一次函数讲义
- 格式:doc
- 大小:395.02 KB
- 文档页数:14
一次函数讲义知识点1、一次函数的意义知识点:一次函数:若两个变量x 、y 间的关系式可以表示成b kx y +=(k 、b 为常数,0≠k )的形式,称y 是x 的一次函数。
正比例函数:形如kx y =(0≠k )的函数,称y 是x 的正比例函数,此时也可说y 与x 成正比例,正比例函数是一次函数,但一次函数并不一定是正比例函数 习题练习1、下列函数(1)y=3πx ;(2)y=8x-6;(3)1y x =;(4)1y 8x 2=-;(5)2y 541x x =-+中,是一次函数的有( )A 、4个B 、3个C 、2个D 、1个2、当k_____________时,()2323y k x x =-++-是一次函数;3、当m_____________时,()21345m y m xx +=-+-是一次函数; 4、当m_____________时,()21445m y m x x +=-+-是一次函数;知识点2、求一次函数的解析式知识点:确定正比例函数kx y =的解析式:只须一个条件,求出待定系数k 即可. 确定一次函数b kx y +=的解析式:只须二个条件,求出待定系数k 、b 即可. A 、设——设出一次函数解析式,即b kx y +=;B 、代——把已知条件代入b kx y +=中,得到关于k 、b 的方程(组);C 、求——解方程(组),求k 、b ;D 、写——写出一次函数解析式.常见题型归类第一种情况:不已知函数类型(不可用待定系数法),通过寻找题目中隐含的自变量和函数变量之间的数量关系,建立函数解析式。
(见前面函数解析式的确定) 第二种情况:已知函数是一次函数(直接或间接),采用待定系数法。
(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是直接或间接已知了一次函数)一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k≠0。
二. 平移型 两条直线1l:11y k x b =+;2l :22y k x b =+。
1变量和函数一、变量1.变量:在一个变化过程中,我们称数值发生变化的量为变量.2.常量:在一个变化过程中,数值始终不变的量为常量。
注意:(1)变量和常量是相对的,前提条件是在一个变化过程中;(2)常数也是常量,如圆周率要作为常量二、函数1.函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
注意:①函数是相对自变量而言的,如对于两个变量x,y,y是x的函数,而不能简单的说出y是函数。
②判断一个关系式是否为函数关系:一看是否在一个变化过程中,二看是否只有两个变量,三看对于一个变量没取到一个确定的值时,另一个变量是否有唯一的值与其对应。
③函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系④“y有唯一值与x对应”是指在自变量的取值范围内,x每取一个确定值,y都唯一的值与之相对应,否则y不是x的函数.⑤判断两个变量是否有函数关系,不仅要有关系式,还要满足上述确定的对应关系.x取不同的值,y的取值可以相同.例如:函数2(3)y x=-中,2x=时,1y=;4x=时,1y=.2.函数的三种表示形式(1)解析法:用数学式子表示函数的方法叫做解析法.(2)列表法:通过列表表示函数的方法.(3)图象法:用图象直观、形象地表示一个函数的方法.3确定函数解析式的步骤(1)根据题意列出两个变量的二元一次方程(2)用汉字变量的式子表示函数4确定自变量的取值范围(1)分母不为0(2)开平方时,被开方数非负性(3)实际问题对自变量的限制。
注意:(1)整式型:一切实数(2)根式型:当根指数为偶数时,被开方数为非负数.(3)分式型:分母不为0.(4)复合型:不等式组(5)应用型:实际有意义即可2.函数图象一、函数图象的概念一般地,对于一个函数,如果把自变量与函数的每对对应诃子分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。
一次函数复习讲义一.基础知识1、一次函数的概念:若两个变量x,y间的关系式可以表示为y=kx+b(k,b为常数,k≠0)的形式,则y是x的一次函数(x为自变量,y为因变量)特别地,当b=0时,称y是x的正比例函数。
2、一次函数的图象及其性质:(1)、图象:一次函数的图象是一条直线,所以画图象时只要先确定两点,再过这两点画一条直线就可以画出一次函数的图象。
一次函数的图象与k,b的关系如下图所示:3、函数表达式的确定:常用方法是待定系数法,一次函数y=kx+b 中含有两个待定系数k 、b ,根据待定系数法,只要列出方程组即可.4、一次函数的应用: (1)、一次函数与一元一次方程、二元一次方程组的关系。
一元一次方程的解就是一次函数与x 轴的交点坐标的横坐标的值。
二元一次方程组的解可以把方程组中的两个方程看作是两个一次函数,画出这两个函数的图象,那么它们的交点坐标就是方程组的解。
(2)、一次函数与不等式的关系:可以借助函数图象解决一元一次不等式的有关问题。
二、一次函数的概念典型例题1、当k_____________时,()2323y k x x =-++-是一次函数;2、当m_____________时,()21345m y m x x +=-+-是一次函数;3、函数中,当 时,它是一次函数,当它是正比例函数.4、下列函数中,是的一次函数的是( )、 、 、 、三、一次函数的图象与性质1.下列图形中的曲线不表示y 是x 的函数的是( )2、如图,已知直线b x y +=3与2-=ax y 的交点的横坐标为2-,根据图象有下列3个结论:①0>a ;②0>b ;③2->x 是不等式23->+ax b x 的解集.其中正确的个数是( ) A .0 B .1 C .2 D .33、对于函数y =5x+6,y 的值随x 值的减小而___________。
