初中数学奥数题
- 格式:doc
- 大小:817.50 KB
- 文档页数:13
1.2002)1(-的值 ( B )2.a 为有理数,则200011+a 的值不克不及是 ( C )3.()[]}{20072006200720062007----的值等于 ( B )4.)1()1()1()1()1(-÷-⨯---+-的成果是 ( A )5.2008200720061)1()1(-÷-+-的成果是 ( A )6.盘算)2()21(22-+-÷-的成果是 ( D )7.盘算:.21825.3825.325.0825.141825.3⨯+⨯+-⨯ 8.盘算:.311212311999212000212001212002-++-+- 9.盘算:).138(113)521()75.0(5.2117-⨯÷-÷-⨯÷- 11.盘算:.363531998199992000⨯+⨯-演习:.22222222221098765432+--------.2)12(2221n n n n =-=-+6 12.盘算: )9897983981()656361()4341(21++++++++++ 成果为:5.612249122121=⨯++⨯+ 13.盘算:.200720061431321211⨯++⨯+⨯+⨯ 应用:)111(1)1(+-=+n n d n n d 演习:.1051011171311391951⨯++⨯+⨯+⨯13.盘算: 35217106253121147642321⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯. 成果为5214.求21-++x x 的最小值及取最小值时x 的取值规模.演习:已知实数c b a ,,知足,01b a c <<<<-且,a c b >>求b a c a c ---+-1的值. 演习:1.盘算2007200619991998)1()1()1()1(-+-++-+- 的值为 ( C )2.若m 为正整数,那么()[])1(11412---m m 的值 ( B ) A.必定是零 B.必定是偶数3.若n 是大于1的整数,则2)(12)1(n n n p ---+=的值是 ( B )A.必定是偶数B.必定是奇数4.不雅察以下数表,第10行的各数之和为 ( C )14 36 7 813 12 11 1015 16 17 18 1926 25 24 23 22 21…5.已知,200220012002200120022001200220012⨯++⨯+⨯+= a 20022002=b ,则a 与b 知足的关系是 ( C )A.2001+=b aB.2002+=b aC.b a =D.2002-=b a6.盘算: .35217201241062531211471284642321⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯527.盘算:.561742163015201412136121++++++8328 8.盘算:.100321132112111+++++++++++ 9.盘算: .999999999999999999999+++++10.盘算)100011)(99911)(99811()411)(311)(211(10201970198019992000-------++-+- .610 11.已知,911,999909999==Q p 比较Q P ,的大小. Q p ==⨯⨯=⨯⨯=9099909999099119991199)911( 12.设n 为正整数,盘算:43424131323332312122211+++++++++++ .1112141424344nn n n n n n n n ++-++-+++++++++ 2)1(21+=+++n n n 13.2007加上它的21得到一个数,再加上所得的数的31又得到一个数,再加上此次得到的41又得到一个数,… ,依次类推,一向加到上一次得数的20071,最后得到的数是若干? 2005003)200211()311()211(2002=+⨯⨯+⨯+⨯ 14.有一种“二十四点”的 游戏,其游戏规矩是如许的:任取四个1至13之间的 天然数,将这四个(每个数用且只用一次)进行加减四则运算与)321(4++⨯应视作雷同办法的运算,现有四个有理数3,4,-6,10.应用上述规矩写出三种不合办法的运算,使其成果等于24,运算式:(1)_______________________;(2)________________________;(3)________________________;15.黑板上写有1,2,3,…,1997,1998这1998个天然数,对它们进行操纵,每次操纵规矩如下:擦失落写在黑板上的三个数后,再添写上所擦失落三个数之和的个位数字,例如:擦失落5,13和1998后,添加上6;若再擦失落6,6,38,添上0,等等.假如经由998次操纵后,发明黑板上剩下两个数,一个是25,求另一个数.一.选择题(每题1分,共5分)以下每个标题里给出的A,B,C,D四个结论中有且仅有一个是准确的.请你在括号填上你以为是准确的谁人结论的英文字母代号.1.某工场客岁的临盆总值比前年增长a%,则前年比客岁少的百分数是( A )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( A )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水雷同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水若干关系不定.3.已知数x=100,则( A )A.x是完整平方数.B.(x-50)是完整平方数.C.(x-25)是完整平方数.D.(x+50)是完整平方数.4.