控制工程实验报告截图
- 格式:docx
- 大小:425.18 KB
- 文档页数:3
《控制工程基础》实验报告姓名欧宇涵 914000720206周竹青 914000720215 学院教育实验学院指导老师蔡晨晓南京理工大学自动化学院2017年1月实验1:典型环节的模拟研究一、实验目的与要求:1、学习构建典型环节的模拟电路;2、研究阻、容参数对典型环节阶跃响应的影响;3、学习典型环节阶跃响应的测量方法,并计算其典型环节的传递函数。
二、实验内容:完成比例环节、积分环节、比例积分环节、惯性环节的电路模拟实验,并研究参数变化对其阶跃响应特性的影响。
三、实验步骤与方法(1)比例环节图1-1 比例环节模拟电路图比例环节的传递函数为:K s U s U i O =)()(,其中12R RK =,参数取R 2=200K ,R 1=100K 。
步骤: 1、连接好实验台,按上图接好线。
2、调节阶跃信号幅值(用万用表测),此处以1V 为例。
调节完成后恢复初始。
3、Ui 接阶跃信号、Uo 接IN 采集信号。
4、打开上端软件,设置采集速率为“1800uS”,取消“自动采集”选项。
5、点击上端软件“开始”按键,随后向上拨动阶跃信号开关,采集数据如下图。
图1-2 比例环节阶跃响应(2)积分环节图1-3 积分环节模拟电路图积分环节的传递函数为:ST V V I I O 1-=,其中T I =RC ,参数取R=100K ,C=0.1µf 。
步骤:同比例环节,采集数据如下图。
图1-4 积分环节阶跃响应(3)微分环节图1-5 微分环节模拟电路图200KRV IVoC2CR 1V IVo200K微分环节的传递函数为:K S T S T V V D D I O +-=1,其中 T D =R 1C 、K=12R R。
参数取:R 1=100K ,R 2=200K ,C=1µf 。
步骤:同比例环节,采集数据如下图。
图1-6 微分环节阶跃响应(4)惯性环节图1-7 惯性环节模拟电路图惯性环节的传递函数为:1+-=TS K V V I O ,其中2T R C =,21RK R =-。
《控制工程基础》实验任务实验一 系统时域响应分析1. 实验目的本实验的主要目的是:通过实验使学生进一步理解系统参数对时域响应的影响,理解系统参数与时域性能指标之间的关系,同时了解系统稳定性的充要条件。
本实验的内容覆盖了教材第3、4、5章的内容。
2. 实验内容完成一阶、二阶系统在典型输入信号作用下的响应,求取二阶系统的性能指标,记录试验结果并对此进行分析。
3. 实验要求要求掌握应用MATLAB 软件的相应功能,实现一阶、二阶系统在典型输入信号(包括单位脉冲信号、单位阶跃信号、单位斜坡信号、正弦信号等)作用下的响应;记录实验结果并对结果进行分析,要求用实验结果来分析系统特征参数对系统时间响应的影响。
4. 实验地点工字楼127。
5. 实验过程一、系统的传递函数及其MATLAB 表达 (1)一阶系统 传递函数为:1)(+=Ts Ks G 传递函数的MATLAB 表达: num=[k];den=[T,1];G(s)=tf(num,den) (2)二阶系统 传递函数为:2222)(nn n w s w s w s G ++=ξ传递函数的MATLAB 表达: num=[wn^2];den=[1,2*s* wn ,wn^2];G(s)=tf(num,den) (3)任意的高阶系统传递函数为:nn n n m m m m a s a s a s a b s b s b s b s G ++++++++=----11101110)(传递函数的MATLAB 表达:num=[m m b b b b ,,,110- ];den=[n n a a a a ,,,110- ];G(s)=tf(num,den) 若传递函数表示为:)())(()())(()(1010n m p s p s p s z s z s z s Ks G ------=则传递函数的MATLAB 表达:z=[m z z z ,,,10 ];p=[n p p p ,,,10 ];K=[K];G(s)=zpk(z,p,k) 二、 各种时间输入信号响应的表达 (1)单位脉冲信号响应:[y,x]=impulse(sys,t) (2)单位阶跃信号响应:[y,x]=step(sys,t) (3)任意输入信号响应:[y,x]=lsim(sys,u,t)其中,y 为输出响应,x 为状态响应(可选);sys 为建立的模型;t 为仿真时间区段(可选),u 为给定输入信号(列向量)。