4、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。
【基本知识点】1.一次函数与正比例函数:一般地,如果两个变量x 、y 之间可以表示成y=kx+b (k ,b 为常数,且k ≠0)的形式,那么y 是x 的一次函数。
特别地,当b=0时,称y 是x 的正比例函数。
.2.一次函数的图象与性质:一次函数y=kx+b 的图象是经过(0,b )和(-k b ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(1)必过点:(0,b )和(-kb,0)(2)图象的位置与增减性: b>0b<0 b=0 k>0经过第一、二、三象限 经过第一、三、四象限 经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限 经过第二、三、四象限 经过第二、四象限图象从左到右下降,y 随x 的增大而减小增减性总结:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(3)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(4)图象的平移: 当b>0时,将直线y=kx 的图象向上平移︱b ︱个单位;当b<0时,将直线y=kx 的图象向下平移︱b ︱个单位.【高频考点与经典例题】考点1:一次函数的图象及其性质【例1】已知一次函数y=kx-k,若y 随x 的增大而减小,则该函数的图象经过_____ _____象限.A.一、二、三B.一、二、四C.二、三、四D.一、三、四变式1:(2011江西,5,3分)已知一次函数y=x+b 的图像经过一、二、三象限,则b 的值可以是( ).A.-2B.-1C.0D.2变式2:函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A B C D考点2:一次函数的应用【例2】(2011重庆市潼南,8,4分)目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是A.y=0.05x B. y=5x C.y=100x D.y=0.05x+100【例3】某图书超市开展两种方式的租书业务:一种是使用会员卡(需交卡钱),另一种是使用租书卡(不交卡钱).使用这两种卡租书,租书费用y(元)与租书时间x(天)之间的关系如图所示(租书费用=卡钱+租金).根据图所提供的信息回答下列问题:(1)根据实际情境,找出图象存在的问题.(2)L1、L2分别表示哪种租书业务的图象?(3)两种租书方式每天租书的收费分别是多少元?(4)分别写出用租书卡和会员卡租书的费用y(元)与租书时间x(天)之间的函数关系式.(5)若两种租书卡的使用期限均为一年,则在这一年中如何选取这两种租书方式比较划算?【例4】(2011湖北襄阳节选,24,10分)为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1与y2之间的函数图象如图所示.(1)观察图象可知:a= ; b= ; m= ;(2)直接写出y1,y2与x之间的函数关系式;练习:(2011江苏宿迁,25,10分)某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x (分钟)与收费y (元)之间的函数关系如图所示.(1)有月租费的收费方式是 (填①或②),月租费是 元;(2)分别求出①、②两种收费方式中y 与自变量x 之间的函数关系式;(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.【课堂小测】1.(2011山东泰安,13 ,3分)已知一次函数y=mx+n-2的图象如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >22.一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t (小时),航行的路程为s (千米),则s②①100908070605040302010500400300200(分钟)(元)y x O 100与t的函数图象大致是()3.(2011湖北宜昌,19,7分)某市实施“限塑令”后,2008年大约减少塑料消耗约4万吨.调查分析结果显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y(万吨)随着时间x(年)逐年成直线上升,y与x之间的关系如图所示.(1)求y与x之间的关系式;(2)请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?(第3题图)。
一次函数(一)函数1、变量:在一个变化过程中可以取不同数值的量;常量:在一个变化过程中只能取同一数值的量;s=中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是例题:在匀速运动公式vt________,常量是_______.在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数;判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应例题:下列函数1y=πx 2y=2x-1 3y=错误! 4y=2-1-3x 5y=x2-1中,是一次函数的有A4个 B3个 C2个 D1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域;4、确定函数定义域的方法:1关系式为整式时,函数定义域为全体实数;2关系式含有分式时,分式的分母不等于零;3关系式含有二次根式时,被开放方数大于等于零;4关系式中含有指数为零的式子时,底数不等于零;5实际问题中,函数定义域还要和实际情况相符合,使之有意义;例题:下列函数中,自变量x的取值范围是x≥2的是. D.A..