不雅察图1中的数轴:用字母a,b,c依次暗示点A,B,C对应的数,则111,,ab b a c-的大小关系是( C )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不合的整数解共有( ) A.2组.B.6组.C.12组.D.16组.二.填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于随意率性有理数x,y,界说一种运算*,划定x*y=ax+by-cxy,个中的a,b,c暗示已知数,等式右边是平日的加.减.乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍治理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开个中的一个门,但不知道每把钥匙是开哪一个门的钥匙,如今要打开所有封闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分化为两个关于x,y的二元一次三项式的乘积.5.三个持续天然数的平方和(填“是”或“不是”或“可能是”)______某个天然数的平方.三.解答题(写出推理.运算的进程及最后成果.每题5分,共15分)1.两辆汽车从统一地点同时动身,沿统一偏向同速直线行驶,每车最多只能带24桶汽油,途中不克不及用此外油,每桶油可使一辆车进步60公里,两车都必须返回动身地点,但是可以不合时返回,两车互相可借用对方的油.为了使个中一辆车尽可能地远离动身地点,另一辆车应该在离动身地点若干公里的地方返回?离动身地点最远的那辆车一共行驶了若干公里?2.如图2,纸上画了四个大小一样的圆,圆心分离是A,B,C,D,直线m经由过程A,B,直线n经由过程C,D,用S暗示一个圆的面积,假如四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,暗影部分的面积S1,S2,S3知足关系式S3=13S1=13S2,求S.11156x y z++=的正整数解.初中数学比赛指点2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值规模.4.设(3x-1)7=a7x7+a6x6+…+a1x1+a0,试求a0+a2+a4+a6的值.6.解方程2|x+1|+|x-3|=6.8.解不等式||x+3|-|x-1||>2.10.x,y,z均长短负实数,且知足:x+3y+2z=3,3x+3y+z=4, 求u=3x-2y+4z的最大值与最小值.11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.13.如图1-89所示.AOB是一条直线,OC,OE分离是∠AOD和∠DOB的等分线,∠COD=55°.求∠DOE 的补角.14.如图1-90所示.BE等分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延伸订交于K及L,对角线AC‖KL,BD延伸线交KL于F.求证:KF=FL.19.随意率性转变某三位数数码次序所得之数与原数之和可否为999?解释来由.20.设有一张8行.8列的方格纸,随意把个中32个方格涂上黑色,剩下的32个方格涂上白色.下面临涂了色的方格纸施行“操纵”,每次操纵是把随意率性横行或者竖列上的各个方格同时转变色彩.问可否最终得到恰有一个黑色方格的方格纸?23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包含每小我的两条腿),问房间里有几小我?24.求不定方程49x-56y+14z=35的整数解.25.男.女各8人跳集体舞.(1)假如男女分站两列;(2)假如男女分站两列,不斟酌先后次序,只斟酌男女若何结成舞伴.问各有若干种不合情形?26.由1,2,3,4,5这5个数字构成的没有反复数字的五位数中,有若干个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经由1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两临盆小队配合种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全体义务快3天.求甲乙单独完成各用若干天?29.一船向相距240海里的某港动身,到达目标地前48海里处,速度每小时削减10海里,到达后所用的全体时光与原速度每小时削减4海里航行全程所用的时光相等,求本来的速度.1630.某工场甲乙两个车间,客岁筹划完成税利750万元,成果甲车间超额15%完成筹划,乙车间超额10%完成筹划,两车间配合完成税利845万元,求客岁这两个车间分离完成税利若干万元?31.已知甲乙两种商品的原价之和为150元.因市场变更,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和下降了1%,求甲乙两种商品原单价各是若干?32.小红客岁暑假在市肆买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,本年暑假她又带同样的钱去该市肆买同样的牙刷和牙膏,因为本年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,成果找回4角钱.试问客岁暑假每把牙刷若干钱?每支牙膏若干钱?33.某商场假如将进货单价为8元的商品,按每件12元卖出,天天可售出400件,据经验,若每件少卖1元,则天天可多卖出200件,问每件应减价若干元才可获得最好的效益?34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇动身驶向B镇,25分钟今后,乙骑自行车,用0.6千米/分钟的速度追甲,试问若干分钟后追上甲?35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取恰当重量的这三种合金,构成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量暗示第二种合金的重量;(2)求新合金中含第二种合金的重量规模;(3)求新合金中含锰的重量规模.