三角函数10
- 格式:doc
- 大小:1011.00 KB
- 文档页数:9
(1)特殊角三角函数值sin0=0sin30=0.5sin45=0.7071 二分之根号2sin60=0.8660 二分之根号3sin90=1cos0=1cos30=0. 二分之根号3cos45=0. 二分之根号2cos60=0.5cos90=0tan0=0tan30=0. 三分之根号3tan45=1tan60=1. 根号3tan90=无cot0=无cot30=1. 根号3cot45=1cot60=0. 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。
(见下)(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。
从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。
在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。
在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。
无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。
附:三角函数值表sin0=0,sin15=(√6-√2)/4 ,sin30=1/2,sin45=√2/2,sin60=√3/2,sin75=(√6+√2)/2 ,sin90=1,sin105=√2/2*(√3/2+1/2)sin120=√3/2sin135=√2/2sin150=1/2sin165=(√6-√2)/4sin180=0sin270=-1sin360=0sin1=0. sin2=0. sin3=0.sin4=0.41253 sin5=0. sin6=0.sin7=0. sin8=0. sin9=0.sin10=0. sin11=0.65448 sin12=0.sin13=0. sin14=0. sin15=0.sin16=0. sin17=0.27367 sin18=0.49474sin19=0.71567 sin20=0.56687 sin21=0.sin22=0.5912 sin23=0.92737 sin24=0.sin25=0. sin26=0.90774 sin27=0.sin28=0.58908 sin29=0. sin30=0.sin31=0.00542 sin32=0.32049 sin33=0.5027 sin34=0.07468 sin35=0.1046 sin36=0.24731 sin37=0.20483 sin38=0.56583 sin39=0.98375 sin40=0.65392 sin41=0.05073 sin42=0.88582 sin43=0.24985 sin44=0.89972 sin45=0.65475 sin46=0.86511 sin47=0.91705 sin48=0.73941 sin49=0.27719 sin50=0.8978 sin51=0.69708 sin52=0.67219 sin53=0.72928 sin54=0.49474 sin55=0.89918 sin56=0.50417 sin57=0.54239 sin58=0.6426 sin59=0.21122 sin60=0.44386 sin61=0.93957 sin62=0.89269 sin63=0.83678 sin64=0.9167 sin65=0.66499 sin66=0.26009 sin67=0.24404 sin68=0.67873 sin69=0.72017 sin70=0.59083 sin71=0.93167 sin72=0.51535 sin73=0.30354 sin74=0.83189 sin75=0.90683 sin76=0.59965 sin77=0.52352 sin78=0.38057 sin79=0.7664 sin80=0.2208 sin81=0.51378 sin82=0.15704 sin83=0.1322 sin84=0.82733 sin85=0.17455 sin86=0.98242 sin87=0.45738 sin88=0.90958 sin89=0.63913sin90=1cos1=0.63913 cos2=0.90958 cos3=0.45738 cos4=0.98242 cos5=0.17455 cos6=0.82733 cos7=0.1322 cos8=0.15704 cos9=0.51378cos10=0.2208 cos11=0.7664 cos12=0.38057 cos13=0.52352 cos14=0.59965 cos15=0.90683 cos16=0.83189 cos17=0.30355 cos18=0.51535 cos19=0.93168 cos20=0.59084 cos21=0.72017 cos22=0.67874 cos23=0.24404 cos24=0.26009 cos25=0.66499 cos26=0.9167 cos27=0.83679 cos28=0.8927 cos29=0.93957 cos30=0.44387 cos31=0.21123 cos32=0.6426 cos33=0.5424 cos34=0.50417 cos35=0.89918 cos36=0.49474 cos37=0.72928 cos38=0.67219 cos39=0.69709 cos40=0.8978 cos41=0.2772 cos42=0.73942 cos43=0.91705 cos44=0.86512 cos45=0.65476 cos46=0.89974 cos47=0.24985 cos48=0.88582 cos49=0.05074 cos50=0.65394 cos51=0.98375 cos52=0.56583 cos53=0.20484 cos54=0.24731 cos55=0.10462 cos56=0.07468 cos57=0.50272 cos58=0.32049 cos59=0.00544 cos60=0.00001 cos61=0.63371 cos62=0. cos63=0.95468cos64=0. cos65=0. cos66=0.58004cos67=0.92737 cos68=0.59122 cos69=0.cos70=0.56688 cos71=0. cos72=0.cos73=0. cos74=0. cos75=0.cos76=0. cos77=0. cos78=0.cos79=0. cos80=0. cos81=0.cos82=0. cos83=0. cos84=0.cos85=0. cos86=0. cos87=0.cos88=0. cos89=0.72836cos90=0tan1=0. tan2=0. tan3=0.tan4=0. tan5=0. tan6=0.tan7=0.29046 tan8=0. tan9=0.tan10=0. tan11=0. tan12=0.00221tan13=0.55631 tan14=0. tan15=0.11227tan16=0.88079 tan17=0. tan18=0.29063tan19=0. tan20=0. tan21=0.54158tan22=0.51568 tan23=0.96047 tan24=0.85361 tan25=0.49986 tan26=0.58614 tan27=0.44288 tan28=0.14788 tan29=0.2769 tan30=0.96257 tan31=0.75604 tan32=0.93275 tan33=0.75104 tan34=0.24265 tan35=0.97097 tan36=0.53609 tan37=0.27942 tan38=0.67174 tan39=0.50072 tan40=0.72799 tan41=0.62267 tan42=0.78399 tan43=0.76618 tan44=0.70739 tan45=0.99999 tan46=1.05693 tan47=1.46826 tan48=1.91927 tan49=1.10092 tan50=1.421 tan51=1.5051 tan52=1.30785 tan53=1.04098 tan54=1.11733 tan55=1.21144 tan56=1.27403 tan57=1.45827 tan58=1.10506 tan59=1.05173 tan60=1.88767 tan61=1.14235 tan62=1.63318 tan63=1.51503 tan64=2.9296 tan65=2.95586 tan66=2.4215 tan67=2.3753 tan68=2.62946 tan69=2.38023 tan70=2.46216 tan71=2.5822 tan72=3.52526 tan73=3.41404 tan74=3.09087 tan75=3.88776 tan76=4.58455 tan77=4.4153 tan78=4.8456 tan79=5.0307 tan80=5.7707 tan81=6.5041 tan82=7.4207 tan83=8.4593 tan84=9.2587 tan85=11.132 tan86=14.1942 tan87=19.816 tan88=28.5515 tan89=57.9144tan90=无取值。
高中三角函数知识点归纳总结(通用10篇)高中数学三角函数知识点总结:三倍角公式篇一sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)高中数学三角函数知识点总结:三倍角公式推导篇二sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:半角公式篇三tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)高中数学三角函数知识点总结:辅助角公式篇四Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))高中数学三角函数知识点总结:和差化积篇五sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)高中三角函数知识点归纳篇六1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。