函数y=x的取值范围是___________.5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表表中给出一些自变量的值及其对应的函数值;第二步:描点在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;第三步:连线按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来;8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律;解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示;图象法:形象直观,但只能近似地表达两个变量之间的函数关系;1.判定一次函数的方法:1)从表达式角度考虑:有三条件:自变量x为一次;因变量为一次,系数k≠0.三、考点知识梳理一一次函数的定义一般地,如果y=kx+bk、b是常数,k≠0,那么y叫做x的一次函数.特别地,当b=0时,一次函数y=kx+b就成为y=kxk是常数,k≠0,这时,y叫做x的正比例函数.1.由定义知:y是x的一次函数它的解析式是y=kx+b,其中k、b是常数,且k≠0.2.一次函数解析式y=kx+bk≠0的结构特征:1k ≠0;2x 的次数是1;3常数项b 可为任意实数.它可以看作由直线y=kx 平移|b|个单位长度得到.当b>0时,向上平移;当b<0时,向下平移3.正比例函数解析式y =kxk ≠0的结构特征:1k ≠0;2x 的次数是1;3没有常数项或者说常数项为0.温馨提示:正比例函数是一次函数,但一次函数(0)y kx b k =+≠不一定是正比例函数,只有当b=0时,它才是正比例函数;例1 已知y-3与x 成正比例,且x=2时,y=7.1写出y 与x 之间的函数关系式; 2当x=4时,求y 的值;3当y=4时,求x 的值.二一次函数的图象1.一次函数y =kx +bk ≠0的图象是经过点0,b 和-错误!,0的一条直线.2.正比例函数y =kxk ≠0的图象是经过点0,0和1,k 的一条直线.3.一次函数y =kx +bk ≠0的图象与k 、b 符号的关系:1k >0,b >0图象经过第一、二、三象限.2k >0,b <0图象经过第一、三、四象限.3k <0,b >0图象经过第一、二、四象限.4k <0,b <0图象经过第二、三、四象限.温馨提示:画一次函数的图像,只需过图像上两点作直线即可,一般取(0,)b ,(,0)b k-两点; 三一次函数图象的性质一次函数y =kx +b,当k >0时,y 随x 的增大而增大,1) 图象一定经过第一、三象限;当k <0时,y 随x 的增大而减小,图象一定经过第二、四象限.k 的正负决定直线的倾斜方向:● 两直线k 相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.|k|=x y ∆∆● 增减性:当k>0时,y 随x 值的增加而增加,当k<0时,y 随x 值的增加而减小,● |k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大直线陡,|k|越小,直线与x 轴相交的锐角度数越小直线缓;增加的快慢由两点的纵坐标之差和横坐标之差的比值来决定,即由k 值的大小决定;点和直线的关系:点Px 0,y 0与直线y=kx+b 的图象的关系1如果点Px 0,y 0在直线y=kx+b 的图象上,那么x 0,y 0的值必满足表达式y=kx+b ;2如果x 0,y 0是满足函数解析式的一对对应值,那么以x 0,y 0为坐标的点Px 0,y 0必在函数的图象上. 2) 直线和直线的关系:当平面直角坐标系中两直线平行时,这两个函数解析式中k 1=k 2,且b 1≠b 2.当平面直角坐标系中两直线重合时,这两个函数解析式中k 1=k 2,且b 1=b 2.当平面直角坐标系中两直线相时,这两个函数解析式中k 1≠k 2,.当平面直角坐标系中两直线垂直时,其函数解析式中K 值互为负倒数即两个K 值的乘积为-1● 直线b 1=k 1x+b 1与直线y 2=k 2x+b 2k 1≠0 ,k 2≠0的位置关系:① k 1≠k 2⇔y 1与y 2相交;其交点的横纵坐标分别是两直线表达式所联立的方程组的解; ② ⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点0,b 1或0,b 2; ③ ⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④ ⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合四一次函数的应用1.求一次函数解析式求一次函数解析式,一般是已知两个条件,设出一次函数解析式,然后列出方程,解方程组便可确定一次函数解析式.2.利用一次函数性质解决实际问题用一次函数解决实际问题的一般步骤为:①设定实际问题中的变量;②建立一次函数关系式;③确定自变量的取值范围;④利用函数性质解决问题;⑤答.温馨提示:1.题目中的条件在列等式、不等式时不能重复使用,要仔细寻找题目中的隐含条件;2.正确理解题目中的关键词语:盈、亏、涨、跌、收益、利润、赚、赔、打折、不大于、不小于;3.设未知数相关量要有依据,而代数式为多项式时要加括号,带上单位,列方程时相关量的单位要保持一致;类型一一次函数的图象与性质1已知一次函数y=-3x+2,它的图象不经过第________象限.2若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值A.增加4 B.减小4 C.增加2 D.