(全国通用版)2020版高考数学总复习 专题一 高频客观命题点 1.3 程序框图课件 理
- 格式:ppt
- 大小:5.74 MB
- 文档页数:58
I第一章•集合1、集合的性质:①任何一个集合是它本身的子集,记为AA;②空集是任何藁合的子集,记为A :1③空集是任何非空集合的真子集;I①n个元素的子集有II◎个.n个元素的真子集有2n —1个・n个元素的非空真子集有2n一2个.[注]①一个命题的否命题为真,它的逆命题一定为真•否命题逆命题•②一个命题为真,则它的逆否命题一定为真•原命题逆否命题•Al B {x|x A,且x B} AU B {x | x A 或x并:B} CuA {x U ,且xA}2>集合运算:交、并、构成复合命题的形式:P或q(记作“pV q);p且q (记作P A q);非P(记作“1 q”)。
1、“或”、“且”、4、四种命题的形式及相互关系:则p;原命题:若P则q ;逆命题:若q !否命题:若「P则1q;逆否命题: 若1q 则"1 P。
①、原命题为真,它的逆命题不一定为真。
②、原命题为真,它的否命题不一定为真。
③、原命题为真,它的逆否命题一定为真。
16、如果已知pq那么我们说,p是q的充分条件,q是P的必要条件。
对数函数y=log ax( a>0且a1 )的图象和性质文档来源为 :从网络收集整理.word 版本可编辑•欢迎下载支持若pq 且qp,则称p 是q 的充要条件,记为p? q.第二章■函数一、函数的性质(1 )定义域:(2 )值域:(3)奇偶性:(在整个定义域内考虑)①定义:偶函数:f ( x) f (x).奇函数:f ( x) f (x) ②判断方法步骤: &求出定义域;是否关于原点对称;C.求d.比较f ( X )与f (X )或f ( X )与 f (X )的关系。
(4)函数的单调性定义:对于函数 任意两个自变量的值 ⑴若当 XKX2时,都有f(Xl)<f(X2),则说f(X )在这个区间上是增函数; ⑵若当 XKX2时,都有f(X 1)>f(X 2),则说f(X )在这个区间上是减函数二、指数函数与对数函数指数函数丫來但o 且a 1)的图象和性质b ・判断定义域 f (X );f(x)的定义域 X1,X2,I 内某个区间上的对数函数y=log ax( a>0且a1 )的图象和性质⑴对数、指数运算:文档来源为:从网络收集整理.word版本可编辑•欢迎下载支持X(2) v a ( a O.a1 )与y log ax ( a 0, a 1 )互为反函数.第三章数列1.(1)等差、等比数列:第四章■三角函数对数函数y=log ax( a>0且a1 )的图象和性质si ai (n 1) 2)数列{加}的前n项和Sn与通瓒5的養系秫〔m2)•三角函数1、角度与弧度的互换关系: 360 ° =2 1802、 弧长公式:I || r.扇形面积公式:s 扇形2 lr 2||r一 y xy 3、 三角函数:sin ; cos ; tan ;rrx4、 三角函数在各象限的符号:(一全二正弦,三切四余弦)sin5、同角三角函数的基本关系式: tan sin 2cos 21cos6、 诱导公式:7、 两角和与差公式cos ()cos cos sin sin 5s.二倍角公式是:sin2 = 2sin cos22 . 2cos2 = cos sin =2cosJ= 1_2sin2tantan2 =2o1 tan辅助角公式b sin (e +),这里辅助角bb1801 rad = ° ^ 57.30 ° =57 ° 18 ';1° = 180^ 0.01745 ( rad )注意:正角的弧度数为正数, 负角的弧度数为负数,零角的弧度数为零asin 0 +bcos 0= a所在象限由a 、a 9、特殊角的三角函数值:文档来源为:从网络收集整理.word版本abc10、正弦定理iAiBiC2R (R为外接圆半径). sin