特殊三角函数值对照表(特殊角的三角函数值)《特殊角的三角函数值》是人教版数学九年级下册第二十八章的内容,特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。
这些角度的三角函数值是经常用到的。
并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。
具体的三角函数值如下表:扩展资料:黄金三角函数介绍:α=18°(π/10) sinα=(√5-1)/4 cosα=√(10+2√5)/4tαnα=√(25-10√5)/5cscα=√5+1 secα=√(50-10√5)/5 cotα=√(5+2√5)α=36°(π/5) sinα=√(10-2√5)/4 cosα=(√5+1)/4tαnα=√(5-2√5)cscα=√(50+10√5)/5 secα=√5-1 cotα=√(25+10√5)/5α=54°(3π/10) sinα=(√5+1)/4 cosα=√(10-2√5)/4 tαnα=√(25+10√5)/5是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。
扩展资料:三角函数在复数中有重要的应用。
三角函数也是物理学中的常用工具。
它有六种基本函数函数名正弦余弦正切余切正割余割符号 sin cos tan cot sec csc正弦函数sin(A)=a/c余弦函数cos(A)=b/c正切函数tan(A)=a/b余切函数cot(A)=b/a其中a为对边,b为邻边,c为斜边特殊角的值如下表:在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A 的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。
扩展资料:sinα = tanα × cosα(即sinα / cosα = tanα )cosα = cotα × sinα (即cosα / sinα = cotα)tanα = sinα × secα (即tanα / sinα = secα)sin ( α ± β ) = sinα · cosβ ± cosα · sinβsin ( α + β + γ ) = sinα · cosβ · cosγ +cosα · sinβ · cosγ + cosα · cosβ · sinγ - sinα · sinβ · sinγcos ( α ± β ) = cosα cosβ ∓ sinβ sinαtan ( α ± β ) = ( tanα ± tanβ ) / ( 1 ∓ tanα tanβ )完整初中三角函数值表如下图所示:常见的三角函数有正弦函数、余弦函数和正切函数。
三角函数10道大题(带答案)三角函数1.已知函数$f(x)=4\cos x\sin(x+\frac{\pi}{6})+\sin(2x-\frac{\pi}{4})+2\cos2x-1,x\in R$。
Ⅰ)求$f(x)$的最小正周期;Ⅱ)求$f(x)$在区间$[-\frac{\pi}{4},\frac{\pi}{4}]$上的最大值和最小值。
2.已知函数$f(x)=\tan(2x+\frac{\pi}{4}),x\in R$。
Ⅰ)求$f(x)$的定义域与最小正周期;II)设$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,若$f(\alpha+\frac{\pi}{4})=2\cos2\alpha$,求$\alpha$的大小。
3.已知函数$f(x)=\frac{(sinx-cosx)\sin2x}{\sin x}$。
1)求$f(x)$的定义域及最小正周期;2)求$f(x)$的单调递减区间。
4.设函数$f(x)=\frac{2\pi\cos(2x+\frac{\pi}{4})+\sin2x}{24}$。
Ⅰ)求函数$f(x)$的最小正周期;II)设函数$g(x)$对任意$x\in R$,有$g(x+\pi)=g(x)$,且当$x\in[0,\frac{\pi}{2}]$时,$2\pi g(x)=1-f(x)$,求函数$g(x)$在$[-\pi,0]$上的解析式。
5.函数$f(x)=A\sin(\omega x-\frac{\pi}{6})+1(A>0,\omega>\frac{\pi}{6})$的最大值为3,其图像相邻两条对称轴之间的距离为$\frac{\pi}{2}$。
1)求函数$f(x)$的解析式;2)设$\alpha\in(0,\frac{\pi}{2})$,则$f(\alpha)=2$,求$\alpha$的值。
6.设$f(x)=4\cos(\omega x-\frac{\pi}{6})\sin\omegax+\cos2\omega x$,其中$\omega>0$。
10、三角函数的图像与性质(1)教学目标:1、能借助正弦线画出正弦函数的图像,并在此基础上由诱导公式画出余弦函数的图像;2、借助图像理解正(余)弦函数的性质(定义域、值域、周期性、奇偶性).教学过程:一、引入为了更加直观的研究三角函数的性质,先作出它们的图像.怎样作出三角函数的图像?(描点法)二、建构1、 正弦函数的图像由于sin y x =是以2π为周期的函数,故只要先画出在[0,2]π上的图像,然后由周期函数向两边延伸可得整个图像.取2110,,,,,...,,263236x ππππππ=,可计算得110,,022y =-(代数方法),也可以借助单位圆作出sin ,sin ,...63ππ(几何方法)据此可作出一系列点,再用光滑的曲线把这些点连接起来,就得正弦函数sin y x =在[0,2]π上的图像.将sin y x =,[0,2]x π∈的图像向左、右平移(每次2π个单位),得到正弦函数sin ,y x x R =∈的图像,即正弦曲线.说明:如图可见其图像上起着关键作用的点有以下五个:3(0,0),(,1),(,0),(,1),(2,0)22ππππ-,今后我们一般先找出这五个关键点,可画出函数的简图,这种方法叫“五点法” .2、 余弦函数的图像你有什么办法画余弦函数的图像吗?方法一、列表描点法; 方法二,图像变换法.由cos sin()2x x π=+知,由sin y x =图像向左平移2π个单位得到cos y x =的图像.3、 正、余弦函数的性质:(观察图像)(1) 定义域:R(2) 值域:均为[1,1]-(3) 周期性:都是以2π为最小正周期的周期函数(4) 奇偶性:正弦函数是奇函数,余弦函数是偶函数.三、运用例1 用“五点法”画图:sin 2y x =变式:(1)画图 sin2y x =;(2)求sin 2y x =图像对称中心坐标、对称轴方程.例2 求函数x x y sin 21cos lg -+=的定义域.例3 求函数2cos3x y =-的最大值及此时x 的集合.变式: 求函数⎪⎭⎫⎝⎛--=63cos 2πx y 的最大值及此时x 的集合. 四、小结五、作业。
高中三角函数公式(共10篇)高中三角函数公式(一): 高中数学必修4三角函数公式大全诱导公式sin (α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z) tan (α+k·360°)=tanα(k∈Z) cot(α+k·360°)=cotα (k∈Z) sec(α+k·360°)=secα (k∈Z) csc(α+k·360°)=cscα (k∈Z)课改后COT SEC CSC不做要求的sin(180°+α)=-sinα cos(180°+α)=-cosα tan(180°+α)=tanαsin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanαsin(180°-α)=sinα cos(180°-α)=-cosα tan(180°-α)=-tanαsin(90°+α)=cosα cos(90°+α)=-sinα tan(90°+α)=-cotα sin (90°-α)=cosα cos (90°-α)=sinα tan (90°-α)=cotα两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式:sin(2α)=2sinα·cosα=2tan(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]高中三角函数公式(二): 数学三角函数的公式把高中数学所有数学三角函数公式列出来高中数学必修1和必修4的公式总结最佳答案乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b^2-4ac=0 注:方程有两个相等的实根b^2-4ac>0 注:方程有两个不等的实根b^2-4ac0抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c"*h正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2(c+c")h"圆台侧面积 S=1/2(c+c")l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h高中三角函数公式(三): 高中阶段比较重要的三角函数公式有哪些最好能一一列举下来【高中三角函数公式】倒数关系:商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱...高中三角函数公式(四): 求高中数学三角函数公式推导所有的三角函数公式的推导全部过程诱导公式:sin(2kπ+α)=sinα .cos(2kπ+α)=cosα.tan(2kπ+α)=tanα .sin(π+α)=-sinα .cos(π+α)=-cosα .tan(π+α)=tanα.sin(-α)=-sinα .cos(-α)=cosα .tan(-α)=-tanα.sin(π-α)=sinα .cos(π-α)=-cosα.tan(π-α)=-tanα.sin(2π-α)=-sinα .cos(2π-α)=cosα .tan(2π-α)=-tanα .sin(π/2+α)=cosα .cos(π/2+α)=-sinα.sin(π/2-α)=cosα .cos(π/2-α)=sinα .sin(3π/2+α)=-cosα.cos(3π/2+α)=sinα .sin(3π/2-α)=-cosα.cos(3π/2-α)=-sinα 基本关系:sin^2(A)+cos^2(A)=1.tanA=sinA/cosA三角恒等变换公式:sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) sin2A=2sinAcosA cos2A=cos^2(A)-sin^2(A)tan2A=(2tanA)/(1-tan^2(A))弦定理:若a、b、c为任意三角形ABC三边,A、B、C为三个角,则:a/sinA=b/sinB=c/sinC余弦定理:如上所设,则a^2=b^2+c^2-2bccosA b^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosC【高中三角函数公式】高中三角函数公式(五): 高中常用的三角函数公式有哪些在什么地方应用如题1.诱导公式 sin(-a) = - sin(a) cos(-a) = cos(a) sin(π/2 - a) =cos(a) cos(π/2 - a) = sin(a) sin(π/2 + a) = cos(a) cos(π/2 + a) = - sin(a) sin(π - a) = sin(a) cos(π - a) = - cos(a) sin(π + a) = -...高中三角函数公式(六): 高中三角函数公式表已知直角三角形三边长度求另外两角角度高中的数学公式定理大集中三角函数公式表同角三角函数的基本关系式倒数关系:商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积.”)诱导公式(口诀:奇变偶不变,符号看象限.)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=ta nαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsinα+sinβ=2高中三角函数公式(七): 2023年江苏省高中数学公式特别是三角函数公式三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系.而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y.深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导sin(A+B) = sinAcosB+cosAsinB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点.角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A"OD.A(cosα,sinα),B(cosβ,sinβ),A"(cos(α-β),sin(α-β))OA"=OA=OB=OD=1,D(1,0)∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) [1]两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)Sin2A=2SinA CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=2tanA/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A))tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sinαsinβ = -1/2*[cos(α+β)-cos(α-β)] cosαcosβ = 1/2*[cos(α+β)+cos(α-β)] sinαcosβ = 1/2*[sin(α+β)+sin(α-β)] cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] sin(-α) = -sinαcos(-α) = cosαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα高中三角函数公式(八): 高中三角函数的公式在非直角三角形ABC中设∠A邻边a,对边b,斜边c,那么sin∠A=cos∠A=tan∠A=(用含a、b、c的代数式表示)由于csc、sec、cot在直角三角形中分别为以上三种三角函数的倒数,在非直角三角形中是否仍然适用老师跟我讲过三角函数不在直角三角形中也是有的.如果答案是网上大段大段的Ctrl+C和Ctrl+V搞来的何必回答我的问题很清楚.前后答案最多100字.当然适用,三角函数抽象出来它就是一种不依赖于几何图形的函数.当然在高中会以圆为依托来深入研究它.事实上,如果你感兴趣,可以自己查询‘正弦定理‘、’余弦定理‘以及’正切定理‘.相信这个会给你提供你想要的,它就是在任意三角形中的.高中三角函数公式(九): 高中三角函数公式记忆RT老师说有N个公式一百多个呢咋记呢最好有口诀啥的追分ing...其实不用记忆那么多的啊!我就是有多年高三经验的老师。
高中三角函数公式大全[图]1 三角函数的定义1.1 三角形中的定义图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数:•正弦函数•余弦函数•正切函数•余切函数•正割函数•余割函数1.2 直角坐标系中的定义图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数:•正弦函数r•余弦函数•正切函数•余切函数•正割函数•余割函数2 转化关系2.1 倒数关系2.2 平方关系2 和角公式3 倍角公式、半角公式3.1 倍角公式3.2 半角公式3.3 万能公式4 积化和差、和差化积4.1 积化和差公式证明过程首先,sin(α+β)=sinαcosβ+sinβcosα〔已证。
证明过程见?和角公式与差角公式的证明?〕因为sin(α+β)=sinαcosβ+sinβcosα〔正弦和角公式〕那么sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα于是sin(α-β)=sinαcosβ-sinβcosα〔正弦差角公式〕将正弦的和角、差角公式相加,得到sin(α+β)+sin(α-β)=2sinαcosβ那么sinαcosβ=sin(α+β)/2+sin(α-β)/2〔“积化和差公式〞之一〕同样地,运用诱导公式cosα=sin(π/2-α),有cos(α+β)=sin[π/2-(α+β)]=sin(π/2-α-β)=sin[(π/2-α)+(-β)]=sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α)=cosαcosβ-sinαsinβ于是cos(α+β)=cosαcosβ-sinαsinβ〔余弦和角公式〕那么cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβcos(α-β)=cosαcosβ+sinαsinβ〔余弦差角公式〕将余弦的和角、差角公式相减,得到cos(α+β)-cos(α-β)=-2sinαsinβ那么sinαsinβ=cos(α-β)/2-cos(α+β)/2〔“积化和差公式〞之二〕将余弦的和角、差角公式相加,得到cos(α+β)+cos(α-β)=2cosαcosβ那么cosαcosβ=cos(α+β)/2+cos(α-β)/2〔“积化和差公式〞之三〕这就是积化和差公式:sinαcosβ=sin(α+β)/2+sin(α-β)/2sinαsinβ=cos(α-β)/2-cos(α+β)/2cosαcosβ=cos(α+β)/2+cos(α-β)/24.2 和差化积公式局部证明过程:sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosαcos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαs inβcos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβtan(α+β)=sin(α+β)/cos(α+β)=(sinαcosβ+sinβcosα)/(cosαcosβ-sinαsinβ)=(cosαtanαcosβ+cosβtanβcosα)/(cosαcosβ-cosαtanαcosβtanβ)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=tan[α+(-β)]=[tanα+tan(-β)]/[1-tanαtan(-β)]=(tanα-tanβ)/(1+tanαtanβ)诱导公式•sin(-a)=-sin(a)•cos(-a)=cos(a)•sin(pi/2-a)=cos(a)•cos(pi/2-a)=sin(a)•sin(pi/2+a)=cos(a)•cos(pi/2+a)=-sin(a)•sin(pi-a)=sin(a)•cos(pi-a)=-cos(a)•sin(pi+a)=-sin(a)•cos(pi+a)=-cos(a)•tgA=tanA=sinA/cosA两角和与差的三角函数•sin(a+b)=sin(a)cos(b)+cos(α)sin(b)•cos(a+b)=cos(a)cos(b)-sin(a)sin(b)•sin(a-b)=sin(a)cos(b)-cos(a)sin(b)•cos(a-b)=cos(a)cos(b)+sin(a)sin(b)•tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))•tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))三角函数和差化积公式•sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)•sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2)•cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)•cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)积化和差公式•sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]•cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]•sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]二倍角公式•sin(2a)=2sin(a)cos(a)•cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a) 