高三物理第二轮知识梳理复习题17
- 格式:doc
- 大小:803.00 KB
- 文档页数:13
2022届高考物理二轮复习题---匀变速直线运动一、单选题1.(2022·新疆·皮山县高级中学高三期末)从同一高度做自由落体运动的甲、乙两个小铁球甲的质量是乙的两倍则()A.甲比乙先落地,落地时甲的速度是乙的两倍B.甲比乙先落地,落地时甲、乙的速度相同C.甲、乙同时落地,落地时甲的速度是乙的两倍D.甲、乙同时落地,落地时甲、乙的速度相同2.(2022·辽宁朝阳·高三阶段练习)一辆汽车以15m/s的速度在平直的公路上匀速行驶,司机突然发现前方30m处有交通事故,立即采取制动措施,刹车后速度的变化如图所示,则刹车后3s时,该车距离事故点的位移大小是()A.7.5m B.10m C.15m D.20m3.(2021·广西·钟山中学高三阶段练习)下图是在“探究加速度与力、质量的关系”实验中打出的部分纸带,A、B、C为计数点,相邻计数点之间的时间间隔为0.1 s,打A点时小车的速度为0,则运动的加速度为()m/s2A.0.2 B.2.0 C.0.1 D.1.04.(2022·云南·玉溪市民族中学高三期中)某质点的位移随时间变化规律的关系是x=4t+2t2,x与t的单位分别是m 和s,则质点的初速度和加速度分别是()A.4m/s,2m/s2B.4m/s,4m/s2C.4m/s,0 D.0,4m/s25.(2022·广东·茂名市第一中学高三阶段练习)高速公路的ETC通道长度是指从识别区起点到自动栏杆的水平距离.某汽车以5m/s的速度匀速进入识别区,ETC天线用0.3s的时间识别车载电子标签,识别完成后发出“滴”的一声,司机发现自动栏杆没有抬起,于是采取制动刹车,汽车刚好没有撞杆。
已知该ETC通道的长度为9m,车载电子标签到汽车前车牌的水平距离约为1m,刹车加速度大小为5m/s2,由此可知司机的反应时间约为()A.0.6s B.0.8s C.1.0s D.1.2s6.(2022·北京市第九中学高三阶段练习)小明在社会实践时发现一口深井。
十七功与功率(40分钟70分)【基础巩固练】1.(6分)(生产生活情境)(2023·惠州模拟)惠州罗浮山风景区的索道如图甲所示,图乙是其简化图。
质量为M的吊厢通过悬臂固定悬挂在缆绳上,吊厢水平底板上放置一质量为m的货物。
若某段运动过程中,在缆绳牵引下吊厢载着货物一起斜向上加速运动,且悬臂和吊厢处于竖直方向,重力加速度为g,则( )A.吊厢水平底板对货物的支持力不做功B.吊厢水平底板对货物的摩擦力做正功C.悬臂对吊厢的作用力方向与缆绳方向平行且斜向上D.悬臂对吊厢的作用力大小等于(M+m)g【解析】选B。
吊厢水平底板对货物的支持力竖直向上,与速度方向的夹角小于90°,可知支持力对货物做正功,故A错误;在缆绳牵引下吊厢载着货物一起斜向上加速运动,可知吊厢水平底板对货物的摩擦力水平向右,与速度方向的夹角小于90°,摩擦力对货物做正功,故B正确;以吊厢和货物为整体,设加速度大小为a,缆绳与水平方向夹角为θ,则有Fy-(M+m)g=(M+m)a sinθ,F x=(M+m)a cosθ,则悬臂对吊厢的作用力大小为F=√F x2+F y2>(M+m)g,悬臂对吊厢的作用力与水平方向的夹角为α,则有tanα=F yF x =(M+m)g+(M+m)asinθ(M+m)acosθ>tanθ,可知悬臂对吊厢的作用力方向与缆绳方向不平行,故C、D错误。
2. (6分)(多选)(2023·清远模拟)塔吊是工地上必不可少的机器,如图所示,高为H的塔吊臂上有一可以沿水平方向运动的小车A,小车A下的绳索吊起重物B,在小车A与重物B以相同的水平速度沿吊臂向右匀速运动的同时,绳索将重物B向上吊起,A、B之间的距离以d=H-t2规律变化,则在此过程中( )A.绳索受到的拉力不断增大B.绳索对重物做功的平均功率不断增大C.重力做功的瞬时功率不断增大D.重物做匀变速曲线运动【解析】选B 、C 、D 。
高三物理二轮复习总结
一、电学
1.电场
• 电场强度的定义和计算
• 电场线的性质
• 静电力和电场力的区别
• 高斯定理的应用
• 点电荷、均匀带电线、均匀带电平板的电场分布和性质
2.电势
• 电势的定义和计算
• 电势差与电场强度之间的关系
• 不同位置的电势比较
• 电势能与静电势能的关系
3.电流
• 电流密度的定义和计算
• 欧姆定律及其在电路中的应用
• 串、并联电路的计算
• 电阻和电阻率的概念
• 线性电路中的功率、功率损失
4.磁学
• 磁场的概念及特征
• 磁场与电场的比较
• 安培环路定理和它在电磁感应中的应用• 洛伦兹力的方向判断
• 电流在磁场中的力和力矩计算
• 磁场边缘方向判断
5.电磁感应
• 电磁感应现象的基本定律
• 动生电动势和感生电流的计算
• 感应电磁场的方向判断
• 感应现象在生活中的应用和意义
• 变压器的结构和工作原理
6.电磁振荡
• 电路中的电感和电容
• LC振荡电路和RLC电路的特点
• 阻尼振动和受迫振动
• 振荡频率和自然频率的计算
• 干涉、衍射的原理和应用
7.光学
• 光的直线传播和反射定律
• 几种光学仪器的原理与应用
• 全反射的条件和光纤的原理
• 牛顿环、菲涅耳双缝干涉的原理
• 光在不同介质中的传播规律
8.物理学中的其他难点
• 相对论及其基本概念
• 波粒二象性及其实验基础
• 原子物理学中的基本概念和现象
• 核物理学的基本原理和应用
• 环保意识、能源可持续发展和科学技术创新。
2023届湖南省高三下学期二轮复习联考物理高频考点试题(基础必刷)一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图为一定质量理想气体的图,该气体从状态a变化到状态b的过程中( )A.气体一直对外做功,内能一直增加B.气体没有对外做功,内能一直增加C.气体没有对外做功,内能不变D.气体一直对外做功,内能不变第(2)题纵跳仪是运动员用来测试体能的一种装备,运动员用力从垫板上竖直跳起,然后,又自由落回到垫板上,此时仪器上就会显示出跳起的最大高度。
在某次测试时,仪器显示的高度为80cm。
如果运动员的质量为60kg,不计空气阻力,重力加速度g=10m/s2,那么,下列说法正确的是( )A.运动员起跳时,测试板对其做功为480JB.运动员在空中运动的时间为0.8sC.运动员跳起瞬间垫板对运动员的力大于运动员对垫板的力D.运动员在起跳过程和落回过程中,测试板对其冲量大小相等、方向相反第(3)题如图,光电管的阴极K上涂有极限频率为的金属锌,A是光电管的阳极,光电管置于足够长的平行板电容器的两板之间,两板间存在相互垂直的匀强磁场和匀强电场,磁感应强度,方向垂直纸面向里,电场强度,调节照射光的频率,使灵敏电流计G发生偏转。
则该照射光的频率约为( )(普朗克常量,电子质量)A.B.C.D.第(4)题板间距为的平行板电容器所带电荷量为时,两极板间电势差为,板间场强为,现将电容器所带电荷量变为,板间距变为,其他条件不变,这时两极板间电势差,板间场强为,下列说法正确的是()A.,B.,C.,D.,第(5)题如图所示,在一个粗糙水平面上,彼此靠近地放置两个带同种电荷的小物块。
由静止释放后,两个物块向相反方向运动,并最终停止。
在物块的运动过程中,下列表述正确的是( )A.两个物块的电势能逐渐减少B.物块受到的库仑力不做功C.两个物块的机械能守恒D.物块受到的摩擦力始终小于其受到的库仑力第(6)题如图所示电路中,电源电动势,内阻,定值电阻,,;滑动变阻器的取值范围为。