减小23若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么对k和b的符号判断正确的是A.k>0,b>0 B.k>0,b<0C.k<0,b>0 D.k<0,b<04如图,一次函数y=-错误!x+2的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a0<a<4且a≠2,过点A、B分别作x轴的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1、S2,则S1、S2的大小关系是A.S1>S2B.S1=S2C.S1<S2D.无法确定点拨准确掌握一次函数的图象与性质是做对此类题的关键.答案1三2A3D4A类型二一次函数的解析式及应用1将直线y=错误!x向下平移3个单位所得直线的解析式为________.2我们知道,海拔高度每上升1千米,温度下降6 ℃,某时刻,益阳地面温度为20 ℃,设高出地面x千米处的温度为y ℃.①写出y与x之间的函数关系式;②已知益阳碧云峰高出地面约500米,求这时山顶的温度大约是多少℃③此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米点拨一次函数解析式的确定需要明确两个点的坐标,从而求出系数k、b的值,一次函数的应用题需从题意中获取有用的信息.答案1y=错误!x-3.2①y=20-6xx>0;②500米=千米,y=20-60×=17℃;③令-34=20-6x,得x=9千米.五、易错题探究一次函数y=kx+bk为常数且k≠0的图象如图所示,则使y>0成立的x的取值范围为________.解析当y>0时,函数图象在x轴上方,此时x<-2.易错警示不清楚y>0指的是哪部分图象.一、选择题1.若正比例函数的图象经过点-1,2,则这个图象必经过点A.1,2 B.-1,-2 C.2,-1 D.1,-2解析:设y=kxk≠0把-1,2代入得k=-2,∴y=-2x,再把被选项代入验证,选D.2.若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的正半轴相交,那么对k和b的符号判断正确的是A.k>0,b<0 B.k>0,b<0C.k<0,b>0 D.k<0,b<03.若直线y=3x+b与两坐标轴围成的三角形面积为6,则b为A.6 B.-6 C.±6 D.±7二、填空题11.已知一次函数y=2x-6与y=-x+3的图象交于点P,则点P的坐标为________.12.已知一次函数y=kx+b的图象如图所示,当x<1时,y的取值范围是________.三、解答题13.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P1,b.1求b的值;2不解关于x、y的方程组错误!请你直接写出它的解;3直线l3:y=nx+m是否也经过点P请说明理由.。
6 一次函数6-1函数1、函数的概念:圆的大小变化依赖于半径大小的变化;再一定时间内,行程变化大小依赖于速度大小的变化,一定量的人民币存在银行,利息的多少的变化依赖于存期长短的变化。
以上这些问题具有一个共同特点:再每个问题中,都存在两个变量,其中一个变量发生变化时,就会引起另一个量发生变化。
我们把这两个变量之间的这种相互依赖、相互对应的关系称为函数关系。
一般的,在某一个变化过程中有两个变量x 、y ,如果对于x 的每一个值,y 都有唯一的值和它对应,那么就说x 是自变量,y 是x 的函数。
例如:一个长方体盒子高8cm ,底面是正方形,这个长方形的体积V (cm3)与底面边长a (cm )的关系式为:28a V =。
在这里,a 是自变量,V 是因变量。
V 是a 的函数。
用20元钱买本子,能购买的总数n (本)与单价a (元)之间的关系式微:an 20=在这里,a 是因变量,n 是因变量。
n 是a 的函数。
2、常量与变量在某一变化过程中,可以取不同的数值的量叫做变量,数值保持不变的量叫做常量。
3、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
理解函数关系式可以从以下几个方面来理解①函数关系式是等式:例如32+=x y 是一个函数关系式,我们可以说代数式32+x 是x 的函数,但不能够说32+x 是函数关系式。
②函数关系式中指明了哪个是自变量,哪个是函数,通常等式右边的代数式中的变量是自变量,等式左边的一个变量表示函数,如62+=x y 中,y 是x 的函数,x 是自变量。
③用数学式子表示函数的方法叫做解析法。
④函数的表示方法有三种:解析法、列表法、图像法。
4、自变量取值范围的确定自变量取值范围:使函数有意义的的自变量的取值的全体叫做自变量的取值范围。
(1)自变量取值范围的确定方法:①当解析式是整式时,自变量的取值范围是全体实数。
②解析式是分式时,自变量的取值范围是使分母部位0的全体实数。
一次函数知识点复习讲义基础巩固:定义及基本概念:一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数。
其中x 是自变量,y是因变量,k为一次项系数,y是x的函数。
其图象为一条直线。
正比例函数:当b=0时,y=kx+b即y=kx,原函数变为正比例函数,其函数图象为一条通过原点的直线。
所以说正比例函数是一种特殊的一次函数,但一次函数不一定是正比例函数。
函数的表示方法:解析式法、列表法、图象法.与坐标轴的交点:一次函数y=kx+b交y轴于(0,y),交x轴于(-b/k,0).图像性质:当k相同,且b不相等,图像平行,其中,b大则图像在上方,b小则相反;当k不同,且b相等,图象相交于y轴;当k互为负倒数时,两直线垂直.图像作法:通过如下3个步骤:(1)列表:每确定自变量x的一个值,求出因变量y的一个值,并列表,(2)描点:一般取两个点,根据“两点确定一条直线”的道理;(3)连线:可以作出一次函数的图象——条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
