生需要通过解方程找到未知数的值。
在这一部分,学生将学习代数式的展开与简化运算,以及一元一次方程的解法。
三、平面图形与立体图形平面图形与立体图形是几何学的重要内容。
平面图形包括点、线、角、三角形、四边形和圆等,学生需要学习它们的性质、分类以及计算面积、周长等相关知识。
立体图形包括棱柱、棱锥、圆柱、圆锥和球等,学生需要学习它们的性质、分类以及计算表面积和体积等相关知识。
四、统计与概率统计与概率是数学中与实际生活息息相关的内容。
统计是通过收集数据、整理数据、分析数据,得出结论或预测未来的一门学科。
概率是描述事件发生可能性的一门学科。
在这一部分,学生将学习如何进行数据的收集和整理,如何分析数据进行统计,以及如何计算事件的概率。
五、函数与图像函数与图像是数学中的重要内容,也是连接初中与高中数学的桥梁。
函数是一种特殊的关系,它将一个集合中的每一个元素都对应到另一个集合中的唯一元素。
图像是函数在坐标系中展示出来的形式。
在这一部分,学生将学习函数的定义、函数的表示、函数的性质以及函数图像的绘制与分析。
通过以上几个主要知识点的学习,九年级的学生将对数学的基本概念和基本思维方式有更加深入的理解。
九年级数学华师版重点知识点数学作为一门基础学科,被广大学生所学习和关注。
而九年级的数学内容尤为重要,它打下了学生数学思维发展的基础,并为高中数学学习做好准备。
本文将为大家介绍九年级数学华师版的重点知识点。
一、平面几何平面几何是数学中一个重要的分支,我们可以通过它来研究二维几何形状的性质和关系。
在九年级数学华师版中,平面几何的知识点主要包括图形的面积和体积计算、图形的旋转与翻转等。
通过对这些知识点的学习与应用,学生可以提高他们的几何思维能力,培养出良好的观察力和空间想象力。
二、函数与方程函数与方程是九年级数学华师版的另一个重点知识点。
函数是数学中一种重要的数值关系,它可以将一个数集映射到另一个数集。
在九年级的数学中,学生将学习到一些基本的函数形式,如线性函数、二次函数等,并学习到如何通过图像和方程来描述和分析函数。
另外,方程是数学中一种重要的算术工具,通过解方程可以求得未知数的取值。
因此,学生需要掌握方程的基本性质和一些解方程的方法。
三、统计与概率统计学是数学中一门应用广泛的学科,它研究数据的收集、整理、分析和解读。
在九年级数学华师版中,统计学的知识点主要包括数据的统计描述、频率分布和统计图表、概率的基本概念等。
通过对这些知识点的学习,学生可以了解如何有效地收集和处理数据,并通过统计方法进行问题的分析和解决。
四、数与量数与量是九年级数学华师版的另一个重点知识点。
数是自然与社会物质过程的抽象反映,量是数的种类。
在数与量的学习中,学生将学习到有理数和无理数的概念、实数的性质和运算法则等。
此外,学生还将学习到如何进行数的四则运算、整式与分式等基本数学运算。
五、立体几何立体几何是数学中另一个重要的分支,它研究三维几何形状的性质和关系。
在九年级数学华师版中,立体几何的知识点主要包括立体图形的面积和体积计算、平行线与平面的关系等。
通过对这些知识的学习和应用,学生可以提高他们的空间思维能力,并培养出良好的观察力和推理能力。
华师版初中数学知识内容概况
公理和定理
一、线与角
1、两点之间,线段最短.
2、经过两点有一条直线,并且只有一条直线
3、对顶角相等
4、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
5、(1)经过已知直线外一点,有且只有一条直线与已知直线平行。
(2)如果两条直线都和第三条直线平行,那么这两条直线也平行.
6、平行线的判定:
(1)同位角相等,两直线平行;
(2)内错角相等,两直线平行;
(3)同旁内角互补,两直线平行.
7、平行线的特征:
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
8、角平分线的性质:角平分线上的点到这个角的两边的距离相等.
角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.
9、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.
线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.
二、三角形、多边形
10、三角形中的有关公理、定理:
(1)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360°.
(2)三角形内角和定理:三角形的内角和等于180°.
(3)三角形的任何两边的和大于第三边
(4)三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半.
11、多边形中的有关公理、定理:
(1)多边形的内角和定理:n边形的内角和等于(n-2)×180°.
(2)多边形的外角和定理:任意多边形的外角和都为360°.
(3)欧拉公式:顶点数+ 面数-棱数=2.
12、如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.
13、等腰三角形中的有关公理、定理:
(1)等腰三角形的两个底角相等.(简写成“等边对等角”)
(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)
(3)等腰三角形的“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”.
(4)等边三角形的各个内角都相等,并且每一个内角都等于60°.
14、直角三角形的有关公理、定理:
(1)直角三角形的两个锐角互余;
(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;
(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.
(4)直角三角形斜边上的中线等于斜边的一半.
(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
三、特殊四边形
15、平行四边形的性质:
(1)平行四边形的对边平行且相等;
(2)平行四边形的对角相等;
(3)平行四边形的对角线互相平分.
16、平行四边形的判定:
(1)两组对边分别平行的四边形是平行四边形;
(2)一组对边平行且相等的四边形是平行四边形;
(3)两组对边分别相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形;
(5)对角线互相平分的四边形是平行四边形.
17、平行线之间的距离处处相等.
18、矩形的性质:
(1)矩形的四个角都是直角;
(2)矩形的对角线相等且互相平分.
19、矩形的判定:有三个角是直角的四边形是矩形.
20、菱形的性质:
(1)菱形的四条边都相等;
(2)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.
21、菱形的判定:四条边相等的四边形是菱形.
22、正方形的性质:
(1)正方形的四个角都是直角;
(2)正方形的四条边都相等;
(3)正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角.
23、正方形的判定:
(1)有一个角是直角的菱形是正方形;
(2)有一组邻边相等的矩形是正方形.
24、等腰梯形的判定:
(1)同一条底边上的两个内角相等的梯形是等腰梯形;
(2)两条对角线相等的梯形是等腰梯形.
25、等腰梯形的性质:
(1)等腰梯形的同一条底边上的两个内角相等;
(2)等腰梯形的两条对角线相等.
26、梯形的中位线平行于梯形的两底边,并且等于两底和的一半.
四、相似形与全等形
27、相似多边形的性质:
(1)相似多边形的对应边成比例;
(2)相似多边形的对应角相等;
(3)相似多边形的面积比等于相似比的平方.
28、相似三角形的判定:
(1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似;
(2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;
(3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.
29、全等多边形的对应边、对应角分别相等.
30、全等三角形的判定:
(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(S.S.S.).
(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.(S.A.S.)(3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(A.S.A.).
(4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(A.A.S.)
(5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等.(H.L.)
五、圆
31、(1)半圆或直径所对的圆周角都相等,都等于90°(直角);(2)90°的圆周角所对的弦是圆的直径.
32、在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.
33、不在同一条直线上的三个点确定一个圆.
34、经过半径的外端且垂直于这条半径的直线是圆的切线.
35、从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.。