半角公式•sin^2(a/2)=(1-cos(a))/2•cos^2(a/2)=(1+cos(a))/2•tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))万能公式•sin(a)= (2tan(a/2))/(1+tan^2(a/2))•cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))•tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式•a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]•a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]• 1+sin(a)=(sin(a/2)+cos(a/2))^2 • 1-sin(a)=(sin(a/2)-cos(a/2))^2 其他非重点三角函数• csc(a)=1/sin(a) •sec(a)=1/cos(a)双曲函数• sinh(a)=(e^a-e^(-a))/2 • cosh(a)=(e^a+e^(-a))/2 •tgh(a)=sinh(a)/cosh(a)常用公式表〔一〕1。
高中三角函数公式大全[图]1 三角函数的定义1.1 三角形中的定义图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数:•正弦函数•余弦函数•正切函数•余切函数•正割函数1.2 直角坐标系中的定义图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数:•正弦函数r•余弦函数•余切函数•正割函数•余割函数2 转化关系2.1 倒数关系2.2 平方关系2 和角公式3 倍角公式、半角公式3.1 倍角公式3.2 半角公式3.3 万能公式4 积化和差、和差化积4.1 积化和差公式证明过程首先,sin(α+β)=sinαcosβ+sinβcosα(已证。
证明过程见《和角公式与差角公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和角公式)则=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα于是sin(α-β)=sinαcosβ-sinβcosα(正弦差角公式)将正弦的和角、差角公式相加,得到sin(α+β)+sin(α-β)=2sinαcosβ则sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之一)同样地,运用诱导公式cosα=sin(π/2-α),有cos(α+β)=sin[π/2-(α+β)]=sin(π/2-α-β)=sin[(π/2-α)+(-β)]=sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α)=cosαcosβ-sinαsinβ于是cos(α+β)=cosαcosβ-sinαsinβ(余弦和角公式)那么=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβcos(α-β)=cosαcosβ+sinαsinβ(余弦差角公式)将余弦的和角、差角公式相减,得到cos(α+β)-cos(α-β)=-2sinαsinβ则sinαsinβ=cos(α-β)/2-cos(α+β)/2(“积化和差公式”之二)将余弦的和角、差角公式相加,得到cos(α+β)+cos(α-β)=2cosαcosβ则cosαcosβ=cos(α+β)/2+cos(α-β)/2(“积化和差公式”之三)这就是积化和差公式:sinαcosβ=sin(α+β)/2+sin(α-β)/2sinαsinβ=cos(α-β)/2-cos(α+β)/2cosαcosβ=cos(α+β)/2+cos(α-β)/24.2 和差化积公式部分证明过程:sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαc osβ-sinβcosαcos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβcos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαc osβ+sinαsinβtan(α+β)=sin(α+β)/cos(α+β)=(sinαcosβ+sinβcosα)/(c osαcosβ-sinαsinβ)=(cosαtanαcosβ+cosβtanβcosα)/(co sαcosβ-cosαtanαcosβtanβ)=(tanα+tanβ)/(1-tanαtanβ) tan(α-β)=tan[α+(-β)]=[tanα+tan(-β)]/[1-tanαtan(-β)] =(tanα-tanβ)/(1+tanαtanβ)诱导公式•sin(-a)=-sin(a)•cos(-a)=cos(a)•sin(pi/2-a)=cos(a)•cos(pi/2-a)=sin(a)•sin(pi/2+a)=cos(a)•cos(pi/2+a)=-sin(a)•sin(pi-a)=sin(a)•cos(pi-a)=-cos(a)•sin(pi+a)=-sin(a)•cos(pi+a)=-cos(a)•tgA=tanA=sinA/cosA两角和与差的三角函数•sin(a+b)=sin(a)cos(b)+cos(α)sin(b)•cos(a+b)=cos(a)cos(b)-sin(a)sin(b)•sin(a-b)=sin(a)cos(b)-cos(a)sin(b)•cos(a-b)=cos(a)cos(b)+sin(a)sin(b)•tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))•tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))三角函数和差化积公式•sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)•sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2)•cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)•cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)积化和差公式•sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]•cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]•sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]二倍角公式•sin(2a)=2sin(a)cos(a)•cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)半角公式•sin^2(a/2)=(1-cos(a))/2•cos^2(a/2)=(1+cos(a))/2•tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))万能公式•sin(a)= (2tan(a/2))/(1+tan^2(a/2))•cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))•tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式•a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]•a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]•1+sin(a)=(sin(a/2)+cos(a/2))^2•1-sin(a)=(sin(a/2)-cos(a/2))^2其他非重点三角函数•csc(a)=1/sin(a)•sec(a)=1/cos(a)双曲函数•sinh(a)=(e^a-e^(-a))/2•cosh(a)=(e^a+e^(-a))/2•tgh(a)=sinh(a)/cosh(a)常用公式表(一)1。
