一次函数总复习讲义
- 格式:pdf
- 大小:59.45 KB
- 文档页数:4
一次函数复习一讲义小结1 概述主要内容包括:变量与函数的概念,函数的三种表示方法,正比例函数和一次函数的概念、图象、性质以及应用举例,用函数观点认识一元一次方程、一元一次不等式以及二元一次方程组,课题学习“选择方案”. 函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际,而一次函数又是函数中最简单、最基本的函数,它是学习其他函数的基础,所以理解和掌握一次函数的概念、图象和性质至关重要,应认真掌握.小结2 学习重难点【重点】理解函数的概念,特别是一次函数和正比例函数的概念,掌握一次函数的图象及性质,会利用待定系数法求一次函数的解析式.利用函数图象解决实际问题,发展数学应用能力,初步体会方程与函数的关系及函数与不等式的关系,从而建立良好的知识联系. 【难点】1.根据题设的条件寻找一次函数关系式,熟练作出一次函数的图象,掌握一次函数的图象和性质,求出一次函数的表达式,会利用函数图象解决实际问题.2.理解一次函数与一元一次方程、一元一次不等式以及二元一次方程组的关系. 小结3 学法指导1.注意从运动变化和联系对应的角度认识函数.2.借助实际问题情境,由具体到抽象地认识函数,通过函数应用举例,体会数学建模思想.3.注重数形结合思想在函数学习中的应用.4.加强前后知识的联系,体会函数观点的统领作用.5.结合课题学习,提高实践意识和综合应用数学知识的能力.知识网络结构图专题总结及应用一、知识性专题专题1 函数自变量的取值范围一次函数定义:在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么x 是 自变量,y 是x 的函数函数的三种表示法:列表法、图象法、解析法变量与函数一次函数正比例函数定义:形如y =kx (k ≠0)的函数性质:当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小一次函数定义:形如y =kx +b (k ,b 是常数,k ≠0)的函数 性质:当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小待定系数法求函数关系式函数与方程(组)、不等式之间的关系:当函数值是一个具体数值时,函数关系式就转化为方程(组):当函数值是一个范围 时,函数关系式就转化为不等式;两直线 的交点坐标就是二元一次方程组的解一次函数的实际应用【专题解读】 一般地,求自变量的取值范围时应先建立自变量满足的所有不等式,通过解不等式组下结论. 例1 函数21+=x y 中,自变量x 的取值范围是 ( )A .x ≠0B .x ≠1C .x ≠2D .x ≠-2例2 函数xx y -+=21中,自变量x 的取值范围是 ( )A .x ≥-1B .-1<x <2C .-1≤x <2D .x <2专题2 一次函数的定义【专题解读】 一次函数一般形如y =kx +b ,其中自变量的次数为1,系数不为0,两者缺一不可.例3 在一次函数y =(m -3)x m -1+x +3中,符x ≠0,则m 的值为 .专题3 一次函数的图象及性质【专题解读】 一次函数y =kx +b 的图象为一条直线,与坐标轴的交点分别为⎪⎭⎫⎝⎛-0,k b ,(0,b ).它的倾斜程度由k 决定,b 决定该直线与y 轴交点的位置. 例4 已知一次函数的图象经过(2,5)和(-1,-1)两点.(1)画出这个函数的图象;(2)求这个一次函数的解析式.二、规律方法专题专题4 一次函数与方程(或方程组或不等式)的关系【专题解读】 可根据一次函数的图象求出一元一次方程或二元一次方程(组)的解或一元一次不等式的解集,反之,由方程(组)的解也可确定一次函数表达武.例5 如图14-105所示,已知函数y =3x +b 和y =ax -3的图象交于点P (-2,-5),则根据图象可得不等式3x +b >ax -3的解集是 .例6 假定拖拉机耕地时,每小时的耗油量是个常最,已知拖拉机耕地2小时油箱中余油28升,耕地3小时油箱中余油22升.(1)写出油箱中余油量Q (升)与工作时间t (小时)之间的函数关系式; (2)画出函数的图象;(3)这台拖拉机工作3小时后,油箱中的油还够拖拉机继续耕地几小时?三、思想方法专题专题6 函数思想【专题解读】 函数思想就是应用运动、变化的观点来分析问题中的数量关系,抽象升华为函数模型,进而解决有关问题的方法,函数的实质是研究两个变量之间的对应关系,灵活运用函数思想可以解决许多数学问题.例7 利用图象解二元一次方程组⎩⎨⎧-=+=-②.5①,22y x y x例8 我国是一个严重缺水的国家,大家应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05 mL .小明同学在洗手时,没有把水龙头拧紧,当小明离开x 小时后,水龙头滴了y mL 水.(1)试写出y 与x 之间的函数关系式;(2)当滴了1620 mL 水时,小明离开水龙头几小时?专题7 数形结合思想【专题解读】 数形结合思想是指将数与形结合起来进行分析、研究、解决问题的一种思想方法.数形结合思想在解决与函数有关的问题时,能起到事半功倍的作用.例9 如图14-108所示,一次函数的图象与x 轴、y 轴分别相交于A ,B 两点,如果A 点的坐标为(2,0),且OA =OB ,试求一次函数的解析式.专题8 分类讨论思想【专题解读】 分类讨论思想是在对数学对象进行分类的过程中寻求答案的一种思想方法.分类讨论思想既是一种重要的数学思想,又是一种重要的数学方法.分类的关键是根据分类的目的,找出分类的对象.分类既不能重复,也不能遗漏,最后要全面总结.例10 在一次遥控车比赛中,电脑记录了速度的变化过程,如图14-109所示,能否用函数关系式表示这段记录?专题9 方程思想【专题解读】 方程思想是指对通过列方程(组)使所求数学问题得解的方法.在函数及其图象中,方程思想的应用主要体现在运用待定系数法确定函数关系式.例11 已知一次函数y =kx +b (k ≠0)的图象经过点A (-3,-2)及点B (1,6),求此函数关系式,并作出函数图象.2011中考真题精选一、选择题1. (2011新疆乌鲁木齐,5,4)将直线y =2x 向右平移1个单位后所得图象对应的函数解析式为( )A 、y =2x -1B 、y =2x -2C 、y =2x +1D 、y =2x +2考点:一次函数图象与几何变换。