(通常找函数图象与x轴和y轴的交点分别是-与(-b/k,0),0与b)k,b与函数图象所在象限:y=kx时(即b等于0,y与x成正比,此时的图象是是一条经过原点的直线)当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
y=kx+b(k,b为常数,k≠0)时:当k>0,b>0, 这时此函数的图象经过一,二,三象限;当k>0,b<0, 这时此函数的图象经过一,三,四象限;当k<0,b>0, 这时此函数的图象经过一,二,四象限;当k<0,b<0, 这时此函数的图象经过二,三,四象限。
k>0时,图象从左到右上升,y随x的增大而增大。
k<0时,图象从左到右下降,y随x的增大而减小。
函数的平移:将函数向上平移n格,函数解析式为y=kx+b+n,将函数向下平移n格,函数解析式为y=kx+b-n,将函数向平左移n格,函数解析式为y=k(x+n)+b,将函数向平右移n 格,函数解析式为y=k(x-n)+b.用待定系数法求函数的解析式.难点突破:难点一画函数图像例1 作出函数y=6x-5的图像难点二观察函数图像例2 在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,达到乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的关系式如图所示.根据图象信息,解答下列问题:(1)这辆汽车的往返速度是否相同?请说明理由(2)求返程中y与x之间的函数关系式;(3)求这辆汽车从甲地出发4h后与甲地的距离.难点三一次函数图像性质难点四分段函数例3 一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?难点五一次函数的方案选择例4 某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变.并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润.问该集团该如何设计调配方案.使总利润达到最大?难点六一次函数与方程、不等式例5 一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为,当x 时,kx+b<0.一次函数和方程关系:一次函数与x轴交点的横坐标就是相应的一元一次方程的根.若两条解析式为y=kx+b的直线相交,交点坐标为(x,y).函数和不等式:解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系.注意:⑴对于每一个给定的x 值,y 有一个唯一确定的值与之对应,否则y 就不是x 的函数.例如2y x =就不是函数,因为当4x =时,2y =±,即y 有两个值与x 对应.中考要求函数及其图象⑵对于每一个给定的y 值,x 可以有一个值与之对应,也可以有多个值与之对应.例如在函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.二、函数自变量的取值范围函数自变量的取值范围是指是函数有意义的自变量的取值的全体.求自变量的取值范围通常从两方面考虑,一是要使函数的解析式有意义;二是符合客观实际.1.函数的三种表示方法:⑴列表法:通过列表表示函数的方法.⑵解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=.⑶图象法:用图象直观、形象地表示一个函数的方法.2.对函数的关系式(即解析式)的理解:⑴函数关系式是等式.例如4=就是一个函数关系式.y x⑵函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如:y=x是自变量,y是x的函数.y与x判断一个点是否在函数图象上的方法是:将这个点的坐标值代入函数的j解析式,如果满足函数解析式,这个店就在函数的图象上,否则就不在这个函数的图象上.例题精讲一、函数的相关概念【例1】 分别指出下列关系式中的变量与常量:球的表面积2cm S ()与球半径(cm)R 的关系式是24S R π=; 设圆柱的底面半径()R m 不变,圆柱的体积3()V m 与圆柱的高()h m 的关系式是2V R h π=.D【例7】清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间满足某种函数关系,其函数图象大致为( )A B C D【例8】 你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情节的图象是()A B C D【例9】如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水,在这个乌鸦喝水的故事中,设从乌鸦看【例10D【例11)B A O A .B .C .D . S t St S t S tO O OO三、函数自变量的取值范围【例12】 函数y =x 的取值范围是( )A .12x -≥B .12x ≥C .12x ≤-D .12x ≤ 【例13】 函数25y x =-自变量的取值范围是 .【例14】 函数52x y x -=-自变量的取值范围是 .【例24】 函数2113y x =+的自变量x 的取值范围是 . 【例25】 函数214y x =-的自变量x 的取值范围是 . 【例26】 函数y =的自变量x 的取值范围是 .的自变量x的取值范围是.【例27】函数y【例28】根据你的理解写出下列y与x的函数关系式,并写出自变量的取值范围(我们称为定义域).⑴ 某人骑车以6/m s是速度匀速运动的路程y与时间x,解析式:,定义域:;【例29⑵求x的取值范围;⑶求y的取值范围.【例32】等腰三角形的周长为60,写出它的底边长y与腰长x之间的函数关系,并写出自变量的取值范围?【例33】 等腰三角形的周长为20,写出它的底边长y 与腰长x 之间的函数关系,并写出自变量的取值范围.