全册教案导学案说课稿试题高三物理二轮总复习全册教学案高三物理第二轮总复习目录第1专题力与运动 (1)第2专题动量和能量 (46)第3专题圆周运动、航天与星体问题 (76)第4专题带电粒子在电场和磁场中的运动 (94)第5专题电磁感应与电路的分析 (120)第6专题振动与波、光学、执掌、原子物理 (150)第7专题高考物理实验 (177)第8专题 (202)第9专题高中物理常见的物理模型 (221)第10专题计算题的答题规范与解析技巧 (240)第1专题 力与运动知识网络考点预测本专题复习三个模块的内容:运动的描述、受力分析与平衡、牛顿运动定律的运用.运动的描述与受力分析是两个相互独立的内容,它们通过牛顿运动定律才能连成一个有机的整体.虽然运动的描述、受力平衡在近几年都有独立的命题出现在高考中但由于理综考试题量的局限以及课改趋势,独立考查前两模块的命题在2013年高考中出现的概率很小,大部分高考卷中应该都会出现同时考查三个模块知识的试题,而且占不少分值.在综合复习这三个模块内容的时候,应该把握以下几点:1.运动的描述是物理学的重要基础,其理论体系为用数学函数或图象的方法来描述、推断质点的运动规律,公式和推论众多.其中,平抛运动、追及问题、实际运动的描述应为复习的重点和难点.2.无论是平衡问题,还是动力学问题,一般都需要进行受力分析,而正交分解法、隔离法与整体法相结合是最常用、最重要的思想方法,每年高考都会对其进行考查.3.牛顿运动定律的应用是高中物理的重要内容之一,与此有关的高考试题每年都有,题型有选择题、计算题等,趋向于运用牛顿运动定律解决生产、生活和科技中的实际问题.此外,它还经常与电场、磁场结合,构成难度较大的综合性试题.一、运动的描述 要点归纳(一)匀变速直线运动的几个重要推论和解题方法1.某段时间内的平均速度等于这段时间的中间时刻的瞬时速度,即v -t =v t 2. 2.在连续相等的时间间隔T 内的位移之差Δs 为恒量,且Δs =aT 2.3.在初速度为零的匀变速直线运动中,相等的时间T 内连续通过的位移之比为:s1∶s2∶s3∶…∶s n=1∶3∶5∶…∶(2n-1)通过连续相等的位移所用的时间之比为:t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶…∶(n-n-1).4.竖直上抛运动(1)对称性:上升阶段和下落阶段具有时间和速度等方面的对称性.(2)可逆性:上升过程做匀减速运动,可逆向看做初速度为零的匀加速运动来研究.(3)整体性:整个运动过程实质上是匀变速直线运动.5.解决匀变速直线运动问题的常用方法(1)公式法灵活运用匀变速直线运动的基本公式及一些有用的推导公式直接解决.(2)比例法在初速度为零的匀加速直线运动中,其速度、位移和时间都存在一定的比例关系,灵活利用这些关系可使解题过程简化.(3)逆向过程处理法逆向过程处理法是把运动过程的“末态”作为“初态”,将物体的运动过程倒过来进行研究的方法.(4)速度图象法速度图象法是力学中一种常见的重要方法,它能够将问题中的许多关系,特别是一些隐藏关系,在图象上明显地反映出来,从而得到正确、简捷的解题方法.(二)运动的合成与分解1.小船渡河设水流的速度为v1,船的航行速度为v2,河的宽度为d.(1)过河时间t仅由v2沿垂直于河岸方向的分量v⊥决定,即t=dv⊥,与v1无关,所以当v2垂直于河岸时,渡河所用的时间最短,最短时间t min=dv2.(2)渡河的路程由小船实际运动轨迹的方向决定.当v1<v2时,最短路程s min=d;当v1>v2时,最短路程s min=v1v2 d,如图1-1 所示.图1-12.轻绳、轻杆两末端速度的关系(1)分解法把绳子(包括连杆)两端的速度都沿绳子的方向和垂直于绳子的方向分解,沿绳子方向的分运动相等(垂直方向的分运动不相关),即v 1cos θ1=v 2cos_θ2.(2)功率法通过轻绳(轻杆)连接物体时,往往力拉轻绳(轻杆)做功的功率等于轻绳(轻杆)对物体做功的功率.3.平抛运动如图1-2所示,物体从O 处以水平初速度v 0抛出,经时间t 到达P 点.图1-2(1)加速度⎩⎪⎨⎪⎧ 水平方向:a x =0竖直方向:a y=g (2)速度⎩⎪⎨⎪⎧水平方向:v x =v 0竖直方向:v y =gt合速度的大小v =v 2x +v 2y =v 20+g 2t 2设合速度的方向与水平方向的夹角为θ,有:tan θ=v y v x =gt v 0,即θ=arctan gt v 0. (3)位移⎩⎪⎨⎪⎧ 水平方向:s x =v 0t 竖直方向:s y =12gt2 设合位移的大小s =s 2x +s 2y =(v 0t )2+(12gt 2)2 合位移的方向与水平方向的夹角为α,有: tan α=s y s x =12gt 2v 0t =gt 2v 0,即α=arctan gt 2v 0要注意合速度的方向与水平方向的夹角不是合位移的方向与水平方向的夹角的2倍,即θ≠2α,而是tan θ=2tan α.(4)时间:由s y =12gt 2得,t =2s y g,平抛物体在空中运动的时间t 只由物体抛出时离地的高度s y 决定,而与抛出时的初速度v 0无关.(5)速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(g =Δv Δt)相等,且必沿竖直方向,如图1-3所示.图1-3任意两时刻的速度与速度的变化量Δv 构成直角三角形,Δv 沿竖直方向.注意:平抛运动的速率随时间并不均匀变化,而速度随时间是均匀变化的.(6)带电粒子(只受电场力的作用)垂直进入匀强电场中的运动与平抛运动相似,出电场后做匀速直线运动,如图1-4所示.图1-4故有:y =(L ′+L 2)·tan α=(L ′+L 2)·qUL dm v 20. 热点、重点、难点(一)直线运动高考中对直线运动规律的考查一般以图象的应用或追及问题出现.这类题目侧重于考查学生应用数学知识处理物理问题的能力.对于追及问题,存在的困难在于选用哪些公式来列方程,作图求解,而熟记和运用好直线运动的重要推论往往是解决问题的捷径.●例1 如图1-5甲所示,A 、B 两辆汽车在笔直的公路上同向行驶.当B 车在A 车前s =84 m 处时,B 车的速度v B =4 m/s ,且正以a =2 m/s 2的加速度做匀加速运动;经过一段时间后,B 车的加速度突然变为零.A 车一直以v A =20 m/s 的速度做匀速运动,从最初相距84 m 时开始计时,经过t 0=12 s 后两车相遇.问B 车加速行驶的时间是多少?图1-5甲【解析】设B 车加速行驶的时间为t ,相遇时A 车的位移为:s A =v A t 0B 车加速阶段的位移为:s B 1=v B t +12at 2 匀速阶段的速度v =v B +at ,匀速阶段的位移为:s B 2=v (t 0-t )相遇时,依题意有:s A =s B 1+s B 2+s联立以上各式得:t 2-2t 0t -2[(v B -v A )t 0+s ]a =0 将题中数据v A =20 m/s ,v B =4 m/s ,a =2 m/s 2,t 0=12 s ,代入上式有:t 2-24t +108=解得:t 1=6 s ,t 2=18 s(不合题意,舍去)因此,B 车加速行驶的时间为6 s .[答案] 6 s【点评】①出现不符合实际的解(t 2=18 s)的原因是方程“s B 2=v (t 0-t )”并不完全描述B 车的位移,还需加一定义域t ≤12 s .②解析后可以作出v A -t 、v B -t 图象加以验证.图1-5乙根据v -t 图象与t 围成的面积等于位移可得,t =12 s 时,Δs =[12×(16+4)×6+4×6] m =84 m .(二)平抛运动平抛运动在高考试题中出现的几率相当高,或出现于力学综合题中,如2008年北京、山东理综卷第24题;或出现于带电粒子在匀强电场中的偏转一类问题中,如2008年宁夏理综卷第24题、天津理综卷第23题;或出现于此知识点的单独命题中,如2009年高考福建理综卷第20题、广东物理卷第17(1)题、2008年全国理综卷Ⅰ第14题.对于这一知识点的复习,除了要熟记两垂直方向上的分速度、分位移公式外,还要特别理解和运用好速度偏转角公式、位移偏转角公式以及两偏转角的关系式(即tan θ=2tan α).●例2 图1-6甲所示,m 为在水平传送带上被传送的小物体(可视为质点),A 为终端皮带轮.已知皮带轮的半径为r ,传送带与皮带轮间不会打滑.