|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变成m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分离令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段构成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡算作一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,衔接甲′乙′,设甲′乙′所连得的线段分离与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度正好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,应用上面的对称办法,都可以化成一条衔接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的旅程最短.13.如图1-98所示.因为OC,OE分离是∠AOD,∠DOB的角等分线,又∠AOD+∠DOB=∠AOB=180°, 所以∠COE=90°.因为∠COD=55°, 所以∠DOE=90°-55°=35°.是以,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE等分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB, 所以∠ABF=∠CFB.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°及BE等分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°, ②由①,②知BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.②由①,②∠BCD=∠CDG.所以BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,衔接GE.在△ADC中,G,E分离是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.贯穿连接FG.所以又S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,抵触!20.答案是否认的.设横行或竖列上包含k个黑色方格及8-k个白色方格,个中0≤k≤8.当转变方格的色彩时,得到8-k个黑色方格及k个白色方格.是以,操纵一次后,黑色方格的数量“增长了”(8-k)-k=8-2k个,即增长了一个偶数.于是无论若何操纵,方格纸上黑色方格数量标奇偶性不变.所以,从原有的32个黑色方格(偶数个),经由操纵,最后老是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的情势.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6k +5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设前提知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)=75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4,4),即n=20•324•5223.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,即5x+6y=43.所以x=5,y=3是独一的非负整数解.从而房间里有8小我.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全体整数解是而t=1,z=2是t+2z=5的一组整数解.它的全体整数解是把t的表达式代到x,y的表达式中,得到原方程的全体整数解是25.(1)第一个地位有8种选择办法,第二个地位只有7种选择办法,…,由乘法道理,男.女各有8×7×6×5×4×3×2×1=40320种不合分列.又两列间有一相对地位关系,所以共有2×403202种不合情形.(2)逐个斟酌结对问题.与男甲结对有8种可能情形,与男乙结对有7种不合情形,…,且两列可对调,所以共有2×8×7×6×5×4×3×2×1=80640 种不合情形.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3=12(天).解之得x=16(海里/小时).经磨练,x=16海里/小时为所求之原速.30.设甲乙两车间客岁筹划完成税利分离为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分离为x元和y元,依题意可得由②有0.9x+1.2y=148.5, ③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设客岁每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即2×1.68+2×1.3+2×1.3x=5x+2.6,即 2.4x=2×1.68,所以x=1.4(元).