南理工控制工程基础实验报告成绩:《控制工程基础》课程实验报告班级:学号:姓名:南京理工大学2015年12月《控制工程基础》课程仿真实验一、已知某单位负反馈系统的开环传递函数如下G(s)?10 s2?5s?25借助MATLAB和Simulink完成以下要求:(1) 把G(s)转换成零极点形式的传递函数,判断开环系统稳定性。
>> num1=[10]; >> den1=[1 5 25]; >> sys1=tf(num1,den1) 零极点形式的传递函数:于极点都在左半平面,所以开环系统稳定。
(2) 计算闭环特征根并判别系统的稳定性,并求出闭环系统在0~10秒内的脉冲响应和单位阶跃响应,分别绘出响应曲线。
>> num=[10];den=[1,5,35]; >>sys=tf(num,den); >> t=[0::10]; >> [y,t]=step(sys,t); >> plot(t,y),grid >> xlabel(‘time(s)’) >> ylabel(‘output’) >> hold on; >> [y1,x1,t]=impulse(num,den,t); >> plot(t,y1,’:’),grid (3) 当系统输入r(t)?sin5t时,运用Simulink搭建系统并仿真,用示波器观察系统的输出,绘出响应曲线。
曲线:二、某单位负反馈系统的开环传递函数为:6s3?26s2?6s?20G(s)?4频率范围??[,100] s?3s3?4s2?2s?2 绘制频率响应曲线,包括Bode图和幅相曲线。
>> num=[6 26 6 20]; >> den=[1 3 4 2 2]; >> sys=tf(num,den); >> bode(sys,{,100}) >> grid on >> clear; >> num=[6 26 6 20]; >> den=[1 3 4 2 2]; >> sys=tf(num,den); >> [z , p , k] = tf2zp(num, den); >> nyquist(sys) 根据Nyquist判据判定系统的稳定性。
实验1 模拟控制系统在阶跃响应下的特性实验一、实验目的根据等效仿真原理,利用线性集成运算放大器及分立元件构成电子模拟器,以干电池作为输入信号,研究控制系统的阶跃时间响应。
二、实验内容研究一阶与二阶系统结构参数的改变,对系统阶跃时间响应的影响。
三、实验结果及理论分析1.一阶系统阶跃响应a.电容值1uF,阶跃响应波形:b.电容值2.2uF,阶跃响应波形:c. 电容值4.4uF ,阶跃响应波形:2. 一阶系统阶跃响应数据表电容值 (uF ) 稳态终值U c (∞)(V )时间常数T(s)理论值实际值理论值实际值1.02.87 2.90 0.51 0.50 2.2 2.87 2.90 1.02 1.07 4.42.872.902.242.06元器件实测参数U r = -2.87VR o =505k ΩR 1=500k ΩR 2=496k Ω其中C R T 2=r c U R R U )/()(21-=∞误差原因分析:① 电阻值及电容值测量有误差; ② 干电池电压测量有误差; ③ 在示波器上读数时产生误差;④ 元器件引脚或者面包板老化,导致电阻变大; ⑤ 电池内阻的影响输入电阻大小。
⑥在C=4.4uF的实验中,受硬件限制,读数误差较大。
3.二阶系统阶跃响应a.阻尼比为0.1,阶跃响应波形:b.阻尼比为0.5,阶跃响应波形:c.阻尼比为0.7,阶跃响应波形:d.阻尼比为1.0,阶跃响应波形:4.二阶系统阶跃响应数据表ξR w(Ω)峰值时间t p(s)U o(t p)(V)调整时间t s(s)稳态终值U s(V)超调(%)M p震荡次数N0 .1454k0.3 4.8 2.8 2.9562.760 .552.9k0.4 3.30.5 2.9511.910 .724.6k0.4 3.00.3 2.92 2.711 .02.97k1.02.98 1.0 2.9800四、回答问题1.为什么要在二阶模拟系统中设置开关K1和K2,而且必须同时动作?答:K1的作用是用来产生阶跃信号,撤除输入信后,K2则是构成了C2的放电回路。
电 子 科 技 大 学实 验 报 告学生姓名: 学 号: 指导教师: 实验地点:工程训练中心三楼 实验时间:一、实验室名称:机械系测控实验室 二、实验项目名称:二阶系统时频域分析实验 三、实验学时:2学时 四、实验原理:图1是典型Ⅰ型二阶单位反馈闭环系统。