当m 可被水平抛出时,A 轮每秒的转数最少为( )图1-6甲A .12πg rB .g rC .grD .12πgr 【解析】解法一 m 到达皮带轮的顶端时,若m v 2r≥mg ,表示m 受到的重力小于(或等于)m 沿皮带轮表面做圆周运动的向心力,m 将离开皮带轮的外表面而做平抛运动又因为转数n =ω2π=v 2πr所以当v ≥gr ,即转数n ≥12πg r时,m 可被水平抛出,故选项A 正确. 解法二 建立如图1-6乙所示的直角坐标系.当m 到达皮带轮的顶端有一速度时,若没有皮带轮在下面,m 将做平抛运动,根据速度的大小可以作出平抛运动的轨迹.若轨迹在皮带轮的下方,说明m 将被皮带轮挡住,先沿皮带轮下滑;若轨迹在皮带轮的上方,说明m 立即离开皮带轮做平抛运动.图1-6乙又因为皮带轮圆弧在坐标系中的函数为:当y 2+x 2=r 2初速度为v 的平抛运动在坐标系中的函数为:y =r -12g (x v )2 平抛运动的轨迹在皮带轮上方的条件为:当x >0时,平抛运动的轨迹上各点与O 点间的距离大于r ,即y 2+x 2>r 即[r -12g (x v )2]2+x 2>r 解得:v ≥gr又因皮带轮的转速n 与v 的关系为:n =v 2πr 可得:当n ≥12πg r时,m 可被水平抛出. [答案] A【点评】“解法一”应用动力学的方法分析求解;“解法二”应用运动学的方法(数学方法)求解,由于加速度的定义式为a =Δv Δt ,而决定式为a =F m,故这两种方法殊途同归. ★同类拓展1 高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性.某滑雪轨道的完整结构可以简化成如图1-7所示的示意图.其中AB 段是助滑雪道,倾角α=30°,BC 段是水平起跳台,CD 段是着陆雪道,AB 段与BC 段圆滑相连,DE 段是一小段圆弧(其长度可忽略),在D 、E 两点分别与CD 、EF 相切,EF 是减速雪道,倾角θ=37°.轨道各部分与滑雪板间的动摩擦因数均为μ=0.25,图中轨道最高点A 处的起滑台距起跳台BC 的竖直高度h =10 m .A 点与C 点的水平距离L 1=20 m ,C 点与D 点的距离为32.625 m .运动员连同滑雪板的总质量m =60 kg .滑雪运动员从A 点由静止开始起滑,通过起跳台从C 点水平飞出,在落到着陆雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿着陆雪道的分速度而不弹起.除缓冲外运动员均可视为质点,设运动员在全过程中不使用雪杖助滑,忽略空气阻力的影响,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图1-7(1)运动员在C 点水平飞出时的速度大小.(2)运动员在着陆雪道CD 上的着陆位置与C 点的距离. (3)运动员滑过D 点时的速度大小.【解析】(1)滑雪运动员从A 到C 的过程中,由动能定理得:mgh -μmg cos αhsin α-μmg (L 1-h cot α)=12m v 2C解得:v C =10 m/s .(2)滑雪运动员从C 点水平飞出到落到着陆雪道的过程中做平抛运动,有: x =v C t y =12gt 2 yx=tan θ 着陆位置与C 点的距离s =x cos θ解得:s =18.75 m ,t =1.5 s .(3)着陆位置到D 点的距离s ′=13.875 m ,滑雪运动员在着陆雪道上做匀加速直线运动.把平抛运动沿雪道和垂直雪道分解,可得着落后的初速度v 0=v C cos θ+gt sin θ加速度为:mg sin θ-μmg cos θ=ma运动到D 点的速度为:v 2D =v 20+2as ′ 解得:v D =20 m/s .[答案] (1)10 m/s (2)18.75 m (3)20 m/s 互动辨析 在斜面上的平抛问题较为常见,“位移与水平面的夹角等于倾角”为着落条件.同学们还要能总结出距斜面最远的时刻以及这一距离.二、受力分析要点归纳(一)常见的五种性质的力(二)力的运算、物体的平衡1.力的合成与分解遵循力的平行四边形定则(或力的三角形定则).2.平衡状态是指物体处于匀速直线运动或静止状态,物体处于平衡状态的动力学条件是:F合=0或F x=0、F y=0、F z=0.注意:静止状态是指速度和加速度都为零的状态,如做竖直上抛运动的物体到达最高点时速度为零,但加速度等于重力加速度,不为零,因此不是平衡状态.3.平衡条件的推论(1)物体处于平衡状态时,它所受的任何一个力与它所受的其余力的合力等大、反向.(2)物体在同一平面上的三个不平行的力的作用下处于平衡状态时,这三个力必为共点力.物体在三个共点力的作用下而处于平衡状态时,表示这三个力的有向线段组成一封闭的矢量三角形,如图1-8所示.图1-84.共点力作用下物体的平衡分析热点、重点、难点(一)正交分解法、平行四边形法则的应用1.正交分解法是分析平衡状态物体受力时最常用、最主要的方法.即当F合=0时有:F x合=0,F y合=0,F z合=0.2.平行四边形法有时可巧妙用于定性分析物体受力的变化或确定相关几个力之比.●例3举重运动员在抓举比赛中为了减小杠铃上升的高度和发力,抓杠铃的两手间要有较大的距离.某运动员成功抓举杠铃时,测得两手臂间的夹角为120°,运动员的质量为75 kg,举起的杠铃的质量为125 kg,如图1-9甲所示.求该运动员每只手臂对杠铃的作用力的大小.(取g=10 m/s2)图1-9甲【分析】由手臂的肌肉、骨骼构造以及平时的用力习惯可知,伸直的手臂主要沿手臂方向发力.取手腕、手掌为研究对象,握杠的手掌对杠有竖直向上的弹力和沿杠向外的静摩擦力,其合力沿手臂方向,如图1-9乙所示.图1-9乙【解析】手臂对杠铃的作用力的方向沿手臂的方向,设该作用力的大小为F,则杠铃的受力情况如图1-9丙所示图1-9丙由平衡条件得:2F cos 60°=mg解得:F=1250 N.[答案] 1250 N●例4两个可视为质点的小球a和b,用质量可忽略的刚性细杆相连放置在一个光滑的半球面内,如图1-10甲所示.已知小球a和b的质量之比为3,细杆长度是球面半径的 2 倍.两球处于平衡状态时,细杆与水平面的夹角θ是[2008年高考·四川延考区理综卷]()图1-10甲A.45°B.30°C.22.5°D.15°【解析】解法一设细杆对两球的弹力大小为T,小球a、b的受力情况如图1-10乙所示图1-10乙其中球面对两球的弹力方向指向圆心,即有: cos α=22R R =22解得:α=45°故F N a 的方向为向上偏右,即β1=π2-45°-θ=45°-θF N b 的方向为向上偏左,即β2=π2-(45°-θ)=45°+θ两球都受到重力、细杆的弹力和球面的弹力的作用,过O 作竖直线交ab 于c 点,设球面的半径为R ,由几何关系可得:m a g Oc =F N aR m b g Oc =F N bR解得:F N a =3F N b取a 、b 及细杆组成的整体为研究对象,由平衡条件得: F N a ·sin β1=F N b ·sin β2 即 3F N b ·sin(45°-θ)=F N b ·sin(45°+θ) 解得:θ=15°.解法二 由几何关系及细杆的长度知,平衡时有: sin ∠Oab =22R R =22故∠Oab =∠Oba =45°再设两小球及细杆组成的整体重心位于c 点,由悬挂法的原理知c 点位于O 点的正下方,且ac bc =m am b= 3即R ·sin(45°-θ)∶R ·sin(45°+θ)=1∶ 3解得:θ=15°. [答案] D【点评】①利用平行四边形(三角形)定则分析物体的受力情况在各类教辅中较常见.掌握好这种方法的关键在于深刻地理解好“在力的图示中,有向线段替代了力的矢量”.②在理论上,本题也可用隔离法分析小球a 、b 的受力情况,根据正交分解法分别列平衡方程进行求解,但是求解三角函数方程组时难度很大.③解法二较简便,但确定重心的公式ac bc =m am b=3超纲.(二)带电粒子在复合场中的平衡问题 在高考试题中,也常出现带电粒子在复合场中受力平衡的物理情境,出现概率较大的是在正交的电场和磁场中的平衡问题及在电场和重力场中的平衡问题.