若y为客岁每支牙膏价钱,则y=1.4+1=2.4(元).33.本来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,个中0<x<4.因为减价后,天天可卖出(400+200x)件,若设天天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比本来多卖出200件,是以多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的旅程分离是0.4(25+x)千米和0.6x千米.因为两人走的旅程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才干追上甲.但A,B两镇之间只有28千米.是以,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的规模是:最小250克,最而0≤x≤500,所以新合金中锰的重量规模是:最小250克,最大400克.。
【导语】奥数能够有效地培养学⽣⽤数学观点看待和处理实际问题的能⼒,提⾼学⽣⽤数学语⾔和模型解决实际问题的意识和能⼒,提⾼学⽣揭⽰实际问题中隐含的数学概念及其关系的能⼒等等。
使学⽣能够在创造性思维过程中,看到数学的实际作⽤,感受到数学的魅⼒,增强学⽣对数学美的感受⼒。
以下是⽆忧考为您整理的相关资料,希望对您有⽤。
七年级奥数题1: 把1⾄2005这2005个⾃然数依次写下来得到⼀个多位数123456789.....2005,这个多位数除以9余数是多少? 解: ⾸先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除 依次类推:1~1999这些数的个位上的数字之和可以被9整除 10~19,20~29……90~99这些数中⼗位上的数字都出现了10次,那么⼗位上的数字之和就是10+20+30+……+90=450它有能被9整除 同样的道理,100~900百位上的数字之和为4500同样被9整除 也就是说1~999这些连续的⾃然数的各个位上的数字之和可以被9整除; 同样的道理:1000~1999这些连续的⾃然数中百位、⼗位、个位上的数字之和可以被9整除(这⾥千位上的“1”还没考虑,同时这⾥我们少200020012002200320042005 从1000~1999千位上⼀共999个“1”的和是999,也能整除; 200020012002200320042005的各位数字之和是27,也刚好整除。
最后答案为余数为0。
七年级奥数题2: A和B是⼩于100的两个⾮零的不同⾃然数。
求A+B分之A-B的最⼩值... 解: (A-B)/(A+B)=(A+B-2B)/(A+B)=1-2*B/(A+B) 前⾯的1不会变了,只需求后⾯的最⼩值,此时(A-B)/(A+B)。
精心整理1、2002)1(-的值(B)A.2000B.1C.-1D.-2000 2、a 为有理数,则200011+a 的值不能是(C ) A.1B.-1C.0D.-20003、20074、)1(-5、)1(-6、计算78911练习:.22222222221098765432+--------.2)12(2221n n n n =-=-+ 612、计算:)9897983981(656361()4341(21++++++++++ 结果为:5.612249122121=⨯++⨯+ 13、计算:.200720061431321211⨯++⨯+⨯+⨯ 应用:)111(1)1(+-=+n n d n n d练习:.1051011171311391951⨯++⨯+⨯+⨯ 13、计算:35217106253121147642321⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯.结果为52 14、求21-++x x 的最小值及取最小值时x 的取值范围.练习:已知实数c b a ,,满足,01b a c <<<<-且,a c b >>求b a c a c ---+-1的值.练习:1、计算2、若m A.C.3、若n A.C.4143678…5、已知系是(C )A.2001+=b aB.2002+=b aC.b a =D.2002-=b a6、计算:.35217201241062531211471284642321⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯52 7、计算:.561742163015201412136121++++++83288、计算:.100321132112111+++++++++++ 9、计算:.999999999999999999999+++++10、计算)100011)(99911)(99811()411)(311211(10201970198019992000-------++-+- .610 11、已知,911,999909999==Q p 比较Q P ,的大小. 12、设n13、又得到一个数,14理数3,(1)15.19981.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是 (A)A .a%.B .(1+a)%.C.1100a a + D.100a a+ 2.甲杯中盛有2m 毫升红墨水,乙杯中盛有m 毫升蓝墨水,从甲杯倒出a 毫升到乙杯里,0<a <m ,搅匀后,又从乙杯倒出a 毫升到甲杯里,则这时 (A)A .甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B .甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C .甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则(A)A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是(C)A.111ab b a c<<-;B.1b a-<1ab<1c;C.1c<1b a-<1ab;D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有()A.2123.4.当5121,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.初中数学竞赛辅导2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.4.设(3x-1)7=a7x7+a6x6+…+a1x1+a0,试求a0+a2+a4+a6的值.6.解方程2|x+1|+|x-3|=6.8.解不等式||x+3|-|x-1||>2.10.x,y,z均是非负实数,且满足:x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.14.15.ACB.17与BE 交于F18KL于F1920.下23共有432425(1)(2)26.由?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.1630.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B35.20%,含锰501千克.(1)(2)(3)|=-a c-b≥0,a-c≤0原式=-b3.因为x+m≥0时,||x+m4a0+a210因为y,u=3x-2y+4z11.所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.因此,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE平分∠ABC,所以∠CBF=从而由∠15所以所以所以∠16.在∠DBC∠A+∠17以,又S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.+1)=75于是α所以故23即所以24令而t=1,把t25.(1)有8×7×(2)与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有2×8×7×6×5×4×3×2×1=80640种不同情况.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3=12(天).解之得x=16(海里/小时).经检验,x=16海里/小时为所求之原速.30解之得31由②有由①得解之得322×1.68即2×即所以若y为去年每支牙膏价格,则y=1.4+1=2.4(元).33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边即乙用35.(1)(2)当(3)x?40y=250重量y而。
奥数题大全及答案初升高一、数学基础题1. 题目:一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。
求这个数列的第10项。
答案:根据题意,数列的第四项为1+1+2=4,第五项为1+1+2+4=8,以此类推,数列的第10项为1+1+2+4+8+16+32+64+256+512=1023。
2. 题目:一个圆的半径为r,求圆内接正方形的面积。
答案:圆内接正方形的对角线等于圆的直径,即2r。
正方形的面积为对角线乘积的一半,所以面积为(2r)^2/2 = 2r^2。
3. 题目:一个直角三角形的两条直角边分别为3和4,求斜边的长度。
答案:根据勾股定理,斜边长度为√(3^2 + 4^2) = √(9 + 16) = √25 = 5。
二、逻辑推理题1. 题目:有5个盒子,每个盒子里都装有不同数量的球,分别是1, 2, 3, 4, 5个。
现在需要将这些球重新分配到5个盒子里,使得每个盒子里的球数都是奇数。
问是否可能?答案:不可能。
因为5个盒子里球的总数为1+2+3+4+5=15,是一个奇数。
要使每个盒子里的球数都是奇数,那么5个奇数相加的结果也应该是奇数,这与15是奇数相矛盾。
2. 题目:一个班级有50名学生,其中至少有1名学生的生日是同一天的概率是多少?答案:考虑最不利的情况,即前49名学生的生日都是不同的,那么第50名学生的生日必然与前49名中的某一个相同。
因此,至少有1名学生的生日是同一天的概率为1。
三、应用题1. 题目:一个水池有一个进水管和一个出水管。
单独开进水管,需要5小时将水池注满;单独开出水管,需要6小时将水池排空。
如果同时开进水管和出水管,需要多少时间才能将水池注满?答案:设水池的容量为C。
进水管每小时注水量为C/5,出水管每小时排水量为C/6。
同时开启时,每小时净注水量为C/5 - C/6 =C/30。
因此,需要30小时才能将水池注满。
2. 题目:一个农场有鸡和兔子共40只,它们的腿总共有100条。
[初中奥数题及答案]初中奥数题大全及答案【试卷考卷】初中奥数题大全及答案篇(1):初中奥数试题及答案一、填空题1 .已知不等式3x-a ≤ 0 的正整数解恰是1 ,2 ,3 ,则a 的取值范围是。
2 .已知关于x 的不等式组无解,则 a 的取值范围是。
3 .不等式组的整数解为。
4 .如果关于x 的不等式( a-1 ) x5 .已知关于x 的不等式组的解集为,那么 a 的取值范围是。