图1 典型Ⅰ型二阶单位反馈闭环系统 Ⅰ型二阶系统的开环传递函数:)1()(+=Ts s T K s G i Ⅰ型二阶系统的闭环传递函数标准式:2222)(1)()(nn ns s s G s G s ωξωωφ++=+= 自然频率(无阻尼振荡频率):TT K i=n ω 阻尼比:KT T 21i=ξ有二阶闭环系统模拟电路如图2所示。
它由积分环节(A2单元)和惯性环节(A3单元)的构成,其积分时间常数Ti=R1*C1=1秒,惯性时间常数 T=R2*C2=0.1秒。
图2 Ⅰ型二阶闭环系统模拟电路模拟电路的各环节参数代入,得到该电路的开环传递函数为:R k R R K s s K Ts s T K s G i 100)11.0()1()(2==+=+=其中模拟电路的开环传递函数代入式,得到该电路的闭环传递函数为:Ks s K s s s n n n1010102)(2222++=++=ωξωωφ 阻尼比和开环增益K 的关系式为: 临界阻尼响应:ξ=1,K=2.5,R=40kΩ欠阻尼响应:0<ξ<1 ,设R=4kΩ, K=25 ξ=0.316 过阻尼响应:ξ>1,设R=70kΩ,K=1.43ξ=1.32>1计算欠阻尼二阶闭环系统在阶跃信号输入时的动态指标Mp 、tp 、ts :(K=25、ξ=0.316、n ω=15.8)超调量 :%1.35%100M e21P =⨯=--ξξπ 峰值时间:21.012=-=ξωπn p t 调节时间:st ns 6.03==ξω。
由于Ⅰ型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。
自动控制理论实验报告实验一典型环节的时域响应院系:班级:学号:姓名:实验一 典型环节的时域响应一、 实验目的1.掌握典型环节模拟电路的构成方法,传递函数及输出时域函数的表达式。
2.熟悉各种典型环节的阶跃响应曲线。
3.了解各项参数变化对典型环节动态特性的影响。
二、 实验设备PC 机一台,TD-ACC+教学实验系统一套。
三、 实验步骤1、按图1-2比例环节的模拟电路图将线接好。
检查无误后开启设备电源。
注:图中运算放大器的正相输入端已经对地接了100k 电阻。
不需再接。
2、将信号源单元的“ST ”端插针与“S ”端插针用“短路块”接好。
将信号形式开关设为“方波”档,分别调节调幅和调频电位器,使得“OUT ”端输出的方波幅值为1V ,周期为10s 左右。
3、将方波信号加至比例环节的输入端R(t), 用示波器的“CH1”和“CH2”表笔分别监测模拟电路的输入R(t)端和输出C(t)端。
记录实验波形及结果。
4、用同样的方法分别得出积分环节、比例积分环节、惯性环节对阶跃信号的实际响应曲线。
5、再将各环节实验数据改为如下:比例环节:;,k R k R 20020010== 积分环节:;,u C k R 22000==比例环节:;,,u C k R k R 220010010=== 惯性环节:。
,u C k R R 220010=== 用同样的步骤方法重复一遍。
四、 实验原理、内容、记录曲线及分析下面列出了各典型环节的结构框图、传递函数、阶跃响应、模拟电路、记录曲线及理论分析。
1.比例环节 (1) 结构框图:图1-1 比例环节的结构框图(2) 传递函数:K S R S C =)()( KR(S)C(S)(3) 阶跃响应:C(t = K ( t ≥0 ) 其中K = R 1 / R 0 (4) 模拟电路:图1-2 比例环节的模拟电路图(5)记录曲线:(6)k R k R 20020010==,时的记录曲线:_R0=200kR1=100k_ 10K10KC(t)反相器 比例环节 R(t)(7)曲线分析:比例放大倍数K 与1R 的阻值成正比。
实验报告实验课程:机械工程控制基础学生姓名:周栋学号:5902110054专业班级:热能101班实验一典型环节的电路模拟与软件仿真研究一.实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。
2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。
二.实验内容1.设计各种典型环节的模拟电路。
2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。