在如图1-11所示的速度选择器中,选择的速度v =EB ;在如图1-12所示的电磁流量计中,流速v =u Bd ,流量Q =πdu 4B.图1-11 图1-12●例5 在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向里,一个带电油滴沿着一条与竖直方向成α角的直线MN 运动,如图1-13所示.由此可判断下列说法正确的是( )图1-13A .如果油滴带正电,则油滴从M 点运动到N 点B .如果油滴带正电,则油滴从N 点运动到M 点C .如果电场方向水平向右,则油滴从N 点运动到M 点D .如果电场方向水平向左,则油滴从N 点运动到M 点【解析】油滴在运动过程中受到重力、电场力及洛伦兹力的作用,因洛伦兹力的方向始终与速度方向垂直,大小随速度的改变而改变,而电场力与重力的合力是恒力,所以物体做匀速直线运动;又因电场力一定在水平方向上,故洛伦兹力的方向是斜向上方的,因而当油滴带正电时,应该由M 点向N 点运动,故选项A 正确、B 错误.若电场方向水平向右,则油滴需带负电,此时斜向右上方与MN 垂直的洛伦兹力对应粒子从N 点运动到M 点,即选项C 正确.同理,电场方向水平向左时,油滴需带正电,油滴是从M 点运动到N 点的,故选项D 错误.[答案] AC 【点评】对于带电粒子在复合场中做直线运动的问题要注意受力分析.因为洛伦兹力的方向与速度的方向垂直,而且与磁场的方向、带电粒子的电性都有关,分析时更要注意.本题中重力和电场力均为恒力,要保证油滴做直线运动,两力的合力必须与洛伦兹力平衡,粒子的运动就只能是匀速直线运动.★同类拓展2 如图1-14甲所示,悬挂在O 点的一根不可伸长的绝缘细线下端挂有一个带电荷量不变的小球A .在两次实验中,均缓慢移动另一带同种电荷的小球B .当B 到达悬点O 的正下方并与A 在同一水平线上,A 处于受力平衡时,悬线偏离竖直方向的角度为θ.若两次实验中B 的电荷量分别为q 1和q 2,θ分别为30°和45°,则q 2q 1为 [2007年高考·重庆理综卷]( )图1-14甲A.2B.3C.23D.3 3【解析】对A球进行受力分析,如图1-14 乙所示,图1-14乙由于绳子的拉力和点电荷间的斥力的合力与A球的重力平衡,故有:F电=mg tan θ,又F电=k qQ Ar2.设绳子的长度为L,则A、B两球之间的距离r=L sin θ,联立可得:q=mL2g tan θsin2θkQ A,由此可见,q与tan θsin 2θ成正比,即q2q1=tan 45°sin245°tan 30°sin230°=23,故选项C正确.[答案] C互动辨析本题为带电体在重力场和电场中的平衡问题,解题的关键在于:先根据小球的受力情况画出平衡状态下的受力分析示意图;然后根据平衡条件和几何关系列式,得出电荷量的通解表达式,进而分析求解.本题体现了新课标在知识考查中重视方法渗透的思想.三、牛顿运动定律的应用要点归纳(一)深刻理解牛顿第一、第三定律1.牛顿第一定律(惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.(1)理解要点①运动是物体的一种属性,物体的运动不需要力来维持.②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因.③牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例.牛顿第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系.(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性.①惯性是物体的固有属性,与物体的受力情况及运动状态无关.②质量是物体惯性大小的量度.2.牛顿第三定律(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,可用公式表示为F=-F′.(2)作用力与反作用力一定是同种性质的力,作用效果不能抵消.(3)牛顿第三定律的应用非常广泛,凡是涉及两个或两个以上物体的物理情境、过程的解答,往往都需要应用这一定律.(二)牛顿第二定律1.定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比.2.公式:F合=ma理解要点①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失.②方向性:a与F合都是矢量,方向严格相同.③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力.3.应用牛顿第二定律解题的一般步骤:(1)确定研究对象;(2)分析研究对象的受力情况,画出受力分析图并找出加速度的方向;(3)建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余的力或加速度分解到两坐标轴上;(4)分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;(5)统一单位,计算数值.热点、重点、难点一、正交分解法在动力学问题中的应用当物体受到多个方向的外力作用产生加速度时,常要用到正交分解法.1.在适当的方向建立直角坐标系,使需要分解的矢量尽可能少.2.F x合=ma x合,F y合=ma y合,F z合=ma z合.3.正交分解法对本章各类问题,甚至对整个高中物理来说都是一重要的思想方法.●例6如图1-15甲所示,在风洞实验室里,一根足够长的细杆与水平面成θ=37°固定,质量m=1 kg的小球穿在细杆上静止于细杆底端O点.现有水平向右的风力F作用于小球上,经时间t 1=2 s 后停止,小球沿细杆运动的部分v -t 图象如图1-15乙所示.试求:(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)图1-15(1)小球在0~2 s 内的加速度a 1和2~4 s 内的加速度a 2.(2)风对小球的作用力F 的大小.【解析】(1)由图象可知,在0~2 s 内小球的加速度为:a 1=v 2-v 1t 1=20 m/s 2,方向沿杆向上 在2~4 s 内小球的加速度为:a 2=v 3-v 2t 2=-10 m/s 2,负号表示方向沿杆向下. (2)有风力时的上升过程,小球的受力情况如图1-15丙所示图1-15丙在y 方向,由平衡条件得:F N1=F sin θ+mg cos θ在x 方向,由牛顿第二定律得:F cos θ-mg sin θ-μF N1=ma1停风后上升阶段,小球的受力情况如图1-15丁所示图1-15丁在y方向,由平衡条件得:F N2=mg cos θ在x方向,由牛顿第二定律得:-mg sin θ-μF N2=ma2联立以上各式可得:F=60 N.【点评】①斜面(或类斜面)问题是高中最常出现的物理模型.②正交分解法是求解高中物理题最重要的思想方法之一.二、连接体问题(整体法与隔离法)高考卷中常出现涉及两个研究对象的动力学问题,其中又包含两种情况:一是两对象的速度相同需分析它们之间的相互作用,二是两对象的加速度不同需分析各自的运动或受力.隔离(或与整体法相结合)的思想方法是处理这类问题的重要手段.1.整体法是指当连接体内(即系统内)各物体具有相同的加速度时,可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,运用牛顿第二定律对整体列方程求解的方法.2.隔离法是指当研究对象涉及由多个物体组成的系统时,若要求连接体内物体间的相互作用力,则应把某个物体或某几个物体从系统中隔离出来,分析其受力情况及运动情况,再利用牛顿第二定律对隔离出来的物体列式求解的方法.3.当连接体中各物体运动的加速度相同或要求合外力时,优先考虑整体法;当连接体中各物体运动的加速度不相同或要求物体间的作用力时,优先考虑隔离法.