专题10 三角函数性质、最值和ω题型归类一、重点题型目录【题型】一、整体代入法求三角函数的单调区间对称轴和对称中心 【题型】二、代入检验判定求三角函数的单调区间对称轴和对称中心 【题型】三、图像法求三角函数的最值或值域 【题型】四、换元法求三角函数的最值或值域【题型】五、利用三角函数的单调性、奇偶性、周期性和对称性求参数 【题型】六、五点法求三角函数的解析式 【题型】七、利用图象平移求函数的解析式或参数 二、题型讲解总结【题型】一、整体代入法求三角函数的单调区间对称轴和对称中心 例1.(2023·全国·高三专题练习)已知函数π()sin()(0,0)2f x A x A ϕϕ=+>-<<在56x π=时取得最大值,则()f x 在[π,0]-上的单调增区间是( ) A .5ππ6⎡⎤--⎢⎥⎣⎦, B .5ππ66⎡⎤--⎢⎥⎣⎦, C .π03⎡⎤-⎢⎥⎣⎦, D .π06⎡⎤-⎢⎥⎣⎦, 【答案】D【分析】根据题意可得5πsin 16ϕ⎛⎫+= ⎪⎝⎭,则可求出ϕ,由于0A >,所以利用正弦函数的性质可求出答案.【详解】解:因为函数π()sin()(0,0)2f x A x A ϕϕ=+>-<<在5π6x =取最大值所以5πsin 6A A ϕ⎛⎫+= ⎪⎝⎭,则5πsin 16ϕ⎛⎫+= ⎪⎝⎭,所以5πππ,Z 62k k ϕ+=+∈,得ππ,Z 3k k ϕ=-+∈ 又因为π02ϕ-<< 所以π3ϕ=-, 所以π()sin (0)3f x A x A ⎛⎫=-> ⎪⎝⎭,由πππ2π2π,Z 232k x k k -+≤-≤+∈,得5ππ22,Z 66ππk x k k -+≤≤+∈, 所以()f x 的递增区间为()π5π2π,2πZ 66k k k ⎡⎤-++∈⎢⎥⎣⎦,所以()f x 在[π,0]-上的单调增区间是π06⎡⎤-⎢⎥⎣⎦,, 故选:D .例2.(2022·黑龙江·哈尔滨市剑桥第三高级中学有限公司高三阶段练习)函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭的一个对称中心是( )A .,112π⎛⎫⎪⎝⎭B .7,012π⎛⎫⎪⎝⎭ C .,13π⎛⎫ ⎪⎝⎭D .5,012π⎛⎫- ⎪⎝⎭【答案】C【分析】根据余弦型函数,求出其对称中心即可判断作答.【详解】在函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭中,由2,Z 62x k k πππ-=+∈得,,Z 23k x k ππ=+∈, 所以函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭的对称中心是(,1)(Z)23k k ππ+∈,显然B ,D 不满足,A 不满足,当0k =是,对称中心为(,1)3π,C 满足.故选:C例3.(2022·湖北·宜都二中高三期中)已知函数π()sin()0,0,||2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列说法正确的是( )A .()f x 的图象可由()cos g x A x ω=图象向右平移π9个单位长度得到B .()f x 图象的一条对称轴的方程为5π9x =-C .()f x 在区间29π17π,3636⎛⎫-- ⎪⎝⎭上单调递增 D .()2f x ≥的解集为2k π2π2k π,()393k ⎡⎤+∈⎢⎥⎣⎦Z 【答案】ABD【分析】根据函数的振幅、周期、及过点4,49π⎛⎫-⎪⎝⎭可求得π()4sin 36f x x ⎛⎫=+ ⎪⎝⎭, 对于选项A :利用函数图象的平移检验即可;对于选项B :令ππ3π,62x k k +=+∈Z 可解得()f x 图象对称轴的方程,检验是否能取到5π9x =-即可. 对于选项C :求出π9π5π3,644x ⎛⎫+∈-- ⎪⎝⎭,验证正弦函数在9π5π,44⎛⎫-- ⎪⎝⎭是否单调增.对于选项D : 直接解三角不等式π1sin 362x ⎛⎫+≥ ⎪⎝⎭即可获得答案.【详解】由题意知34ππ4,4918A T ⎛⎫==-- ⎪⎝⎭,解得2π3T =,所以2π3T ω==, 所以()4sin(3)f x x ϕ=+.又点4,49π⎛⎫- ⎪⎝⎭在()f x 的图象上, 所以4π4sin 349ϕ⎛⎫⨯+=- ⎪⎝⎭,所以4π3π2π,32k k ϕ+=+∈Z , 解得π2π,6k k ϕ=+∈Z ,又||2ϕπ<,所以ϕ=π6, 所以π()4sin 36f x x ⎛⎫=+ ⎪⎝⎭,将π()4cos34sin 32g x x x ⎛⎫==+ ⎪⎝⎭向右平移π9个单位可得πππ4sin 34sin 3()926y x x f x ⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故A 正确;令ππ3π,62x k k +=+∈Z ,解得ππ,93k x k =+∈Z ,令2k =-得5π9x =- 所以()f x 图象的对称轴的方程为5π9x =-.故B 正确; 当29π17π,3636x ⎛⎫∈-- ⎪⎝⎭时,π9π5π3,644t x ⎛⎫=+∈-- ⎪⎝⎭,sin y t =在9π5π,44t ⎛⎫∈-- ⎪⎝⎭上不是单调递增的,故C 错误;令()2f x ≥,即π1sin 362x ⎛⎫+≥ ⎪⎝⎭,所以ππ5π2π32π,666k x k k +≤+≤+∈Z ,解得2π2π2π,393k k x k ≤≤+∈Z ,即()2f x ≥的解集为2π2π2π,()393k k k ⎡⎤+∈⎢⎥⎣⎦Z ,故D 正确. 故选:ABD.例4.(2023·全国·高三专题练习)已知函数()[]π4sin 2,π,03f x x x ⎛⎫=-∈- ⎪⎝⎭,则()f x 的单调递增区间是________.【答案】7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦【分析】利用正弦函数的单调性以及整体代入的方法,求出()f x 的单调递增区间,结合[]π,0x ∈-,得出答案.【详解】由()πππ2π22πZ 232k x k k -+≤-≤+∈,得()π5πππZ 1212k x k k -+≤≤+∈,当1k =-时,13π7π,1212x ⎡⎤∈--⎢⎥⎣⎦;当0k =时,π5π,1212x ⎡⎤∈-⎢⎥⎣⎦;又因为[]π,0x ∈-,所以()f x 的单调递增区间为7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦故答案为:7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦【题型】二、代入检验判定求三角函数的单调区间对称轴和对称中心例5.(2023·全国·高三专题练习)已知α,β,γ是三个互不相同的锐角,则在sin cos αβ+,sin cos βγ+,sin cos γα+ )个 A .0 B .1C .2D .3【答案】C【分析】先根据辅助角公式得到三个式子的和小于得到在sin cos αβ+,sin cos βγ+,sin cos γα+三个值中,,再举出例子,得到三个值中,有2个值符合要求,故得到答案.【详解】因为α,β,γ是三个互不相同的锐角, 所以sin cos sin cos sin cos αββγγα+++++πππ444αβγ⎛⎫⎛⎫⎛⎫=+++<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以在sin cos αβ+,sin cos βγ+,sin cos γα+若令π3α=,π4β=,π6γ=,则sin cos αβ+=>sin cos βγ+=+>sin cos 1γα+=<的个数最多有2个. 故选:C例6.(2023·全国·高三专题练习)已知()1cos cos 2222x x x f x ⎫=+-⎪⎭,若存在0ππ,33x ⎡⎤∈-⎢⎥⎣⎦,使不等式()205122f x m m ≤--有解,则实数m 的取值范围为( )A .50,2⎡⎤⎢⎥⎣⎦B .(]5,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭C .1,32⎡⎤-⎢⎥⎣⎦D .[)1,3,2⎛⎤-∞-⋃+∞ ⎥⎝⎦【答案】B【分析】先化简()f x 的解析式,不等式()205122f x m m ≤--在,33ππ⎡⎤-⎢⎥⎣⎦上能成立等价于()2min 51,22f x m m -≤-求得()f x 的最小值后解不等式即可求解【详解】()21sin cos 2222x x xf x =+-1cos 11cos 222x x x x +=+-=+ cossin sin cos 66xx x π=+. sin 6x π⎛⎫=+ ⎪⎝⎭0π ,33x π⎡⎤∃∈-⎢⎥⎣⎦,使不等式()205122f x m m ≤--有解则 ()2min 51,22f x m m -≤-π,33x π⎡⎤∈-⎢⎥⎣⎦ πππ,662x ⎡⎤∴+∈-⎢⎥⎣⎦1sin 126x π⎛⎫∴-≤+≤ ⎪⎝⎭ 当3x π=-时,()f x 取得最小值,ππ1sin 362f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭. 所以 2511,222m m --≥-解之得:52m或0m m ∴的取值范围是(]5,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭故选:B例7.(2022·湖南·高三开学考试)若函数()22cos f x x x m ++在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为6,则下列结论正确的是( ) A .5π512f ⎛⎫= ⎪⎝⎭B .2π是函数()f x 的一个周期C .当π0,2x ⎡⎤∈⎢⎥⎣⎦时,不等式()4c f x c <<+恒成立,则实数c 的取值范围是[)2,3D .将函数()f x 的图像向左移动6π个单位得到函数()g x 的图像,则函数()g x 是一个偶函数 【答案】BD【分析】先根据三角恒等变换整理得()π2sin 216f x x m ⎛⎫=+++ ⎪⎝⎭,以π26x +为整体,结合正弦函数图像与性质运算求解,并运用图像平移处理求解判断.【详解】()2π2cos cos212sin 216f x x x m x x m x m ⎛⎫++=+++=+++ ⎪⎝⎭,当π0,2x ⎡⎤∈⎢⎥⎣⎦时,则ππ7π2,666x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以当π6x =时,()f x 的最大值为6,即3m =,所以5π412f ⎛⎫= ⎪⎝⎭,选项A 不正确; ∵()f x 的最小正周期2ππ2T ==,则2π是函数()f x 的一个周期,选项B 正确; 当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()36f x ≤≤,所以不等式()4c f x c <<+恒成立,则364c c <⎧⎨<+⎩,解得23c <<,选项C 不正确;函数()f x 的图像向左移动6π个单位得到函数()πππ2sin 242sin 242cos24662g x x x x ⎡⎤⎛⎫⎛⎫=+++=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()g x 是一个偶函数,选项D 正确. 故选:BD .例8.