3.在上位机界面上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。
三.实验步骤1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录设计并连接各种典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。
注意实验接线前必须先将实验箱上电,以对运放仔细调零。
然后断电,再接线。
接线时要注意不同环节、不同测试信号对运放锁零的要求。
在输入阶跃信号时,除比例环节运放可不锁零(G可接-15V)也可锁零外,其余环节都需要考虑运放锁零。
2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。
必须在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。
以比例环节为例,此时将Ui连到实验箱 U3单元的O1(D/A 通道的输出端),将Uo连到实验箱 U3单元的I1(A/D通道的输入端),将运放的锁零G连到实验箱 U3单元的G1(与O1同步),并连好U3单元至上位机的并口通信线。
接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。
界面上的操作步骤如下:①按通道接线情况完成“通道设置”:在界面左下方“通道设置”框内,“信号发生通道”选择“通道O1#”,“采样通道X”选择“通道I1#”,“采样通道Y”选择“不采集”。
②进行“系统连接”(见界面左下角),如连接正常即可按动态状态框内的提示(在界面正下方)“进入实验模式”;如连接失败,检查并口连线和实验箱电源后再连接,如再失败则请求指导教师帮助。
控制工程基础实验报告班级_____________姓名_____________河南科技大学机电工程学院实验中心2010-9-24实验一典型环节时间响应分析结合报告重点预习: 各环节电路结构、时间响应函数、及各环节在零点输出值。
一实验目的:二实验设备:三实验原理:四实验内容及数据整理:1、阶跃信号(方波)的产生方式2、画出各典型环节方块图(写出传递函数)、模拟电路图(注明元件参数)及实际输出响应函数。
1)比例(P)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线2)惯性(T)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线3)积分(I)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线4)比例积分(PI)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线5)比例微分(PD)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线五思考题1、实验中每个典型环节使用了两个模拟运放单元,第二个模拟运放单元起什么作用?2、根据PD环节对阶跃信号的响应曲线,试分析电路工作过程。
3、惯性环节分别在什么情况下可近似为比例环节和积分环节?实验二控制系统的频率特性结合报告重点预习:开环传递函数、开环频率特性幅值相位、及如何通过BODE图确定系统参数K和T 的值。
一实验目的:二实验设备:三实验原理:四实验记录1、正弦信号的产生方式2、画出被测系统的方块图及模拟电路图(注明元件参数)。
3、实验数据处理及被测系统的开环对数幅频曲线和相频曲线4、开环频率特性Bode图:5、根据Bode图求出系统开环传递函数五思考题1、根据测得的Bode图的幅频特性,就能确定系统的相频特性,试问这在什么系统时才能实现?2、在Bode图中,为什么横坐标习惯采用对数进行分度?3、改变开环增益或时间常数时对系统动态性能有何影响?实验三系统的校正结合报告重点预习: 比例、积分、微分各环节对系统瞬态性能指标的影响。
控制工程基础实验姓名:专业:机电班级:02 学号:1003120225实验一:比较二阶系统在不同阻尼比下的时间响应一、实验目的1.熟悉MA TLAB软件环境,学会编写matlab文件(***.m)和使用SIMULINK建模,进行时间响应分析。