有时一个问题要两种方法结合起来使用才能解决.●例7如图1-16所示,在光滑的水平地面上有两个质量相等的物体,中间用劲度系数为k的轻质弹簧相连,在外力F1、F2的作用下运动.已知F1>F2,当运动达到稳定时,弹簧的伸长量为()图1-16A .F 1-F 2kB .F 1-F 22kC .F 1+F 22kD .F 1+F 2k【解析】取A 、B 及弹簧整体为研究对象,由牛顿第二定律得:F 1-F 2=2ma取B 为研究对象:kx -F 2=ma(或取A 为研究对象:F 1-kx =ma )可解得:x =F 1+F 22k. [答案] C【点评】①解析中的三个方程任取两个求解都可以.②当地面粗糙时,只要两物体与地面的动摩擦因数相同,则A 、B 之间的拉力与地面光滑时相同.★同类拓展3 如图1-17所示,质量为m 的小物块A 放在质量为M 的木板B 的左端,B 在水平拉力的作用下沿水平地面匀速向右滑动,且A 、B 相对静止.某时刻撤去水平拉力,经过一段时间,B 在地面上滑行了一段距离x ,A 在B 上相对于B 向右滑行了一段距离L (设木板B 足够长)后A 和B 都停了下来.已知A 、B 间的动摩擦因数为μ1,B 与地面间的动摩擦因数为μ2,且μ2>μ1,则x 的表达式应为( )图1-17A .x =M m LB .x =(M +m )L mC .x =μ1ML (μ2-μ1)(m +M )D .x =μ1ML (μ2+μ1)(m +M ) 【解析】设A 、B 相对静止一起向右匀速运动时的速度为v ,撤去外力后至停止的过程中,A 受到的滑动摩擦力为:f 1=μ1mg其加速度大小a 1=f 1m=μ1g B 做减速运动的加速度大小a 2=μ2(m +M )g -μ1mg M由于μ2>μ1,所以a 2>μ2g >μ1g =a 1即木板B 先停止后,A 在木板上继续做匀减速运动,且其加速度大小不变对A 应用动能定理得:-f 1(L +x )=0-12m v 2 对B 应用动能定理得:μ1mgx -μ2(m +M )gx =0-12M v 2 解得:x =μ1ML (μ2-μ1)(m +M ). [答案] C【点评】①虽然使A 产生加速度的力由B 施加,但产生的加速度a 1=μ1g 是取大地为参照系的.加速度是相对速度而言的,所以加速度一定和速度取相同的参照系,与施力物体的速度无关.②动能定理可由牛顿第二定律推导,特别对于匀变速直线运动,两表达式很容易相互转换.三、临界问题●例8 如图1-18甲所示,滑块A 置于光滑的水平面上,一细线的一端固定于倾角为45°、质量为M 的光滑楔形滑块A 的顶端P 处,细线另一端拴一质量为m 的小球B .现对滑。
高三物理二轮复习专题原子结构,原子核,波粒二像性时间:30分钟考点(1):光电效应1.(08·重庆)下列与能量有关的说法正确的是()A.卫星绕地球做圆周运动的半径越大,动能越大B.从同种金属逸出的光电子的最大初动能随照射光波长的减小而增大C.做平抛运动的物体在任意相等时间内动能的增量相同D.在静电场中,电场线越密的地方正电荷的电势能一定越高2.(08·江苏)下列实验中,深入地揭示了光的粒子性一面的有()考点(2):爱因斯坦光电效应方程3.(05·上海)2005年被联合国定为“世界物理年”,以表彰爱因斯坦对科学的贡献.爱因斯坦对物理学的贡献有()(A)创立“相对论”(B)发现“X射线”.(C)提出“光子说”(D)建立“原子核式模型”.4.(05·北京)为纪念爱因斯坦对物理学的巨大贡献,联合国将2005年定为“国际物理年”。
对于爱因斯坦提出的质能方程E=mc2,下列说法中不正确的是()A. E=mc2表明物体具有的能量与其质量成正比B.根据ΔE=Δmc2可计算核反应的能量C.一个质子和一个中子结合成一个氘核时释放能量,表明此过程出现了质量亏损D.E=mc2中的E是发生核反应中释放的核能考点(3):原子核的组成、放射性、原子核的衰变、半衰期5.(07·上海)放射性同位素14C可用来推算文物的“年龄”。
14C的含量每减少一半要经过约5730年。
某考古小组挖掘到一块动物骨骼,经测定14C还剩余1/8,推测该动物生存年代距今约为()A.5730×3年B.5730×4年C.5730×6年D.5730×8年6.(07·上海)23892U衰变为22286Rn要经过m次α衰变和n次β衰变,则m,n分别为()A.2,4 B.4,2 C.4,6 D.16,67.(09·北京)下列现象中,与原子核内部变化有关的是()A.α粒子散射现象 B.天然放射现象C.光电效应现象 D.原子发光现象8.(09·上海)放射性元素衰变时放出三种射线,按穿透能力由强到弱的排列顺序是()A.α射线,β射线,γ射线B.γ射线,β射线,α射线,C.γ射线,α射线,β射线D.β射线,α射线,γ射线9.(07·北京)下列说法正确的是()A.太阳辐射的能量主要来自太阳内部的核裂变反应B.汤姆生发现电子,表明原子具有核式结构C.一束光照射到某种金属上不能发生光电效应,是因为该束光的波长太短D.按照波尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,原子总能量增加考点(4):放射性同位素10.(10·山东模拟)关于放射性同位素,下列说法正确的是( )A.放射性同位素与放射性元素一样,都具有一定的半衰期,衰变规律一样B.放射性同位素衰变可以生成另一种新元素C.放射性同位素只能是天然衰变时产生的,不能用人工方法测得D.以上说法都不对考点(5):氢原子光谱11.(06·江苏)氢原子的能级如图所示,已知可见的光的光子能量范围约为1.62eV~3.11eV.下列说法错误的是()A.处于n = 3能级的氢原子可以吸收任意频率的紫外线,并发生电离B.大量氢原子从高能级向n = 3 能级跃迁时,发出的光具有显著的热效应C.大量处于n = 4能级的氢原子向低能级跃迁时,可能发出6 种不同频率的光D.大量处于n = 4是能级的氢原子向低能级跃迁时,可能发出3种不同频率的可见光12.(07江苏) μ子与氢原子核(质子)构成的原子称为μ氢原子(hydrogenmuon atom),它在原子核物理的研究中有重要作用。
高三物理二轮复习专题3-5重难点突破一、关于光电效应问题1、分析方法(1)常见电路(2)两条线索(a)通过频率分析:光子频率高→光子能量大→产生光电子的最大初动能大.(b)通过光的强度分析:由I 光强=Nh ν可知,频率一定时,入射光强度大→光子数目多→产生的光电子多→光电流大;光强一定时,频率越高→光子数目少→产生的光电子数越少→光电流小.2、典型图象(1)光电流与电压的关系说明:频率的比较:E km =h ν-W 0= eU c 可知遏止电压越大,频率越高,遏止电压相同,频率相同,从图可知ν甲=ν乙<ν丙。
光强的比较:饱和光电流与单位时间逸出的光电子数有关,单位时间逸出的光电子数与光强和光的频率有关,由I 光强=Nh ν可知,甲的强度大于乙的强度。
(2)反向遏止电压与入射光频率的关系说明:由e W h U C 0-=ν可知,根据横坐标交点可求金属的极限频率ν0=w 0/h ,根据斜率可以算出普朗克恒量,斜率h/e,根据纵轴截距可以推算出金属的逸出功,w 0/e 。
(3)最大初动能与入射光频率的关系说明:由0W h E K -=ν可知,图线与横轴的交点坐标是极限频率ν0,图线与纵轴的交点数值是逸出功w 0,图象的斜率就是普朗克恒量h 。
例、如图所示电路可研究光电效应规律。
图中标有A 和K 的为光电管,其中A 为阴极,K 为阳极。
理想电流计可检测通过光电管的电流,理想电压表用来指示光电管两端的电压。