A sin B sinC 余弦定理c2 = a 2+b 2— 2bccosC ,b 2 = a 2+c 2 2accosB , a 2 = b 2+c 2 2bccosA ・11 acsm b2 b csinA面积公式:12aha111absir2bhb2chc211. y sin( )或 y cos( xT 20)的周期12. y sin()的对称轴方程是k2 kZ ),对称中心(k ,0);y cos( xk( kZ),1对称中心(2,0y tan( xk)的对称中心(2 5°第五章•平面向量⑴向量的基本要素:大小和方向•⑵向量的长度:即向量的大小,记作丨Jx 2 ,y⑶特殊的向量:零向量3o I a I = o. 单位向量a 为单位向量I a I = 1.X1 X2⑷相等的向量:大小相等,方向相同 (x 1, y 1)=( x 2, y 2)yi y2(5)相反向量:a=・bb=・aa + b = 0⑹平行向量(共线向量):方向相同或相反的向量,称为平行向量•记作 3 // b .平行向量也称为共线向量7文档来源为:从网络收集整理.word 版本 向 量的数 量积rra?b 是一个数 rrrri.a 0 或 b 0 rr时,a?b 0可编辑•欢迎下载支持8(8)两个向量平行的充要条件(10)两向量的夹角公式:cosab(9)两个向量垂直的充要条件X1X2 a | • |b |=xi 2yi 2? X22y220<0< 180 °,附:三角形的四个“心”;2、外心:外接圆的圆心,垂直平分线的交点3、 重心:中线的交点4、 垂心:高的交点 (11) A ABC 的判定:△ ABC 为直角△an b (b 0)或 xi y2 X2yi 0a • b=oxi • X2+y1 • y2=01、 内心:内切圆 的圆心, 角平分线的交点ABC 为钝角△ A+Z B< 2ABC 为锐角△ A + Z B> 2(门)平行四边形对角线定理:对角线的平方和等于四边的平方和22c> a b1 •几个重要不等式2(1 ) a R 5a 05 a 0当且仅当a 0,取 “ ” ,(a-b )2^o (a> be R)(2) a,b R,则 a 2 b 22ab(3) a,b R,贝9 a b 2 ab ;a 2b 2 a b 2( 4)2(2);⑸若a 、 bw R+,,则 a 2 b 2(2 )2(a,b R)222ab a b a b ab(a ,b R ).ab2 22、解不等式1 ) 一元一次不等ax b (a°), ② a 0, xx a b o ,① a 0, xx a ax 2bx c 05(a2)—元二次不等式第七章1•两点间距离:若A(xi 5yi)3B(X2,y 2),则2•平行线间距离:若h : Ax By Ci■直线和圆的方程 (X2X1)212: AxAB 则:d A 2B 2注意:x, y 对应项系数应 则P 到I 的距离•点至血W 5y)J:Ax d A BCi C205Byy kx4 •直线与圆锥曲线相交的弦长公式:o •若丨与曲线交于A (XI 5 yi)5园妙)y 2)则:ax 2(y^yOBy C2bx c 0 , 10务必注5•若A(Xi,yi )5 B(X25 y2), P( x, y) ,P 为AB中点,贝lj X1 X22V226•直线的倾斜角(0。
2020届高考数学总复习资料整理高中数学必备知识点大全三、算法、推理与证明五、函数、基本初等函数I的图像与性质指数函数2y a=01a〈〈(),-∞+∞单调递减,01,001x y x y〈〈〉〈〈时时函数图象过定点(0.1)1a〉(),-∞+∞单调递增,01,01x y x y〈〈〈〉〉时0时六、函数与方程、函数模型及其应用函数零点概念方程()0f x=的实数根。
方程()0f x=的实数根⇔函数()0y x=的图象与x轴有交点⇔函数()y f x=有零点。