辅导讲义授课时间:2014年 月 日 年 级:八年级 第 次课 学员:辅导科目:数学教师:黄华阳课 题第十四章 《一次函数》的复习教学目标 1、理解函数、自变量和函数值的概念,会列出一些简单的函数关系式2、掌握函数图象的画法。
掌握正比例函数及一次函数解析式的求法,会用其图象和性质解决相关的问题3、理解一次函数与方程、不等式的关系,会应用图形结合方法求方程和不等式的解4、能用一次函数的图象性质解决简单的实际问题 重点、难点 1、正比例函数和一次函数的图象和性质2、利用函数的观点来解方程和不等式3、正比例函数和一次函数与实际问题教 学 容【知识要点】一、变量与函数变量:在一个变化过程中,数值发生变化的量为变量。
常量:在一个变化过程中,数值始终不变的量为常量。
函数:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。
如果当x= a 时y=b ,那么b 叫做当自变量的值为a 时的函数值。
【典例赏析】1、在地球某地,温度T 与高度d(m)的关系可以近似T=10-150d米表示,其中常量为 ,变量为 。
2、下列:①2y x =;②21y x =+;③22(0)y x x =≥;④(0)y x x =±≥,具有函数关系(自变量为x )的是 .3、下列四个图象中,不表示某一函数图象的是( )A B C D4、在下表中,设x 表示乘公共汽车的站数,y 表示应付的票价(元)根据此表,下列说确的是( )x (站)1 2 3 4 5 6 7 8 9 10 y (元)5、如图,小亮在操场上玩,一段时间沿M-A-B-M 的路径匀速散步,能近似刻画小亮到出发点M 的距离y 与时间x 之间关系的函数图象是( )A B C D6、如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t ,大正方形除去小正方形部分的面积为S (阴影部分),那么S 与t 的大致图象应为( )A B C D二、正比例函数1.定义: 形如y=kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫比例系数. 注:正比例函数都是常数与自变量的乘积的形式. 2.正比例函数的图象与性质:正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过原点的直线,我们通常称之为直线y=kx .[来源: 一般画正比例函数的图象时常选点(0,0)(1,k )。
一次函数知识点复习讲义基础巩固:定义及基本概念:一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数。
其中x 是自变量,y是因变量,k为一次项系数,y是x的函数。
其图象为一条直线。
正比例函数:当b=0时,y=kx+b即y=kx,原函数变为正比例函数,其函数图象为一条通过原点的直线。
所以说正比例函数是一种特殊的一次函数,但一次函数不一定是正比例函数。
函数的表示方法:解析式法、列表法、图象法.与坐标轴的交点:一次函数y=kx+b交y轴于(0,y),交x轴于(-b/k,0).图像性质:当k相同,且b不相等,图像平行,其中,b大则图像在上方,b小则相反;当k不同,且b相等,图象相交于y轴;当k互为负倒数时,两直线垂直.图像作法:通过如下3个步骤:(1)列表:每确定自变量x的一个值,求出因变量y的一个值,并列表,(2)描点:一般取两个点,根据“两点确定一条直线”的道理;(3)连线:可以作出一次函数的图象——条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
(通常找函数图象与x轴和y轴的交点分别是-与(-b/k,0),0与b)k,b与函数图象所在象限:y=kx时(即b等于0,y与x成正比,此时的图象是是一条经过原点的直线)当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
y=kx+b(k,b为常数,k≠0)时:当k>0,b>0, 这时此函数的图象经过一,二,三象限;当k>0,b<0, 这时此函数的图象经过一,三,四象限;当k<0,b>0, 这时此函数的图象经过一,二,四象限;当k<0,b<0, 这时此函数的图象经过二,三,四象限。
k>0时,图象从左到右上升,y随x的增大而增大。
k<0时,图象从左到右下降,y随x的增大而减小。
函数的平移:将函数向上平移n格,函数解析式为y=kx+b+n,将函数向下平移n格,函数解析式为y=kx+b-n,将函数向平左移n格,函数解析式为y=k(x+n)+b,将函数向平右移n 格,函数解析式为y=k(x-n)+b.用待定系数法求函数的解析式.难点突破:难点一画函数图像例1 作出函数y=6x-5的图像难点二观察函数图像例2 在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,达到乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的关系式如图所示.根据图象信息,解答下列问题:(1)这辆汽车的往返速度是否相同?请说明理由(2)求返程中y与x之间的函数关系式;(3)求这辆汽车从甲地出发4h后与甲地的距离.难点三一次函数图像性质难点四分段函数例3 一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?难点五一次函数的方案选择例4 某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变.并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润.问该集团该如何设计调配方案.使总利润达到最大?难点六一次函数与方程、不等式例5 一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为,当x 时,kx+b<0.一次函数和方程关系:一次函数与x轴交点的横坐标就是相应的一元一次方程的根.若两条解析式为y=kx+b的直线相交,交点坐标为(x,y).函数和不等式:解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。