现接通电源,用光子能量为10.5eV 的光照射阴极A ,电流计中有示数,若将滑动变阻器的滑片P 缓慢向右滑动,电流计的读数逐渐减小,当滑至某一位置时电流计的读数恰好为零,读出此时电压表的示数为6.0V ;现保持滑片P 位置不变,以下判断正确的是(AC )A.光电管阴极材料的逸出功为4.5eVB .若增大入射光的强度,电流计的读数不为零C .若用光子能量为12eV 的光照射阴极A ,光电子的最大初动能一定变大D .若用光子能量为9.5eV 的光照射阴极A ,同时把滑片P向左移动少许,电流计的读数一定不为零二、关于原子跃迁问题1、注意“一个原子”还是“一群原子”一群氢原子处于量子数为n 的激发态时,可能辐射出的光谱条数为N =n (n -1)2=C 2n ,而一个氢原子处于量子数为n 的激发态上时,最多可辐射出n -1条光谱线.例、现有1200个氢原子被激发到量子数为4的能级上,若这些受激氢原子最后都回到基态,则在此过程中发出的光子总数是多少?假定处在量子数为n的激发态的氢原子跃迁到各较低能级的原子数都是处在该激发态能级上的原子总数的11n(A)A. 2200B. 2000C. 1200D. 24002、注意是“跃迁”还是“电离”不管是吸收还是辐射光子,其光子的能量都必须等于这两个能级的能量差,欲想把处于某一定态的原子的电子电离出去,就需要给原子一定的能量。
热点17选修3-31.[2020·全国卷Ⅰ,33][物理——选修3-3](1)分子间作用力F 与分子间距r 的关系如图所示,r =r 1时,F =0.分子间势能由r 决定,规定两分子相距无穷远时分子间的势能为零.若一分子固定于原点O ,另一分子从距O 点很远处向O 点运动,在两分子间距减小到r 2的过程中,势能________(填“减小”“不变”或“增大”);在间距由r 2减小到r 1的过程中,势能________(填“减小”“不变”或“增大”);在间距等于r 1处,势能________(填“大于”“等于”或“小于”)零.(2)甲、乙两个储气罐储存有同种气体(可视为理想气体).甲罐的容积为V ,罐中气体的压强为p ;乙罐的容积为2V ,罐中气体的压强为12p .现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等.求调配后(ⅰ)两罐中气体的压强;(ⅱ)甲罐中气体的质量与甲罐中原有气体的质量之比.2.[物理——选修3-3](1)下列说法正确的是________.A .饱和蒸气压随温度的升高而增大B .单晶体在某些物理性质上具有各向异性C .一定量的理想气体从外界吸热,其内能一定增加D .液体温度越高,悬浮颗粒越小,布朗运动越剧烈E .当分子之间作用力表现为斥力时,分子力随分子间距离的增大而增大(2)如图所示,一竖直放置、粗细均匀且足够长的U形玻璃管,右端通过橡胶管与放在水中导热的球形容器连通,球形容器连同橡胶管的容积为V0=90cm3,U形玻璃管中,被水银柱封闭有一定质量的理想气体.当环境温度为0℃时,U形玻璃管右侧水银面比左侧水银面高出h1=16cm,水银柱上方空气柱长h0=20cm,(已知大气压强p0=76cm Hg,U形玻璃管的横截面积为S=0.5cm2)(ⅰ)若对水缓慢加热,应加热到多少摄氏度,两边水银柱高度会在同一水平面上?(ⅱ)保持加热后的温度不变,往左管中缓慢注入水银,问注入水银的高度多少时右管水银面回到原来的位置?3.[2020·全国卷Ⅱ,33][物理——选修3-3](1)下列关于能量转换过程的叙述,违背热力学第一定律的有________,不违背热力学第一定律、但违背热力学第二定律的有________.(填正确答案标号)A.汽车通过燃烧汽油获得动力并向空气中散热B.冷水倒入保温杯后,冷水和杯子的温度都变得更低C.某新型热机工作时将从高温热源吸收的热量全部转化为功,而不产生其他影响D.冰箱的制冷机工作时从箱内低温环境中提取热量散发到温度较高的室内(2)潜水钟是一种水下救生设备,它是一个底部开口、上部封闭的容器,外形与钟相似.潜水钟在水下时其内部上方空间里存有空气,以满足潜水员水下避险的需要.为计算方便,将潜水钟简化为截面积为S、高度为h、开口向下的圆筒;工作母船将潜水钟由水面上方开口向下吊放至深度为H的水下,如图所示.已知水的密度为ρ,重力加速度大小为g,大气压强为p0,H≫h,忽略温度的变化和水密度随深度的变化.(ⅰ)求进入圆筒内水的高度l;(ⅱ)保持H不变,压入空气使筒内的水全部排出,求压入的空气在其压强为p0时的体积.4.[2020·全国卷Ⅲ,33][选修3—3](1)如图,一开口向上的导热汽缸内,用活塞封闭了一定质量的理想气体,活塞与汽缸壁间无摩擦.现用外力作用在活塞上,使其缓慢下降.环境温度保持不变,系统始终处于平衡状态.在活塞下降过程中________.A .气体体积逐渐减小,内能增加B .气体压强逐渐增大,内能不变C .气体压强逐渐增大,放出热量D .外界对气体做功,气体内能不变E .外界对气体做功,气体吸收热量(2)如图,两侧粗细均匀、横截面积相等、高度均为H =18cm 的U 型管,左管上端封闭,右管上端开口.右管中有高h 0=4cm 的水银柱,水银柱上表面离管口的距离为l =12cm.管底水平段的体积可忽略.环境温度为T 1=283K ,大气压强p 0=76cmHg.(ⅰ)现从右侧端口缓慢注入水银(与原水银柱之间无气隙),恰好使水银柱下端到达右管底部.此时水银柱的高度为多少?(ⅱ)再将左管中密封气体缓慢加热,使水银柱上表面恰与右管口平齐,此时密封气体的温度为多少?热点17选修3-31.答案:(1)减小减小小于(2)(ⅰ)23p (ⅱ)23解析:(1)若一分子固定于原点O ,另一分子从距O 点很远处向O 点运动,在两分子间距减小到r 2的过程中,分子力做正功,势能减小;由r 2减小到r 1的过程中,分子力仍做正功,势能减小;在间距为r 1处,势能小于零.(2)(ⅰ)假设乙罐中的气体被压缩到压强为p ,其体积变为V 1,由玻意耳定律有12p(2V)=pV 1①现两罐气体压强均为p ,总体积为(V +V 1).设调配后两罐中气体的压强为p ′,由玻意耳定律有p(V +V 1)=p ′(V +2V)②联立①②式可得p ′=23p ③(ⅱ)若调配后甲罐中的气体再被压缩到原来的压强p 时,体积为V 2,由玻意耳定律有p ′V =pV 2④设调配后甲罐中气体的质量与甲罐中原有气体的质量之比为k ,由密度的定义有k =V 2V⑤联立③④⑤式可得k =23⑥2.答案:(1)ABD (2)(ⅰ)86.63℃(ⅱ)19.04cm解析:(1)饱和蒸气压与温度有关,且随着温度的升高而增大,故A 正确;单晶体内部分子结构在空间排列规则,某些物理性质具有各向异性,故B 正确;根据热力学第一定律,做功和热传递都可以改变内能,所以气体吸热内能不一定增加,故C 错误;液体温度越高,分子热运动的平均动能越大,悬浮颗粒越小,惯性越小,碰撞的不平衡性越明显,布朗运动越剧烈,故D 正确;分子间的作用力表现为斥力时,分子力随分子间距离的增大而减小,故E 错误.(2)(ⅰ)初状态压强、体积、温度分别为p 1=p 0-16cmHg =60cmHg ,V 1=V 0+h 0S ,T 1=273K ,末状态压强、体积、温度分别为p 2=p 0,V 2=V 1+h 12S ,T 2=(273+t)K ,由理想气体状态方程有p 1V 1T 1=p 2V 2T 2,代入数据得t =86.63℃;(ⅱ)当往左管注入水银后,末状态压强为p ,体积为V 1=V 0+h 0S由玻意耳定律得p 2V 2=pV 1,解得p =79.04cmHg ,则Δh =79.04cm -76cm =3.04cm ,可知往左管注入水银的高度为h =h 1+Δh =19.04cm .3.答案:(1)B C (2)(ⅰ)ρgH p 0+ρgHh (ⅱ)ρgSHh p 0解析:(1)汽车通过燃烧汽油获得动力并向空气中散热既不违背热力学第一定律也不违背热力学第二定律;冷水倒入保温杯后,冷水和杯子的温度都变得更低,违背了热力学第一定律;热机工作时吸收的热量不可能全部用来对外做功,而不产生其他影响,显然C 选项遵循热力学第一定律,但违背了热力学第二定律;冰箱的制冷机工作时,从箱内低温环境中提取热量散发到温度较高的室内,既不违背热力学第一定律也不违背热力学第二定律,综上所述,第一个空选B ,第二个空选C .