二、实验要求1.编写m文件,使用命令sys=tf(num,den),建立二阶系统的传递函数模型;2.编写m文件,使用命令impulse(sys),画出二阶系统在不同阻尼比下的脉冲响应曲线簇;3.编写m文件,使用命令step(sys),画出二阶系统在不同阻尼比下的阶跃响应曲线簇;4.根据阶跃响应曲线,记录不同阻尼比下的时域性能指标,列表写出实验报告,并分析阻尼比和无阻尼自然频率对于性能的影响;5.利用SIMULINK建立方框图仿真模型,进行阶跃响应实验,学会使用workspace的数组变量传递,使用命令plot(X,Y)画出阶跃响应图。
三、实验过程1.编写m文件,使用命令sys=tf(num,den),建立二阶系统的传递函数模型M文件如下:clear;clc;num=[1];den=[1 2 1];sys=tf(num,den)运行结果:Transfer function:1-------------s^2 + 2 s + 12.编写m文件,使用命令impulse(sys),画出二阶系统在不同阻尼比下的脉冲响应曲线簇M文件如下:clear;clc;k=1;xi=[0.1 0.4 0.8 1 5 8];wn=1;for i=1:length(xi);sys=tf([k*wn^2],[1 2*xi(i)*wn wn^2]);impulse(sys);hold on;endhold offgrid运行结果:3.编写m文件,使用命令step(sys),画出二阶系统在不同阻尼比下的阶跃响应曲线簇M文件如下:clear;clc;k=1;xi=[0.1 0.4 0.8 1 5 8];wn=1;for i=1:length(xi);sys=tf([k*wn^2],[1 2*xi(i)*wn wn^2]);step(sys);hold on;endhold offgrid运行结果:4.根据阶跃响应曲线,记录不同阻尼比下的时域性能指标,列表写出实验报告,并分析阻尼比和无阻尼自然频率对于性能的影响利用时域响应特性函数function [tr,tp,mp,ts,td]=texing(sys,xi,m,n)求得系统在不同阻尼比xi下阶跃响应的时域特性指标(texing函数见附录)。
1.一阶系统的时间响应仿真
2.二阶系统的时间响应仿真
3.1高阶系统单位阶跃响应(程序可手写可打印出来贴上去)
num1=[64];
den1=[1,10,20,32];
t=[0:0.5:20];
[y,x,t]=step(num1,den1
,t);
plot(t,y,'r'),grid;
xlabel('Time[s]');ylab
el('step response');
3.2高阶系统简化后的单位阶跃响应(程序可手写可打印出来贴上去)
4 Bode 图的绘制
5.Nyquist 曲线的绘制
6.自行编制程序(程序可手写可打印出来贴上去)
num=[8];den=[1,2,4];
t=[0:0.5:20];
[y,x,t]=step(num,den,t);
plot(t,y,'r'),grid;
xlabel('Time[s]');ylabel
('Step response');
7.PID参数及响应曲线
Kp=610,ki=0.001,kd=0.01 Kp=610,ki=0.001,kd=10 Kp=60,ki=0.001,kd=0.01 num1=[50];den1=[1,6,5,0];
num2=[500];den2=[1,6,5,0];
w=logspace(-1,3,200);
[mag1,phase1,w]=bode(num1,den1,w);
[gm,pm,wcg,wcp]=margin(mag1,phase1,w);
subplot(2,1,1);semilogx(w,20*log10(mag1)),grid;
xlabel('频率w[1/s]');ylabel('log(mag)[dB]');
title(['K=10时,幅值裕度=',num2str(gm),'[dB]','相位裕度=',num2str(pm),'度']);
[mag2,phase2,w]=bode(num2,den2,w);
[gm,pm,wcg,wcp]=margin(mag2,phase2,w);
subplot(2,1,2);semilogx(w,20*log10(mag2)),grid;
xlabel('频率w[1/s]');ylabel('log(mag)[dB]');
title(['K=100时,幅值裕度=',num2str(gm),'[dB]','相位裕度=',num2str(pm),'度']);。