【例34】 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存元.请12写出小张的存与从内容 一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.一次函数的图象及性质⑶当0k=时,它不是一次函数.b=,0⑷正比例函数是一次函数的特例,一次函数包括正比例函数.二、一次函数的图象⑴一次函数y kx b=+(0k≠,k,b为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要l:在一次函数y kx b=+中:⑴当0k>时,其图象一定经过一、三象限;当0k<时,其图象一定经过二、四象限.⑵当0b>时,图象与y轴交点在x轴上方,所以其图象一定经过一、二象限;当0b<时,图象与y轴交点在x轴下方,所以其图象一定经过三、四象限.12)a <,1x a<121221()()()2y a x a x a a x a a=-+-=+->-当12a x a≤≤时,y取最小值1221()()y x a a x a a=-+-=-.一、一次函数的概念例题精讲【例1】 已知函数1(2)k y k x -=- (k 为常数)是正比例函数,则k = .【例2】 下列函数中,哪些是一次函数?哪些是正比例函数? ⑴15x y +=- ⑵5x y =- ⑶21y x =-- ⑷35x y =-- ⑸()()212y x x x =--- ⑹21x y -= 【例3】【例5【例6】【例9】【例11】 已知y 是z 的正比例函数,z 是x 的一次函数.求证:y 是x 的一次函数.三、一次函数的图象及性质【例12】 在坐标系中画出下列函数的图象.⑴2y x =;23y x =+;21y x =-;⑵12y x =-;122y x =-+;122y x =--【例13】一次函数(0)=+≠的图像是;y kx b k当0b>时,直线y kx bk>,0=+过象限;当0b<时,直线y kx bk>,0=+过象限;当0b>时,直线y kx bk<,0=+过象限;当0b<时,直线y kx bk<,0=+过象限.【例15【例16)【例18第象限.【例19】如果一次函数y kx b=+的图象经过第一象限,且与y轴负半轴相交,那么(??? )A.00><,k b,??????? B.00k b>>C .00k b <>,? ??????D .00k b <<,【例20】 若一次函数22222m m y x m --=+-的图象经过第一、第二、三象限,求m 的值.【例21】 若一次函数2(1)12k y k =-+-的图象不经过第一象限,则k 的取值范围是 . 【例22】 已知0abc =/,并且a b b c c a p c a b+++===,则直线y px p =+一定通过 象【例23【例26.【例28】 已知一次函数(3)(2)y k x k =-+- (k 为常数)的图象经过一、二、三象限,求k 取值范围.【例29】 已知一次函数y kx k =+,若y 随x 的减小而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【例30】 若0ab >,0bc <,则a a y x b c=--经过( ) A .第一、二、三象限 B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限【例31】 如果直线y ax b =+经过第一、二、三象限,那么ab 0(填“>”、“<”、【例32【例33【例34【例A .12y y > B . 12y y = C .12y y < D .不能比较【例36】 已知一次函数y kx b =+的图象经过(1x ,1y )和(2x ,2y )两点,且12x x <,12y y <,则( )A .0k >B .0k <,0b >C .0k <,0b <D .0k <【例37】 已知函数y (32)(4)a x b =+--为正比例函数.⑴求a b 、的取值范围;⑵a b 、为何值时,此函数的图象过一、三象限.三、一次函数图象的几何变换【例38】 一次函数23y x =-的图象可以看成由正比例函数2y x =的图象向 (填“上”【例40【例41 【例42四、含绝对值的一次函数【例44】 作函数31y x x =-+-的图象,并根据图象求出函数的最小值.【例45】 函数32y x =--的图象如图所示,求点A 与点B 的坐标.一、一次函数解析式的确定【例46】 如果每盒羽毛球有20个,每盒售价为24元,那么羽毛球的售价y (元)与羽毛球个数x (个)之间的关系式为( )例题精讲 中考要求一次函数解析式的确定A .24y x =B .20y x =C .65y x =D .56y x = 【例47】 已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点.②a 为何值时,一次函数的图象与y 轴交于点()0,9.【例48】 已知一次函数的图象经过(3,2)和(1,-2)两点.求这个一次函数的解析【例49【例51【例52】 已知y 与1x -成正比例,且当3x =时5y =.求y 与x 之间的函数关系式.【例53】 已知:y 与2x +成正比例,且1x =时,6y =-.⑴求y 与x 之间的函数关系式;⑵点()2a ,在这个函数的图像上,求a 的值.【例54】 已知一次函数y ax b =+的图象经过点(02A ,,(14B ,,()4C c c +,.⑴ 求c ;⑵ 求222a b c ab ac bc ++---的值.【例55】 一条直线l 经过不同的三点A (a ,b ),B (b ,a ),C (a b -,b a -),那么直线l 经过 象限.【例【例57 )【例58【例60【例61【例【例63】 已知关于x 的一次函数()372y a x a =-+-的图象与y 轴交点在x 轴的上方,且y 随x的增大而减小,求a 的取值范围.