(2)(ⅰ)设潜水钟在水面上方时和放入水下后筒内气体的体积分别为V 0和V 1,放入水下后筒内气体的压强为p 1,由玻意耳定律和题给条件有p 1V 1=p 0V 0①V 0=hS ②V 1=(h -l)S ③p 1=p 0+ρg(H -l)④联立以上各式并考虑到H ≫h>l ,解得l =ρgH p 0+ρgH h ⑤(ⅱ)设水全部排出后筒内气体的压强为p 2,此时筒内气体的体积为V 0,这些气体在其压强为p 0时的体积为V 3,由玻意耳定律有p 2V 0=p 0V 3⑥其中p 2=p 0+ρgH ⑦设需压入筒内的气体体积为V ,依题意V =V 3-V 0⑧联立②⑥⑦⑧式得V =ρgSHh p 0⑨4.答案:(1)BCD (2)(ⅰ)12.9cm (ⅱ)363K解析:(1)外力使活塞缓慢下降的过程中,由于温度保持不变,则气体的内能保持不变,气体的体积逐渐减小,外界对气体做功,由热力学第一定律可知,气体向外界放出热量,又由玻意耳定律可知,气体体积减小,气体的压强增大,由以上分析可知BCD 正确,AE 错误.(2)(ⅰ)设密封气体初始体积为V 1,压强为p 1,左、右管的截面积均为S ,密封气体先经等温压缩过程体积变为V 2,压强变为p 2.由玻意耳定律有p 1V 1=p 2V 2①设注入水银后水银柱高度为h ,水银的密度为ρ,按题设条件有p 1=p 0+ρgh 0②p 2=p 0+ρgh ③V 1=(2H -l -h 0)S ,V 2=HS ④联立①②③④式并代入题给数据得h =12.9cm ⑤(ⅱ)密封气体再经等压膨胀过程体积变为V 3,温度变为T 2,由盖吕萨克定律有V 2T 1=V 3T 2⑥按题设条件有V 3=(2H -h)S ⑦联立④⑤⑥⑦式并代入题给数据得T 2=363K ⑧。
高三物理二轮复习专题3-5重难点突破一、关于光电效应问题1、分析方法(1)常见电路(2)两条线索(a)通过频率分析:光子频率高→光子能量大→产生光电子的最大初动能大.(b)通过光的强度分析:由I 光强=Nh ν可知,频率一定时,入射光强度大→光子数目多→产生的光电子多→光电流大;光强一定时,频率越高→光子数目少→产生的光电子数越少→光电流小.2、典型图象(1)光电流与电压的关系说明:频率的比较:E km =h ν-W 0= eU c 可知遏止电压越大,频率越高,遏止电压相同,频率相同,从图可知ν甲=ν乙<ν丙。
光强的比较:饱和光电流与单位时间逸出的光电子数有关,单位时间逸出的光电子数与光强和光的频率有关,由I 光强=Nh ν可知,甲的强度大于乙的强度。
(2)反向遏止电压与入射光频率的关系说明:由eW h U C 0-=ν可知,根据横坐标交点可求金属的极限频率ν0=w 0/h ,根据斜率可以算出普朗克恒量,斜率h/e,根据纵轴截距可以推算出金属的逸出功,w 0/e 。
(3)最大初动能与入射光频率的关系说明:由0W h E K -=ν可知,图线与横轴的交点坐标是极限频率ν0,图线与纵轴的交点数值是逸出功w 0,图象的斜率就是普朗克恒量h 。
例、如图所示电路可研究光电效应规律。
图中标有A 和K 的为光电管,其中A 为阴极,K 为阳极。
理想电流计可检测通过光电管的电流,理想电压表用来指示光电管两端的电压。
现接通电源,用光子能量为10.5eV 的光照射阴极A ,电流计中有示数,若将滑动变阻器的滑片P 缓慢向右滑动,电流计的读数逐渐减小,当滑至某一位置时电流计的读数恰好为零,读出此时电压表的示数为6.0V ;现保持滑片P 位置不变,以下判断正确的是(AC )A.光电管阴极材料的逸出功为4.5eVB .若增大入射光的强度,电流计的读数不为零C .若用光子能量为12eV 的光照射阴极A ,光电子的最大初动能一定变大D .若用光子能量为9.5eV 的光照射阴极A ,同时把滑片P向左移动少许,电流计的读数一定不为零二、关于原子跃迁问题1、注意“一个原子”还是“一群原子”一群氢原子处于量子数为n 的激发态时,可能辐射出的光谱条数为N =n (n -1)2=C 2n ,而一个氢原子处于量子数为n 的激发态上时,最多可辐射出n -1条光谱线.例、现有1200个氢原子被激发到量子数为4的能级上,若这些受激氢原子最后都回到基态,则在此过程中发出的光子总数是多少?假定处在量子数为n的激发态的氢原子跃迁到各较低能级的原子数都是处在该激发态能级上的原子总数的11n(A)A. 2200B. 2000C. 1200D. 24002、注意是“跃迁”还是“电离”不管是吸收还是辐射光子,其光子的能量都必须等于这两个能级的能量差,欲想把处于某一定态的原子的电子电离出去,就需要给原子一定的能量。
专题九机械振动与机械波光(选修3-4)知识梳理一、简谐运动1、简谐运动的动力学方程:kx=F-2.单摆周期公式:3.弹簧振子振动周期:T=2kπ,只由振子质量和弹簧的劲度决m/定,与振幅无关,也与弹簧振动情况无关。
二、机械波1、波长、波速和频率(1)波长λ:两个相邻的在振动过程中相对平衡位置的位移总是相等的质点间的距离叫波长.在横波中,两个相邻的波峰或相邻的波谷之间的距离.在纵波中两相邻的的密部(或疏部)中央间的距离,振动在一个周期内在介质中传播的距离等于波长(2)波速:单位时间内波向外传播的距离。
v=s/t=λ/T=λf,波速的大小由介质决定。
(3)频率:波的频率由振源决定,在任何介质中传播波的频率不变。
波从一种介质进入另一种介质时,唯一不变的是频率(或周期),波速与波长都发生变化.2、波特有的现象(1)波的发射与折射(2)波的叠加原理(独立传播原理)在两列波相遇的区域里,每个质点都将参与两列波引起的振动,其位移是两列波分别引起位移的矢量和.相遇后仍保持原来的运动状态.波在相遇区域里,互不干扰,有独立性.(3)波的衍射与干涉三、光及光的本性1、 折射率公式:n=sini/sin γ0sin 1C v c='==λλ 2、临界角公式:光线从某种介质射向真空(或空气)时的临界角为C ,则sinC=1/n=v/c3、 光的色散白光通过三棱镜后发生色散现象,说明白光是复色光,是有七种单色光组成的4、光的干涉现象(1)双缝干涉①双缝的作用:将同一束光分为两束形成相干波源②λdL x =∆=12SP SP - ③产生亮暗条件是λn P S P S =-21(亮),λ21221+=-n P S P S (暗)两条亮纹或暗纹之间的距离(2)薄膜干涉①形成:光照到薄膜上,由薄膜前、后表面反射的两列光波叠加而成.劈形薄膜干涉可产生平行相间条纹,②条纹:单色光明暗相间条纹,彩色光出现彩色条纹。
③应用:增透膜,其厚度至少为光在薄膜中波长的四分之一;检查工件表面的平整度5.光的衍射(1) 单缝衍射:光通过单缝照射到屏上时,屏上将出现“有明有暗,明暗相间”的衍射条纹,与双缝干涉的干涉条纹不同的是:干涉条纹均匀分布,而衍射条纹的中央明纹较宽,较亮。
(2)圆孔衍射:明暗相间的不等距圆环。
(3)泊松亮斑:光照射到一个半径很小的圆板后,在圆板的阴影中心出现的亮斑,这是光能发生衍射的有力证据之一。
6.光的偏振根据波是否具有偏振现象来判断波是否横波,实验表明,光具有偏振现象,说明光波是横波。
专题测试1.(2分) (2018全国卷1第16题)雨后太阳光入射到水滴中发生色散而形成彩虹。