存在定理对于在区间[],a b上连续不断,若()()0f a f b〈,则()y f x=在(),a b内存在零点。
二分法方法对于在区间[],a b上连续不断且()()0f a f b〈的函数()y f x=。
通过不断把函数()f x的零点所在的区间一分为二,使区间两个端点逐步逼近零点。
进而得到零点近似值的方法叫做二分法。
步骤第一步确定区间[],a b,验证()()0f a f b〈g,确定精确度∈。
221cos 2sin 21cos 2cos 2aa aa -=+=注:表中,n k均为正整数。
十三、空间几何体(其中为半径、为高、为母线等)S h十四、空间点、直线平面位置关系(大写字母表点、小写字母表直线、希腊字母表平面):【注:标准d根据上下文理解为圆心到直线的距离与两圆的圆心距】十八、圆锥曲线的定义、方程与性质注:1.表中两种形式的双曲线方程对应的渐进线方程分别为x a y ±=,x by ±=2.表中四种形式的抛物线方程对应的准线方程分别是2,2,2,2p y p y p x p x =-==-=。
十九、圆锥曲线的热点问题二十一、离散型随机变量及其分布(理科)二十二、统计与统计案例二十三、函数与方程思想,数学结合思想二十四、分类与整合思想,化归与转化思想二十五、几何证明选讲二十六、坐标系与参数方程。
2020高考数学考点总动员考点1 重点知识,压轴选择,系统掌握函数与方程新课标版函数是高考数学的重要内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,通过对2020年新课标卷的各省高考题的研究发现,本专题热点考点可总结为六类:一是分段函数的求值问题,二是函数的性质及其应用,三是基本函数的图像和性质,四是函数图像的应用,五是方程根的问题,六是函数的零点问题。
涉及到得函数思想也是相当的丰富,如分段函数问题常与分类讨论思想相结合,有关方程根的情况判断常涉及函数与方程思想和等等价转化思想,研究函数的图像问题和基本函数的性质时常利用数形结合思想等。
高考常命制两道小题,一道基础题目,出现在前5道题目中,常考查基本函数的性质或零点问题,另一道常以压轴的小题出现,常与方程的根或复合函数为背景考查,有一定的难度和灵活性。
2.考纲解读(1)了解简单的分段函数并能简单应用;(2)理解函数的单调性、最大(小)值及其几何意义,结合具体函数了解奇偶性的含义;(3)理解指数(对数)函数的概念,理解指数(对数)函数的单调性,掌握指数(对数)函数图像经过的特殊点;结合常见的幂函数图像解决简单问题;掌握二次函数的三个表达形式,能够数形结合分析二次函数、一元二次方程、一元二次不等式三者之间的关系。
(4)会应用函数图像理解和研究函数的性质;(5)根据具体函数的图像,能够运用二分法求相应方程的近似解;(6)结合二次函数的图像,了解函数的零点与方程根的联系。
3 .2020年高考命题趋向(1)以分段函数为表示形式考查求值问题是一类基础题目,常与指对数运算结合在一起,同时也考查学生能否灵活运用分类讨论思想的解题能力。
(2)以二次函数、分段函数、对数函数等为载体考查函数的性质是热点。
研究函数的性质可充分利用函数的各种性质所反映的函数特点,来解决函数的相关问题.命题思路常以函数的各种性质相互交融,只有仔细审题,充分挖掘,把题目隐含的条件一一挖掘出来,综合利用性质才能达到解决问题的目的.(3)与指数(对数)函数有关的综合问题的考查,以函数某个性质为核心,结合其他知识,把问题延伸,主要考查知识的综合运用和能力发展为目的.(4)函数图象的考查涉及的知识面广,形式灵活,经常以新面孔出现,在基本的初等函数图象熟练地掌握基础上,加以变换考查新函数的图象、性质等.(5)利用转化思想解决方程问题,利用函数与方程思想解决函数应用问题,利用数形结合思想研究方程根的分布问题,是高考的热点和难点,常作为压轴的选择题的形式出现。