(2023·广东·高三学业考试)已知函数22()cossin 22x xf x a =--,R a ∈ (1)求函数()f x 的单调递增区间;(2)若函数()f x 在,36ππ⎡⎤-⎢⎥⎣⎦上有零点,求a 的取值范围.【答案】(1)22[]k k πππ-, ,k ∵Z (2)1,12⎡⎤⎢⎥⎣⎦【分析】(1)利用余弦的二倍角公式化简,再结合余弦函数的单调性求解即可;(2)转化为方程cos x a =在,36ππ⎡⎤-⎢⎥⎣⎦上有解即可.(1)22()cos sin cos 22x xf x a x a =--=- 当22k x k πππ-≤≤ ,k ∵Z 时,()f x 单调递增,∵函数()f x 的单调递增区间为22[]k k πππ-,,k ∵Z . (2)函数()f x 在,36ππ⎡⎤-⎢⎥⎣⎦上有零点,也就是cos x a =在,36ππ⎡⎤-⎢⎥⎣⎦上有解.∵当,36x ππ⎡⎤∈-⎢⎥⎣⎦时,1cos ,12x ⎡⎤∈⎢⎥⎣⎦.∵a 的取值范围是1,12⎡⎤⎢⎥⎣⎦.【题型】三、图像法求三角函数的最值或值域例9.(2023·全国·高三专题练习)若将()sin 214f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移4π个单位长度后得到函数()g x 的图象,则()g x 在0,8π⎡⎤⎢⎥⎣⎦上的最小值为( )A1 B .2C 1D .2【答案】C【分析】先求平移后的函数解析式,再求()g x 在闭区间上的最值【详解】因为()si 1442n g x f x x ππ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭,又因为0,8x π⎡⎤∈⎢⎥⎣⎦,所以2,442x πππ⎡⎤+∈⎢⎥⎣⎦,所以()min 1g x =. 故选:C例10.(2023·全国·高三专题练习)已知函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭,则下列说法正确的是( )A .()()f x f x π+=B .6f x π⎛⎫+ ⎪⎝⎭的图象关于原点对称C .若125012x x π<<<,则()()12f x f x < D .对1x ∀,2x ,3,32x ππ⎡⎤∈⎢⎥⎣⎦,有()()()132f x f x f x +>成立【答案】ACD【分析】利用正弦型函数的周期公式求周期判断A ,利用正弦型函数的对称性可判断B ,利用正弦型函数的单调性可判断C ,利用正弦型函数的值域可判断D.【详解】∵函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭的周期22T ππ==,所以()()f x f x π+=恒成立, 故A 正确;又2sin 216f x x π⎛⎫+=+ ⎪⎝⎭,所以2sin 11663f πππ⎛⎫+=+= ⎪⎝⎭,2sin 11663f πππ⎛⎫⎛⎫-+=-+= ⎪ ⎪⎝⎭⎝⎭,所以6666f f ππππ⎛⎫⎛⎫+≠--+ ⎪ ⎪⎝⎭⎝⎭, 所以6f x π⎛⎫+ ⎪⎝⎭的图象不关于原点对称,故B 错误;当50,12x π⎛⎫∈ ⎪⎝⎭时,2,332x πππ⎛⎫-∈- ⎪⎝⎭,所以函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭在50,12π⎛⎫⎪⎝⎭上单调递增,故C 正确;因为,32x ππ⎡⎤∈⎢⎥⎣⎦ ,所以22,333x πππ⎡⎤-∈⎢⎥⎣⎦sin 213x π⎛⎫≤-≤ ⎪⎝⎭,()1,3f x ⎤∴∈⎦,又)213>,即min max 2()()f x f x >,所以对123,,[,],32x x x ππ∀∈有132()()()f x f x f x +>成立,故D 正确.故选:ACD.例11.(2023·全国·高三专题练习)如图,点D 位于以AB 为直径的半圆上(含端点A ,B ),ABC 是边长为2的等边三角形,则AD CB ⋅的取值可能是( )A .1-B .0C .1D .4【答案】BC【分析】建立坐标系,利用数量积的坐标表示求AD CB ⋅,化简求其范围,由此可得结论. 【详解】如图所示,以AB 所在直线为x 轴,以AB 的垂直平分线为y 轴建立平面直角坐标系,则()1,0A -,()10B ,,(0,C .令()cos ,sin D θθ,其中0θπ≤≤,则()cos 1,sin AD θθ=+,(1,CB =,所以cos 12sin 16AD CB πθθθ⎛⎫⋅=++=++ ⎪⎝⎭.因为0θπ≤≤,所以7666πππθ≤+≤,所以1sin 126πθ⎛⎫-≤+≤ ⎪⎝⎭,所以[]2sin 10,36AD CB πθ⎛⎫⋅=++∈ ⎪⎝⎭.故选:BC.例12.(2023·全国·高三专题练习)函数()ππsin 36f x x x ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭的最大值为______.【答案】2【分析】利用三角诱导公式和恒等变换化简得到()2cos f x x =,从而求出最大值.【详解】()πππππsin cos 36362f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+--=++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭πππππcos 2sin 2sin 2cos 33362x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++=++=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故函数()f x 的最大值为2 故答案为:2【题型】四、换元法求三角函数的最值或值域例13.(2023·全国·高三专题练习)已知函数()2sin cos f x x x x =,则下列结论中正确的是( )A .函数()f x 的最小正周期为2πB .3x π=时()f x 取得最小值C .()f x 关于3x π=对称 D .512x π=时()f x 取得最大值 【答案】D【分析】结合二倍角正弦公式和辅助角公式化简()f x ,再结合正弦函数性质判断各选项.【详解】因为()2sin cos f x x x x =,所以()sin 2f x x x =,所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭,所以函数()f x 的最小正周期22T ππ==,A 错误,2sin 22333f πππ⎛⎫⎛⎫=⨯-=≠- ⎪ ⎪⎝⎭⎝⎭,BC 错误,552sin 2212123f πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,D 正确.故选:D.例14.(2023·全国·高三专题练习)函数()sin cos sin 2f x x x x =++的最大值为( ) A.1 B .1C .1D .3【答案】C【分析】利用换元法,令sin cos t x x =+,则原函数可化为21y t t =+-,再根据二次函数的性质可求得其最大值【详解】()sin cos sin 2sin cos 2sin cos f x x x x x x x x =++=++,令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,所以[t ∈,则22(sin cos )12sin cos t x x x x =+=+,所以22sin cos 1x x t =-,所以原函数可化为21y t t =+-,[t ∈,对称轴为12t =-,所以当t =时,21y t t =+-取得最大值,所以函数的最大值为211=,即()sin cos sin 2f x x x x =++的最大值为1 故选:C例15.(2023·全国·高三专题练习)函数2()sin cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 B .2C .32D .3【答案】C【分析】先将函数用二倍角公式进行降幂运算,得到1()sin(2)26f x x π=+-,然后再求其在区间[,]42ππ上的最大值.【详解】解:因为2()sin cos f x x x x =,所以1cos 21()2sin(2)226x f x x x π-==+-,42ππx ≤≤,52366x πππ∴≤-≤,1sin 2126x π⎛⎫∴≤-≤ ⎪⎝⎭,∴13()122max f x =+=.故选:C .例16.(2022·广东·汕头市达濠华侨中学高三阶段练习)已知函数()3sin 222f x x x =+,则下列选项正确的有( ) A .()f x 的最小正周期为πB .曲线()y f x =关于点π,03⎛⎫⎪⎝⎭中心对称C .()f xD .曲线()y f x =关于直线π6x =对称 【答案】ACD【分析】化简()πsin 26⎛⎫=+ ⎪⎝⎭f x x .利用周期公式求出周期可判断A ;计算π3⎛⎫⎪⎝⎭f 可判断B ; 利用π1sin 216⎛⎫-≤+≤ ⎪⎝⎭x 可判断C ;计算π6f ⎛⎫⎪⎝⎭可判断D【详解】()3πsin 22sin 226f x x x x ⎛⎫==+ ⎪⎝⎭. 对于A ,()f x 的最小正周期2ππ2T ==,故A 正确;对于B ,πππ20336f ⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,π1sin 216⎛⎫-≤+≤ ⎪⎝⎭x ,所以()max f x C 正确;对于D ,πππ2666f ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭D 正确.故选:ACD.【题型】五、利用三角函数的单调性、奇偶性、周期性和对称性求参数例17.(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为( ) A .3 B .4 C .5 D .6【答案】C【分析】根据三角函数的性质,利用整体思想,由单调区间与周期的关系,根据零点与对称轴之间的距离,表示所求参数,逐个检验取值,可得答案.【详解】由f (x )在186ππ⎛⎫⎪⎝⎭,上单调,即12618T ππ≥-,可得29T π≥,则ω≤9;∵4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,根据三角函数的图象可知,零点与对称轴之间距离为:()1214T k ⨯-,k ∵N *.