二、选择题6 .不等式组的最小整数解是( )A . 0B . 1C . 2D . -17 .若-1A . -a8 .若方程组的解满足条件,则k 的取值范围是( )A .B .C .D .9 .如果关于x 的不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数对(m,n)共有( )A.49对B.42对C.36对D.13对10.关于x的不等式组只有5个整数解,则a的取值范围是( )A. B.C. D.三、解答题12.13.已知a、b、c是三个非负数,并且满足3a+2b+c=5,2a+b-3c=1,设m =3a+b-7c,记x为m的最大值,y为m的最小值,求xy的值。
14.已知关于x、y的方程组的解满足,化简。
15.已知,求的最大值和最小值。
16.某饮料厂为了开发新产品,用A、B两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是试验的相关数据:甲乙A(单位:千克) 0.5 0.2 A(单位:千克) 0.3 0.4 假设甲种饮料需配制x千克,请你写出满足题意的不等式组,并求出其解集。
设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y元,请写出y与x的函数表达式,并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?17.据电力部门统计,每天8点至21点是用电高峰期,简称“峰时”,21点至次日8点是用电低谷期,简称“谷时”。
为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:时间换表前换表后峰时(8点至21点) 谷时(21点~次日8点) 电价0.52元/千瓦时x元/千瓦时y元/千瓦时已知每千瓦时峰时价比谷时价高0.25元,小卫家对换表后最初使用的100千瓦时用电情况进行统计分析知:峰时用电量占80%,谷时用电量点20%,与换表前相比,电费共下降2元。
奥数题大全及答案奥数(奥林匹克数学竞赛)是一项全球性的数学竞赛,被誉为数学界的奥运会。
奥数题目既考察了数学基础知识的掌握,又需要考生具备较强的思维能力和创新精神。
本文将收集和整理近几年的奥数题目及答案,供广大数学爱好者参考。
第一部分:初中奥数题及答案1.某数学竞赛共有70人参赛,获奖人数占总人数的10%。
如果前10名得分相同,则这10人都获得第一名。
问第11名的排名。
【答案】第11名排名第11,原因是获奖人数是总人数的10%,即7人,前10名得分相同且都获得第一名,因此第11名排在第11个获奖名次。
2.一列火车从A到B,车速为60千米/小时;从B到A,车速为40千米/小时,假设A和B之间的距离为600千米,求来回两次所用的时间。
【答案】由速度、时间、路程的公式v=s/t,可得从A到B的时间为10小时,从B到A的时间为15小时。
因此,两次来回一共需要25个小时。
第二部分:高中奥数题及答案1.把一个三位数的各个数位上的数字全排列,得到一些三位数,求这些三位数的平均值。
【答案】三位数的全排列一共有3!=6个,根据加法法则,将这6个数相加得到:ABC + ACB + BAC + BCA + CAB + CBA = 222(A + B + C)因此平均值为222(A + B + C)/6 = 37(A + B + C)。
2.已知a、b、c、d、e都是正整数,且a<b<c<d<e,满足a+b+c+d+e=100,且e-a=4,求b的最小值。
【答案】由于e-a=4,可以推导出d+c=b+a+8,代入a+b+c+d+e=100中,得到2b+2a+8=100,即b+a=46。
因此b的最小值为12。
第三部分:大学奥数题及答案1.铁路上有两座桥,长度分别为500米和1000米,两座桥之间距离为1000米。
一辆火车行驶速度为120千米/小时,火车头和车尾都有标志物,两座桥上定义的起点为0点,终点为500米或1000米。
七年级奥数题训练十篇1.七年级奥数题训练篇一1、姐妹两人骑车从相距10千米的甲地去乙地,妹妹比姐姐早出发10分钟,结果两人同时到达,姐妹两人骑车速度比是5:4,求姐姐甲地去乙地用了多少时间?2、小张爬山,下山按原路返回,往返共用了1.5小时。
上山时间是下山时间的1.5倍,上山速度比下山速度每分钟慢50米。
小张上下山共行了多少米?3、一辆汽车往返于甲、乙两地。
去时的速度是返回速度的3/4,去时比返回时多用了1小时,已知返回速度是每小时60千米,求甲、乙两地相距多少千米?4、一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢2分.若将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整.此时的标准时间是多少?何时将两个钟同时调准的?5、某科学家设计了一只怪钟,这只怪钟每昼夜10时,每小时100分钟.当这只钟显示5点整时,实际上是中午12点整.当这只钟显示3点75分时,实际上是什么时间?实际时间下午5点24分时,这只钟显示什么时间?2.七年级奥数题训练篇二1、学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?2、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?3、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?4、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?5、一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?3.七年级奥数题训练篇三1.两袋玻璃球,每袋个数相等。