【例64】 已知函数(2)31y a x a =---,当自变量x 的取值范围为35x ≤≤时,y 既能取到大于5的值,又能取到小于3的值,则实数a 的取值范围为 .【例65】 如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .【例66】 已知一次函数y kx b =+的图象与直线21y x =+平行并且过点P (-1,2),求这个一次函数的解析式.D12y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是( )A .骑车的同学比步行的同学晚出发30分钟B .步行的速度是6千米/时C .骑车同学从出发到追上步行同学用了20分钟中考要求一次函数的应用D.骑车的同学和步行的同学同时达到目的地【例37】某污水处理厂的一个净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出.某一天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过对图象的观察,小亮得出了以下三个论断:⑴0点到3点只进水不出水;⑵3点到4点不进水只出【例【例39D作【例40】汽车在行驶时,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.现甲、乙两车在一个弯道上相向而行,在相距16米的地方发现情况不对,同时刹车,根据有关资料,甲、乙两车刹车距离S(米)与车速v(千米/时)之间与如图所示.若甲、乙两车的速度都是60千米/时,两车是否相撞?说说你的理由.【例41】右图是某汽车行驶的路程()S km与时间()t的函数关系图.观察图中所提供的min信息,解答下列问题:⑴汽车在前9分钟内的平均速度是;⑵汽车在中途停了多长时间?;⑶当3016t≤≤时,求S与t的函数关系式.【例42】2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷时30【例43x(min)【例44⑴根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?⑵小明出发两个半小时离家多远?⑶小明出发多长时间距家12千米?【例45】甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)1小时,千米,【例46..2.方案决策问题【例47】某电信局收取网费如下:163网网费为每小时3元,169网网费为每小时2元,但要收取15元月租费.设网费为y(元),上网时间是x(小时),分别写出y和x的函数关系式,某网民每月上网19小时,他应选哪种上网方式比较划算?【例48】东风商场文具部的某种毛笔每枝售价25元,书法练习本每本售价5元,该商场为促销制定了两种优惠办法.甲:买一枝毛笔就赠送一本书法练习本.乙:按购买金额打九折付款.某校欲为校书法兴趣小组购买这种毛笔10枝,书法练习本(10)x x 本.【例49⑵当学生数是多少时,两家旅行社的收费一样;⑶就学生数x讨论哪家旅行社更优惠.【例50】甲乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的方案:甲超市累计购买商品超出300元后,超出部分按原价的8折优惠,在已超市累计购买商品超出200元后,超出部分按原价8.5折优惠.设顾客预计累计购物X元.(X>300)试比较顾客到哪家超市购物更实惠?说明理由【例51】抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A B,两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A B,两库的路程和运费如下表(表中“元/吨·千米”表示每吨粮食运送与【例5210台,【例53】A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.⑴设B市运往C村机器x台,求总运费W关于x的函数关系式;⑵若要求总运费不超过9000元,共有几种调运方案?⑶求出总运费最低的调运方案,最低运费是多少元?【例54】我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A B C,,三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的重量不超过装运的A C,两种水果重量之和.之间的函数关系式并写出自变量的取值范围.【例55运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只装一种蔬菜)⑴若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?⑵公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售(每种【例564千克、,试写【例57y元.y与x之间的函数关系式.⑵若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y 值最小,最小值是多少?3.其它类型的应用题【例58】 某种储蓄的月利率是0.36%,今存入本金100元,求本息和(本金与利息的和)y (元)与所存月数x 之间的函数关系式,并计算5个月后的本息和.【例59分钟(分)考试要求A 级要求B 级要求C 中考要求 一次函数与方程、不等式综合一、一次函数与一元一次方程的关系求直线y y b kx =+b k 0≠()一、一次函数与一元一次方程综合【例67】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .0例题精讲 知识点睛【例68】 已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______. 