要求ω最大,则周期最小,∵()12142k T π-⨯=,则T 221k π=-;∵ω=2k ﹣1;当9ω=时,由2πϕ≤,则4πϕ=-,可得()cos 94f x x π⎛⎫=- ⎪⎝⎭,易知()f x 在5,1836ππ⎛⎫ ⎪⎝⎭上单减,在5,366ππ⎛⎫⎪⎝⎭上递增,不合题意; 当7ω=时,由2πϕ≤,则4πϕ=,可得()cos 74f x x π⎛⎫=+ ⎪⎝⎭,易知()f x 在3,1828ππ⎛⎫⎪⎝⎭上单减,在3,286ππ⎛⎫ ⎪⎝⎭上递增,不合题意;当5ω=时,由2πϕ≤,则4πϕ=-,可得()cos 54f x x π⎛⎫=- ⎪⎝⎭,易知()f x 在,186ππ⎛⎫⎪⎝⎭上单减,符合题意;故选:C .例18.(2023·全国·高三专题练习)若直线π4x =是曲线πsin (0)4y x ωω⎛⎫=-> ⎪⎝⎭的一条对称轴,且函数πsin()4y x ω=-在区间[0,π12]上不单调,则ω的最小值为( )A .9B .7C .11D .3【答案】C【分析】根据给定条件,求出ω的关系式,再求出函数πsin()4y x ω=-含有数0的单调区间即可判断作答.【详解】因直线π4x =是曲线πsin (0)4y x ωω⎛⎫=-> ⎪⎝⎭的一条对称轴,则πππ,N 442k k ωπ-=+∈,即43,N k k ω=+∈, 由πππ242x ω-≤-≤得π3π44x ωω-≤≤,则函数πsin()4y x ω=-在π3π[,]44ωω-上单调递增, 而函数πsin()4y x ω=-在区间π[0,]12上不单调,则3π412πω<,解得9ω>, 所以ω的最小值为11. 故选:C例19.(2023·江苏南京·高三阶段练习)已知函数()()πsin 026f x x ωω⎛⎫=+<< ⎪⎝⎭,()()π0f x f x ++=,()()()0πf f αβαβ=<<<,则( )A .()()4πf x f x =+B .()()9π0f x f x ++=C .()()12f f αββα+<-= D .()()12f f βααβ-<+=【答案】AB【分析】推导出()()2πf x f x +=,可判断AB 选项;求出2π3αβ+=,并求出()f βα-的取值范围,可判断CD 选项.【详解】对于A 选项,对任意的R x ∈,()()πf x f x +=-,则()()()2ππf x f x f x +=-+=, 所以,()()()4π2πf x f x f x +=+=,A 对;对于B 选项,()()()9ππf x f x f x +=+=-,则()()9π0f x f x ++=,B 对; 对于CD 选项,由题意可知,()f x 的最小正周期为2π,则2π12πω==,则()πsin 6f x x ⎛⎫=+ ⎪⎝⎭,当()0,πx ∈时,ππ7π666x <+<, 由πππ662x <+<可得π03x <<,则函数()f x 在π0,3⎛⎫⎪⎝⎭上单调递增, 由ππ7π266x <+<可得ππ3x <<,则函数()f x 在π,π3⎛⎫ ⎪⎝⎭上单调递减,0παβ<<<,则πππ7π6666αβ<+<+<, 所以,πππ66αβ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,则2π3αβ+=,所以,()2ππ5π1sin sin 3662f αβ⎛⎫+=+==⎪⎝⎭,C 错, 因为πππ7π6666αβ<+<+<,则πππ662α<+<,所以,π03α<<, 则2π2π20,33βαα⎛⎫-=-∈ ⎪⎝⎭,所以,ππ5π,666βα⎛⎫-+∈ ⎪⎝⎭ 故()1,12f βα⎛⎤-∈ ⎥⎝⎦,则()()12f f βααβ->+=,D 错.故选:AB.【题型】六、五点法求三角函数的解析式例20.(2023·全国·高三专题练习)智能主动降噪耳机工作的原理是通过耳机两端的噪声采集器采集周围的噪声,然后通过主动降噪芯片生成与噪声相位相反、振幅相同的声波来抵消噪声(如图).已知噪声的声波曲线()cos y A x ωϕ=+(其中0A >,0ω>,0πϕ≤<2)的振幅为1,周期为2π,初相位为π2,则通过主动降噪芯片生成的声波曲线的解析式为( )A .sin y x =B .cos y x =C .sin y x =-D .cos y x =-【答案】A【分析】由振幅可得A 的值,由周期可得ω的值,由初相位可得ϕ的值,即可得出声波曲线的解析式,进而可得主动降噪芯片生成的声波曲线的解析式.【详解】解:因为噪音的声波曲线()cos y A x ωϕ=+(其中0A >,0ω>,0πϕ≤<2)的振幅为1,则1A =, 周期为2π,则2π2π12πT ω===,初相位为π2,π2ϕ=,所以噪声的声波曲线的解析式为πcos sin 2y x x ⎛⎫=+=- ⎪⎝⎭,所以通过主动降噪芯片生成的声波曲线的解析式为sin y x =.故选:A.例21.(2022·福建省连城县第一中学高三阶段练习)函数()()sin()0,f x A x b ωϕωϕπ=++><的部分图象如图所示,下列说法正确的是( )A .函数()f x 的解析式为()2sin 213f x x π⎛⎫=++ ⎪⎝⎭B .函数()f x 的单调递增区间为5,(Z)1212k k k ππππ⎛⎫-++∈ ⎪⎝⎭C .函数()f x 的图象关于点,1(Z)2k k π⎛⎫∈ ⎪⎝⎭对称 D .为了得到函数()f x 的图象,只需将函数()2cos 23g x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位长度,再向上平移一个单位长度 【答案】ABD【分析】由题意求出()f x 的解析式可判断A ;利用正弦函数的单调性和对称性可判断BC ;由三角函数的平移变换可判断D.【详解】对于A ,由图可知,31A b A b +=⎧⎨-+=-⎩,可得21A b =⎧⎨=⎩,由π1sin 425π1sin 122ωϕωϕ⎧⎡⎤⎛⎫⨯-+=-⎪ ⎪⎢⎥⎪⎝⎭⎣⎦⎨⎛⎫⎪⨯+=- ⎪⎪⎝⎭⎩,则1122ππ+2π,Z 465π7π+2π,Z126k k k k ωϕωϕ⎧-+=-∈⎪⎪⎨⎪+=∈⎪⎩,两式相减得:()122π4π2π33k k ω=+-, 所以()1223k k ω=+-∵,又因为π2π5ππ33212425ππ2π2π31243T T ωωωω⎧⎧≤≤+⎧⎪⎪≥⎪⎪⎪⇒⇒⎨⎨⎨⎪⎪⎪≤≥+≥⎩⎪⎪⎩⎩,所以332ω≤≤,结合∵,2ω=, 因为π5ππ412212-+=,所以πππ21223ϕϕ⨯+=⇒=, 所以()π2sin 213f x x ⎛⎫=++ ⎪⎝⎭,故A 正确;对于B ,πππ2π22π,Z 232k x k k -+≤+≤+∈,解得:()5ππππ,Z 1212k x k k -+≤≤+∈,故B 正确; 对于C ,令π2ππ,Z 3+=+∈x k k ,解得:ππ,Z 32=+∈k x k , 函数()f x 的图象关于点()ππ,1Z 32k k ⎛⎫+∈ ⎪⎝⎭对称,所以C 不正确;对于D ,将函数π2cos 23x ⎛⎫+ ⎪⎝⎭向右平移π4个单位得到πππ2cos 22sin 2433⎡⎤⎛⎫⎛⎫-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦x x ,向上平移一个单位长度可得π2sin 213y x ⎛⎫=++ ⎪⎝⎭,故D 正确.故选:ABD.例22.(2023·江西·赣州市赣县第三中学高三期中(理))已知函数()sin 0,0,π()(||)f x A x A ωϕωϕ=+>><的部分图象如图所示,将函数()f x 的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数()g x 的图象.(1)求函数()g x 的解析式;(2)若对于()()2π0,,303x g x mg x ⎡⎤⎡⎤⎣⎦⎢⎥∀-⎣-⎦∈≤恒成立,求实数m 的取值范围.【答案】(1)π()2sin 36g x x ⎛⎫=+ ⎪⎝⎭,(2)1,22⎡⎤⎢⎥⎣⎦.【分析】(1)先根据函数图象求出()f x 的解析,再利用图象变换规律可求出()g x 的解析式; (2)由π0,3x ⎡⎤∈⎢⎥⎣⎦,得ππ7π3,666x ⎡⎤⎢⎥⎣∈⎦+,从而可得[]()1,2g x ∈-,然后分()0g x =,()[1,0)g x ∈-和(,])2(0g x ∈求解即可.【详解】(1)由()f x 的图象可得2A =,5πππ212122T ⎛⎫=--= ⎪⎝⎭, 所以πT =,所以2ππω=,得2ω=,所以()()(|2sin 2π|)f x x ϕϕ=+<, 因为()f x 的图象过5,212π⎛⎫- ⎪⎝⎭,所以52sin 2212πϕ⎛⎫⨯+=- ⎪⎝⎭,所以5sin 16πϕ⎛⎫+=- ⎪⎝⎭, 所以5ππ2π,Z 62k k ϕ+=-∈,得4π2π,Z 3k k ϕ=-∈, 因为||πϕ<,所以2π3ϕ=, 所以()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,将函数()f x 的图象上所有点的横坐标变为原来的23,纵坐标不变,可得32π2π2sin 22sin 3233y x x ⎛⎫⎛⎫=⨯+=+ ⎪ ⎪⎝⎭⎝⎭,再将所得函数图象向右平移π6个单位长度,得 π2ππ2sin 32sin 3636y x x ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以π()2sin 36g x x ⎛⎫=+ ⎪⎝⎭(2)由π0,3x ⎡⎤∈⎢⎥⎣⎦,得ππ7π3,666x ⎡⎤⎢⎥⎣∈⎦+,所以π1sin 3,162x ⎛⎫+∈- ⎪⎝⎭⎡⎤⎢⎥⎣⎦,所以[]π2sin 31,26x ⎛⎫+∈- ⎪⎝⎭,所以[]()1,2g x ∈-,当()0g x =时,30-≤恒成立,当()[1,0)g x ∈-时,则由()()230g x mg x -⎤⎦-⎣≤⎡, 得3()()m g x g x ≤-, 因为函数3y x x=-在[1,0)-上为增函数,所以min33()12()1g x g x ⎡⎤-=--=⎢⎥-⎣⎦ 所以2m ≤,当(,])2(0g x ∈,则由()()230g x mg x -⎤⎦-⎣≤⎡, 得3()()m g x g x ≥-, 因为函数3y x x=-在(0,2]上为增函数,所以max331()2()22g x g x ⎡⎤-=-=⎢⎥⎣⎦ 所以12m ≥, 综上122m ≤≤,即实数m 的取值范围为1,22⎡⎤⎢⎥⎣⎦.