一、选择题(每题5分,共20分)1. 下列数中,哪个数是质数?A. 28B. 29C. 30D. 312. 若一个数的平方等于25,则这个数可能是:A. 2B. 3C. 5D. 63. 在直角坐标系中,点A(2,3)关于原点的对称点是:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)4. 一个长方形的长是12cm,宽是5cm,它的周长是:A. 25cmB. 30cmC. 35cmD. 40cm5. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题5分,共20分)6. 若a² = 16,则a的值为______。
7. 若一个等腰三角形的底边长为8cm,腰长为10cm,则其高为______cm。
8. 若直角三角形的两个锐角分别为30°和60°,则其斜边与直角边的比值为______。
9. 一个数的十分位上是7,百分位上是2,这个数写作______。
10. 若一个数的千分位上是4,百分位上是8,这个数写作______。
三、解答题(每题10分,共30分)11. (10分)已知一元二次方程x² - 5x + 6 = 0,求方程的两个根。
12. (10分)一个梯形的上底长为10cm,下底长为20cm,高为15cm,求梯形的面积。
13. (10分)在直角坐标系中,点P的坐标为(4, -3),点Q在x轴上,且PQ=5,求点Q的坐标。
四、附加题(20分)14. (10分)已知正方形的边长为a,求正方形对角线的长度。
15. (10分)一个圆锥的底面半径为r,高为h,求圆锥的体积。
答案:一、选择题1. B2. C3. C4. B5. C二、填空题6. ±47. 108. 2:19. 7.210. 0.48三、解答题11. x₁ = 2,x₂ = 312. 梯形面积 = (上底 + 下底) × 高÷ 2 = (10 + 20) × 15 ÷ 2 = 150cm²13. 点Q的坐标为(4, 2)或(4, -8)四、附加题14. 正方形对角线长度 = 边长× √2 = a√215. 圆锥体积= 1/3 × π × r² × h。
初三奥数题及答案题目一:几何问题已知一个圆的半径为5厘米,圆内接一个等腰三角形,三角形的底边恰好是圆的直径。
求三角形的高。
解答:设等腰三角形的底边为AB,高为CD,其中A、B是圆上的两点,C是三角形的顶点。
由于AB是圆的直径,所以AB=10厘米。
设圆心为O,根据勾股定理,我们可以计算出OC的长度。
由于三角形AOC是直角三角形(因为OC是高,且AO是半径),我们有:\[ OC^2 + AC^2 = AO^2 \]\[ OC^2 + (5)^2 = (5\sqrt{2})^2 \]\[ OC^2 + 25 = 50 \]\[ OC^2 = 25 \]\[ OC = 5 \]由于三角形ABC是等腰三角形,所以AC=BC,我们可以设AC=BC=x厘米。
根据勾股定理,我们有:\[ x^2 = 5^2 + (10/2 - x)^2 \]\[ x^2 = 25 + (5 - x)^2 \]\[ x^2 = 25 + 25 - 10x + x^2 \]\[ 10x = 50 \]\[ x = 5 \]所以,三角形的高CD等于OC,即5厘米。
题目二:数列问题一个数列的前三项为1, 1, 2,从第四项开始,每一项都是其前三项的和。
求这个数列的前10项。
解答:已知数列的前三项为a_1=1, a_2=1, a_3=2。
根据题意,我们可以计算出后续项:- 第四项:a_4 = a_1 + a_2 + a_3 = 1 + 1 + 2 = 4- 第五项:a_5 = a_2 + a_3 + a_4 = 1 + 2 + 4 = 7- 第六项:a_6 = a_3 + a_4 + a_5 = 2 + 4 + 7 = 13- 以此类推,我们可以继续计算出后续项。
数列的前10项为:1, 1, 2, 4, 7, 13, 24, 44, 81, 149。
题目三:组合问题有5个不同的球和3个不同的盒子,每个盒子至少放一个球,求所有可能的放球方式。
数学初一奥数题及答案题目一:数列问题题目描述:有一个数列:2, 4, 7, 11, ... 这个数列的第10项是多少?解题思路:观察数列可以发现,每一项与前一项的差值依次为2, 3, 4, 5, ... 这是一个等差数列,差值的公差为1。
因此,第n项与第1项的差值是1+2+3+...+(n-1)。
答案:首先计算第10项与第1项的差值,即1+2+3+...+9,这是一个等差数列求和问题,公式为\( S = \frac{n(n+1)}{2} \),代入n=9得到\( S = \frac{9 \times 10}{2} = 45 \)。
所以第10项是2 + 45 = 47。
题目二:几何问题题目描述:在一个直角三角形ABC中,∠C是直角,AC=6,BC=8,求斜边AB的长度。
解题思路:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
答案:根据勾股定理,\( AB^2 = AC^2 + BC^2 \),代入AC=6,BC=8,得到\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \),所以AB = √100 = 10。
题目三:逻辑推理问题题目描述:有5个盒子,每个盒子里装有不同数量的球,分别是1, 2, 3, 4, 5个。
现在将这5个盒子重新排列,使得每个盒子里的球数都比前一个盒子多1个。
问:重新排列后的盒子里球的数量分别是多少?解题思路:由于每个盒子里的球数都比前一个盒子多1个,我们可以从最小的数开始排列,即5, 4, 3, 2, 1。
答案:重新排列后的盒子里球的数量分别是5, 4, 3, 2, 1。
题目四:组合问题题目描述:有红、黄、蓝三种颜色的球各10个,现在要从中选出5个球,求有多少种不同的选法?解题思路:这是一个组合问题,可以使用组合公式\( C(n, k) =\frac{n!}{k!(n-k)!} \)来计算,其中n是总数,k是选出的数量。
答案:首先考虑不考虑颜色的情况下,从30个球中选出5个球的组合数为\( C(30, 5) \)。