【例69】 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.二、一次函数与一元一次不等式综合【例70】 已知一次函数25y x =-+.?【例74】 直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为______.【例75】 若解方程232x x +=-得2x =,则当x _________时直线2y x =+上的点在直线32y x =-上相应点的上方.【例76】 如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式122x kx b >+>-的解集为______.【例77】 已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当2x =时,y 的值;(2)x 为何值时,0y <?【例78【例79y ax c =+【例80【例813x <【例82】 已知一次函数y 6kx b =++与一次函数2y kx b =-++的图象的交点坐标为A (2,0),求这两个一次函数的解析式及两直线与y 轴围成的三角形的面积.【例83】 若直线(2)6y m x =--与x 轴交于点()60,,则m 的值为( )A.3B.2C.1D.0【例84】 如图,直线y kx b =+与x 轴交于点()40-,,则0y >时,x 的取值范围是( )A.4x >- B .0x > C.4x <- D .0x <【例85】 当自变量x 满足什么条件时,函数23y x =-+的图象在:(1)x 轴下方; (2)y 轴左侧; (3)第一象限.【例86】 一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是() 【例87 ) 【例88【例890>的解【例900b +<的【例91 A.无解B.有唯一解C.有无数个解D.以上都有可能【例92】 如图所示,已知正比例一次函数与几何综合函数y x =和3y x =,过点()20A ,作x 轴的垂线,与这两个正比例函数的图象分别交与B C ,两点,求三角形OBC 的面积(其中O 为坐标原点)。
一次函数一、正比例函数与一次函数的区别与联系正比例函数是一次函数的特殊情况(即b=0时),它们的图象都是直线,k>0时,y随x的增大而增大;k<0时,y随x的增大而减小。
二、怎样根据k、b的取值范围确定直线bkx=所经过的象限y+直线b=,k>0时,必过第一、三象限;k<0时,必过第二、四象限。
若b>0,直线与kxy+y轴正半轴相交;若b<0,直线与y轴负半轴相交。
在确定象限时,可根据k值先确定两个象限,再借助b值进一步确定。
三、用待定系数法确定一次函数的表达式的主要步骤①设一次函数的表达式b=,②将已知点代入表达式中组成方程(组),③解方程(组),kxy+求出k、b的值,④写出一次函数的表达式。
四、如何确定两条直线的交点坐标把表示两条直线的一次函数表达式看做方程,联立成二元一次方程组,求解即可得到交点的横、纵坐标。
五、由已知直线的表达式可以求出直线与两坐标轴围成的三角形的面积先由直线表达式求出它与两坐标轴的交点坐标,再利用直角三角形的面积等于两直角边乘积的一半求得。
六、知识梳理:1、如果,那么y叫做x的一次函数,当b=0时,一次函数也叫做正比例函数。
2、正比例函数的图象经过(0,0),(1,k)两点的一条直线。
3、一次函数的图象是过(0,b) ,两点的一条直线。
4、一次函数的图象与k、b的符号关系(1)k>0,b>0时,图象经过象限(2)k>0,b<0时,图象经过象限(3)k<0,b>0时,图象经过象限(4)k<0,b<0时,图象经过象限5、一次函数的性质(1)k>0时,y随x的增大而增大。
(2)k<0时,y随x的增大而。
)3(2)327(284x x y x x ≤⎧⎪=⎨-+〉⎪⎩第13章 一次函数复习讲义知识点1:常量与变量(参考《全解》P 28)常量(或常数):数值保持不变的量 变量:可以取不同数值且变化的量注:常量和变量是相对而言的,它由问题的条件确定。
如s =vt 中,若s 一定时,则 s 是常量,v 、t 是变量若v 一定时,则 v 是常量,s 、t 是变量若t 一定时,则 t 是常量,s 、v 是变量例1 指出下列各式中的常量与变量 (参考《全解》P 28)(1) 圆的周长公式:C =2πr (C 是周长,r 是半径);(2) 匀速运动公式:s=vt (v 表示速度,t 表示时间,s 表示路程)。
解:(1)常量:2和π ;变量:C 和r(2)常量:v ; 变量:s 和t巩固练习:(1)《教材》P 23 练习1 (2)《练》P 9练习1、3知识点2:函数的概念 及函数思想(难点)(参考《全解》P 29)一般地,设在一个变化的过程中有两个变量x 、y,如果对于x 在它允许取值范围内的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数. 注:(1)函数体现的是一个变化的过程:一个变量的变化对另一个变量的影响(2)在变化的过程中有且只有两个变量:自变量(一般在等号的右边)和因变量(一般在等号的左边)(3)函数的实质是两个变量之间的对应关系:自变量x 每取一个值,因变量有唯一确定的值与它对应(4)含有一个变量的代数式可以看作这个变量的函数函数思想:就是用运动、变化的观点来分析题中的数量关系,从而抽象、升华为函数的模型,进而解决有关问题的思想.函数的实质是研究两个变量之间的对应关系,灵活运用函数思想可以解决许多数学问题.例1 判断下列变量之间是不是存在函数关系并说明理由(参考《全解》P 29与P 32)(1)长方形的宽一定时,其长与面积; (2)等腰三角形的底边长与面积(3)某人的身高与年龄 (4)弹簧的总长度y (cm )与所挂物体质量x (kg )解:(1)存在函数关系。