设水滴是球形的,图中的圆代表水滴过球心的截 面,入射光线在过此截面的平面内,a 、b 、c 、d 代表四条不同颜色的出射光线,则它们可能依次是( )A.紫光、黄光、蓝光和红光B.紫光、蓝光、黄光和红光C.红光、蓝光、黄光和紫光D.红光、黄光、蓝光和紫光2.(10分)如图2所示,某同学为了测量截面为正三角形的三棱镜玻璃折射率,先在白纸上放好三棱镜,在棱镜的左侧插上两枚大头针P 1和P 2,然后在棱镜的右侧观察到 P 1像和P 2像,当P 1的像恰好被P 2像挡住时,插上大头针P 3和P 4,使P 3挡住P 1、P 2的像,P 4挡住P 3和P 1、P 2的像.在纸上标出的大头针位置和三棱镜轮廓如图所示.(1)在答题纸的图上画出对应的光路;(2)为了测出三棱镜玻璃材料的折射率,若以AB 作为分界面,需要测量的量是________和________,在图上标出它们;图2(3)三棱镜玻璃材料折射率的计算公式是n=________.(4)若在测量过程中,放置三棱镜的位置发生了微小的平移(移至图中的虚线位置底边仍重合),则以AB作为分界面,三棱镜材料折射率的测量值________三棱镜玻璃材料折射率的真实值(填“大于”、“小于”、“等于”).3.(8分)(1) (2018天津卷第6题).甲、乙两单色光分别通过同一双缝干涉装置得到各自的干涉图样,设相邻两个亮条纹的中心距离为x∆,若x x,则下列说法正确的是∆>∆甲乙A.甲光能发生偏振现象,则乙光不能B.真空中甲光的波长一定大于乙光的波长图4 C.甲光的光子能量一定大于乙光的光子能量D.在同一种均匀介质中甲光的传播速度大于乙光(2)(5分)如图4所示,OO′为等腰棱镜ABC的对称轴.两束频率不同的单色光a、b关于OO′对称,垂直AB面射向棱镜,经棱镜折射后射出并相交于P点.则此棱镜对光线a的折射率________(选填“大于”、“等于”或“小于”)对光线b的折射率;这两束光从同一介质射向真空时,光束a以发生全反射时的临界角______(选填“大于”、“等于”或“小于”)光束b发生全反射时的临界角.4.(10分)(1) (4分)(2018北京卷第14题).如图所示的双缝干涉实验,用绿光照射单缝S时,在光屏P上观察到干涉条纹。
要得到相邻条纹间距更大的干涉图样,可以( )A.增大S1与S2的间距B.减小双缝屏到光屏的距离C.将绿光换为红光D.将绿光换为紫光(2)(6分)有人利用安装在气球载人舱内的单摆来确定气球的高度.已知该单摆在海平面处的周期是T0.当气球停在某一高度时,测得单摆周期为T.求该气球此时离海平面的高度h.(把地球看成质量均匀分布的半径为R的球体)5.(12分) 5(2018海南卷18模块3-4试题).(1)(4分)一列简谐横波在t=0时的波形图如图所示。
介质中x=2m处的质点P沿y轴方向做简谐运动的表达式为y=10sin(5πt)cm。
关于这列简谐波,下列说法正确的是______(填入正确选项前的字母。
选对1个给2分,选对2个给4分;选错1个扣2分,最低得0分)。
( )A.周期为4.0sB.振幅为20cmC.传播方向沿x轴正向D.传播速度为10m/s(2)(8分)一赛艇停在平静的水面上,赛艇前端有一标记P离水面的高度为h1=0.6m,尾部下端Q略高于水面;赛艇正前方离赛艇前端s=0.8m处有一浮标,示意如图。
一潜水员在浮标前1方s=3.0m处下潜到深度为2h=4.0m时,看到标记刚好被浮标挡住,2此处看不到船尾端Q;继续下潜△h=4.0m,恰好能看见Q。
求(i)水的折射率n;(ii)赛艇的长度l。
(可用根式表示)6.(10分)(1) (4分)以下有关振动、波动和相对论内容的若干叙述中正确的是 ( )A.在“用单摆测定重力加速度”实验中,必须从最大位移处开始计时B.光速不变原理是:真空中的光速在不同的惯性参考系中都是相同的C.两列波相叠加产生干涉现象,振动加强区域与减弱区域应交替变化D.光的偏振现象说明光波是横波E.用绿光做双缝干涉实验,在光屏上呈现出明、暗相间的条纹,相邻两条绿条纹间的距离为Δx,如果增大双缝到光屏之间的距离,Δx将减小(2) (6分)如图6所示,一束截面为圆形(半径R=1 m)的平行紫光垂直射向一半径也为R的玻璃半球的平面,经折射后在屏幕S上形成一个圆形亮区.屏幕S至球心距离为D=(2+1) m,不考虑光的干涉和衍射,试问:图6①若玻璃半球对紫色光的折射率为n=2,请你求出圆形亮区的半径.②若将题干中紫光改为白光,在屏幕S上形成的圆形亮区的边缘是什么颜色?7.(10分)(1) (5分)如图7所示为频率f =1 Hz 的波源产生的横波,图中虚线左侧为A 介质,右侧为B 介质.其中x =14 m 处的质点振动方向向上.则该波在A 、B 两种介质中传播的速度之比v A ∶v B =________.若图示时刻为0时刻,则经0.75 s 处于x =6 m 的质点位移为_____ cm.图7(2)(5分)如图8所示,某种液体的液面下h 处有一点光源S ,若将一半径为R 不透明的薄片置于液面,其圆心O 在S 的正上方,恰好从液面上方任一个位置都不能看到点光源S .真空中光速用c 表示.求光在流体中的传播速率v .8.(12分)(1)下列说法中正确的是( )A .同一弹簧振子在空间站和在地面上的振动周期相同B .单摆的摆长增大后,简谐运动的频率会变小C .一列波在向前传播,当波源突然停止振动时,其他质点也同时停止振动 图D .纵波在传播过程中,质点能随波的传播而迁移(2)我国正在大规模建设第三代移动通信系统(3G),它将无线通信与国际互联网等多媒体通信结合起来,能提供无线网络、电话会议、电子商务等信息服务.某移动运营商采用1.8×109 Hz 的电磁波传递信号,此电磁波在真空中的波长为________ m ;在通话时,手机将声音信号转变成电信号,再经过________(选填“调谐”、“调制”或“解调”)后,把信号发送到基站中转.(3)在某科技馆内放置了一个高大的半圆柱形透明物体,其俯视图如图9所示,O 为半圆的圆心.甲、乙两同学为了估测该透明体的折射率,进行了如下实验.他们分别站在A 、O 处时,相互看着对方,然后两人贴着柱体慢慢向一侧运动,到达B 、C 处时,甲刚好看不到乙.已知半圆柱体的半径为R ,OC =0.6R ,BC ⊥OC ,则半圆柱形透明物体的折射率为多少?9.(8分)(1) (2018北京卷第16题).介质中有一列简谐机械波传播,对于其中某个振动质点,( )A .它的振动速度等于波的传播速度图9B .它的振动方向一定垂直于波的传播方向C .它在一个周期内走过的路程等于一个波长D .它的振动频率等于波源的振动频率(2)(6分)如图10所示,半圆玻璃砖的半径R =10 cm ,折射率为n =3,直径AB 与屏幕垂直接触于A 点,激光a 以入射角i =30°射向半圆玻璃砖的圆心O ,结果在水平屏幕MN 上出现两个光斑.①画出光路图.②求两个光斑之间的距离L .图1010.(12分)(1)一列简谐横波沿x 轴正方向传播,t =0时刻的波形如图11所示,经0.3 s 时间质点a 第一次到达波峰位置,则这列波的传播速度为________ m/s ,质点b 第一次出现在波峰的时刻为________ s.图11 (2)某透明物体的横截面如图12所示,其中ABC 为直角三角形, AB 为直角边,长度为2L ,∠ABC =45°,ADC 为一圆弧,其圆心在AC 边的中点,此透明物体的折射率为n =2.0.若一束宽度与AB 边长度相等的平行光从AB边垂直射入透明物体,试由光路图画出光线图12从ADC圆弧射出的区域,并求此区域的圆弧长度s.(不考虑经ADC圆弧反射后的光线)11.(8分)(1)图13为一列横波在某时刻的波动图象,此波中d质点到达波谷的时间比e质点早0.05 s.求:①此列波的传播方向和波速是多大?②1.0 s内b质点通过的路程是多少?(2)如图14所示的装置可以测量棱镜的折射率,ABC表示待测直角棱镜的横截面,棱镜的顶角为α,紧贴直角边AC是一块平面镜,一光线SO射到棱镜的AB面上,适当调整SO的方向,当SO与AB成β角时,从AB面射出的光线与SO重合,求棱镜的折射率.图14答案1.B2.(1)(4分)画出光路图如图所示(2)(2分)入射角θ1、折射角θ2(没有在图上标注不给分) (3)(2分)sin θ1sin θ2 (4)(2分)大于3.(1) BD (2)小于,大于4.(1)C (2)(TT 0-1)R5.(1)CD (2) 解析:(i )n=43(ii )l=3.3m 6.(1)BD (2)①1 m ②紫色 7.(1) 2∶3 5 (2)R R 2+h2C8.(1)AB(4分,漏选得2分,错选不得分) (2)0.17(2分)调制(2分)(3)设∠OBC =θ,透明物体的折射率为n ,则sin θ=OCR=0.6(1分)又θ为发生全反射的临界角,则sin θ=1n(2分) 解得n =53(1分)9.(1)D (2)①画出光路图如图所示②4033cm10.(1)10 0.5 (2)πL311.(1)①20 m/s ,向右 ②1 m (2)cos βsin α。