【题型】七、利用图象平移求函数的解析式或参数例23.(2023·全国·高三专题练习)要得到函数π3sin(2)3y x =+的图象,只需要将函数3cos 2y x =的图象( )A .向右平行移动π12个单位 B .向左平行移动π12个单位 C .向右平行移动π6个单位D .向左平行移动π6个单位【答案】A【分析】由三角函数的图象变换求解【详解】π3cos 23sin(2)2y x x ==+,要得到π3sin(2)3y x =+的图象,需要向右平移πππ23212-=个单位.故选:A例24.(2022·湖南省临澧县第一中学高三阶段练习)已知函数π()2sin 213f x x ⎛⎫=-+ ⎪⎝⎭,则下列说法正确的是( )A .将函数2sin 2y x =的图象向右平移π6个单位,再向上平移1个单位得到()=y f x 的图象B .函数()=y f x 在区间π0,2⎛⎫⎪⎝⎭上单调递增C .函数()=y f x 的图象关于直线π12x =-对称 D .函数()=y f x 的图象关于点,06π⎛⎫⎪⎝⎭对称【答案】AC【分析】根据图象平移写出解析式判断A ;利用正弦函数性质,整体法判断()f x 的区间单调性判断B ,代入法判断对称性,判断C 、D. 【详解】A :根据平移过程πππ=()+1=2sin2()+1=2sin(2)+1663y g x x x ---,正确; B :π0,2x ⎛⎫∈ ⎪⎝⎭,则ππ2π2(,)333x -∈-,根据正弦函数性质()f x 在区间内不单调,错误;C :πππ()=2sin()+1=11263f ----,此时ππ2=32x --,故直线π12x =-为对称轴,正确;D :πππ()=2sin()+1=1633f -,故关于点π,16⎛⎫⎪⎝⎭对称,错误.故选:AC例25.(2022·广东·深圳中学高三阶段练习)将函数()π=2sin 3f x x ω-⎛⎫ ⎪⎝⎭的图像向左平移2π3个单位,所得图像关于原点对称.若01ω<<,则下列说法正确的是( ) A .()f x 的最小正周期为4πB .()f x 的对称中心为()2π2π+,0Z 3k k ∈⎛⎫ ⎪⎝⎭C .对任意的R x ∈,都有()2π=3f x f x -⎛⎫ ⎪⎝⎭D .()π=2sin +6g x x ω⎛⎫ ⎪⎝⎭与()f x【答案】AB【分析】利用平移后得函数是奇函数求出12ω=,则()f x 的最小正周期为2π=4π12,故A 正确;令()1π=πZ 23x k k -∈判断B 正确;由π=13f -⎛⎫⎪⎝⎭判断C 错误;令()=()f x g x 分析得到公,判断D 错误.【详解】将函数()π=2sin 3f x x ω-⎛⎫ ⎪⎝⎭的图像向左平移2π3个单位,可得2ππ()=2sin (+)33h x x ω-⎡⎤⎢⎥⎣⎦,()h x 为奇函数,则(0)0h =,即2ππ=π33k ω-,13=+,22k k Z ω∈, 因为01ω<<,所以1=0=2k ω,,则()1π=2sin 23f x x -⎛⎫ ⎪⎝⎭,所以()f x 的最小正周期为2π=4π12,故A 正确;令()1π=πZ 23x k k -∈,得2π=2π+3x k ,()f x 的对称中心为()2π2π+,0Z 3k k ∈⎛⎫ ⎪⎝⎭,故B 正确;π1ππ=2sin(?)=13233f --⎛⎫⎪⎝⎭,所以3x π=不是对称轴,故C 错误;令()=()f x g x ,即1π1πsin =sin +2326x x -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,1π1ππ1πsin +=sin +=cos 2623223x x x --⎡⎤⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,1π1πsin =sin +=?2326x x ∴-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ ()π=2sin +6g x x ω⎛⎫ ⎪⎝⎭与()f x故D 错误; 故选:AB.。
2016-2017学年度
必修四三角函数单元测试
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共120分,考试时间120分钟。
一、选择题(共10小题,每小题4.0分,共40分)
1.函数y=|tan x|,y=tan x,y=tan(-x),y=tan|x|在(-,)上的大致图象依次是下图中的()
A.①②③④
B.②①③④
C.①②④③
D.②①④③
2.在同一坐标系中,曲线y=sin x与y=cos x的图象的交点是()
A.
B.
C.
D. (kπ,0)k∈Z
3.关于函数y=sin|2x|+|sin 2x|,下列说法正确的是()
A.是周期函数,周期为π
B.关于直线x=对称
C.在上的最大值为
D.在上是单调递增的
4.函数y=1-2cos x的最小值、最大值分别是()
A.-1,3
B.-1,1
C. 0,3
D. 0,1
5.函数y=sin(4x+π)的周期是()
A.2π
B.π
C.
D.
6.给出下列四个命题:
①-75°角是第四象限角;②225°角是第三象限角;③475°角是第二象限角;④-315°角是第一象限角,其中真命题有()
A. 1个
B. 2个
C. 3个
D. 4个
7.cos 225°+tan 240°+sin(-60°)+tan(-60°)的值是()
A.
B.
C.--
D.-+
8.若直线x=a是函数y=sin(x+)图象的一条对称轴,则a的值可以是()
A.
B.
C.-
D.-
9.为了得到y=cos 4x,x∈R的图象,只需把余弦曲线上所有点的()
A.横坐标伸长到原来的4倍,纵坐标不变
B.横坐标缩短到原来的倍,纵坐标不变
C.纵坐标伸长到原来的4倍,横坐标不变
D.纵坐标缩短到原来的倍,横坐标不变
10.为了得到函数y=sin的图象,可以将函数y=cos 2x的图象()
A.向右平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向左平移个单位长度
分卷II
二、填空题(共4小题,每小题5.0分,共20分)
11.函数y=lg(sin 2x)+的定义域为________.
12.已知cos 110°=k,则tan 80°=________.
13.如图所示,一皮带轮的坡比是1∶2.4,如果将货物从地面用皮带轮送到离地10米的平台,那么该货物经过的路程是________米.
14.已知f(x)=a sin 2x+b tan x+1,且f(-2)=4,则f(π+2)=________.
三、解答题(共5小题,每小题12.0分,共60分)
15.在单位圆中画出满足sinα=的角α的终边,并求角α的取值集合.
16.(1)已知cos(π+α)=-,α为第一象限角,求cos的值.
(2)已知cos=,求cos·sin的值.
17.已知sin(α-3π)=2cos(α-4π),
求的值.
18.求函数y=的定义域.
19.已知sin(α+π)=,且sinαcosα<0,
求的值.
答案解析
1.【答案】C
【解析】y=|tan x|对应的图象为①,y=tan x对应的图象为②,y=tan(-x)对应的图象为④,y=tan|x|对应的图象为③.
2.【答案】B
【解析】在同一坐标系中,画出曲线y=sin x与y=cos x的图象,
观察图形可知选项B正确,
3.【答案】D
【解析】由题意,函数的图象如图所示.
由图象可知,此函数不是周期函数,关于x=0对称,在上的最大值为2,在上是单调递增的.
4.【答案】A
【解析】由于-1≤cos x≤1,故函数y=1-2cos x的最小值为1-2=-1,最大值为1+2=3.
5.【答案】C
【解析】T==.
6.【答案】D
【解析】对于①:如图1所示,-75°角是第四象限角;
对于②:如图2所示,225°角是第三象限角;
对于③:如图3所示,475°角是第二象限角;
对于④:如图4所示,-315°角是第一象限角.
7.【答案】A
【解析】cos 225°+tan 240°+sin(-60°)+tan(-60°)
=-cos 45°+tan60°-sin60°-tan60°=--.
8.【答案】A
【解析】当x=时,函数y=sin(x+)取得最大值,所以a的值可以是.
9.【答案】B
【解析】ω=4>1,因此只需把余弦曲线上所有点的横坐标缩短到原来的倍,纵坐标不变.
10.【答案】B
【解析】y=sin=cos
=cos=cos=cos 2.
11.【答案】∪
【解析】要使函数y=lg(sin 2x)+有意义,必须
解得0<x<或-2≤x<-.
12.【答案】
【解析】∵cos 110°=-cos 70°=-sin 20°=k,则sin 20°=-k,
∴cos 20°==,
∴tan 80°====
==.
13.【答案】26
【解析】由题意得:斜坡AB的坡比i=1∶2.4,AE=10米,AE⊥BE,
∵i==,
∴BE=24米,
∴在Rt△ABE中,AB==26(米).
14.【答案】-2
【解析】f(-2)=a sin(-4)+b tan(-2)+1=4;
f(x)的最小正周期为π,故f(π+2)=f(2)=a sin 4+b tan 2+1=-3+1=-2.
15.【答案】已知角α的正弦值,可知MP=,则P点纵坐标为.所以在y轴上取点.过这点作x轴的平行线,交单位圆于P1,P2两点,则OP1,OP2是角α的终边,
因而角α的集合为{α|α=2kπ+或α=2kπ+,k∈Z}.
【解析】
16.【答案】(1)∵cos(π+α)=-cosα=-,
∴cosα=,又α为第一象限角.
则cos=-sinα=-
=-=-.
(2)cos·sin=cos·sin
=-cos·sin
=-sin=-cos=-.
【解析】
17.【答案】由已知sin(α-3π)=2cos(α-4π)化简可得,-sin(3π-α)=2cosα,即sinα=-2cosα且cosα≠0,
原式===-.
【解析】
18.【答案】由题意可得
∴
∴.
【解析】
19.【答案】∵sin(α+π)=sin(π+α)=-sinα,
又sin(π+α)=,sinα=-<0,再由sinαcosα<0,得cosα>0,
于是α为第四象限角,
∴cosα=,tanα=-.
∴
=
==
==-.【解析】。