操作系统-页式地址重定位模拟实验报告
- 格式:docx
- 大小:207.46 KB
- 文档页数:13
操作系统实验报告-页式虚拟存储管理中地址转换和缺页中断实验四页式虚拟存储管理中地址转换和缺页中断一.实验目的(1)深入了解存储管理如何实现地址转换。
(2)进一步认识页式虚拟存储管理中如何处理缺页中断。
二.实验内容编写程序完成页式虚拟存储管理中地址转换过程和模拟缺页中断的处理。
三.实验原理页式存储管理把内存分割成大小相等位置固定的若干区域,叫内存页面,内存的分配以“页”为单位,一个程序可以占用不连续的页面,逻辑页面的大小和内存页面的大小相同,内外存的交换也以页为单位进行,页面交换时,先查询快表,若快表中找不到所需页面再去查询页表,若页表中仍未找到说明发生了缺页中断,需先将所需页面调入内存再进行存取。
四.实验部分源程序#define size 1024//定义块的大小,本次模拟设为1024个字节。
#include "stdio.h"#include "string.h"#includestruct plist{int number; //页号int flag; //标志,如为1表示该页已调入主存,如为0则还没调入。
int block; //主存块号,表示该页在主存中的位置。
int modify; //修改标志,如在主存中修改过该页的内容则设为1,反之设为0int location; //在磁盘上的位置};//模拟之前初始化一个页表。
struct plist p1[7]={{0,1,5,0,010},{1,1,8,0,012},{2,1,9,0,013},{3,1,1,0,021},{4,0,-1,0,022},{5,0,-1,0,023},{6, 0,-1,0,125}};//命令结构,包括操作符,页号,页内偏移地址。
struct ilist{char operation[10];int pagenumber;int address;};//在模拟之前初始化一个命令表,通过程序可以让其顺序执行。
一目的与要求(1) 请求页式虚存管理是常用的虚拟存储管理方案之一。
(2) 通过请求页式虚存管理中对页面置换算法的模拟,加深理解虚拟存储技术的特点。
(3) 模拟页式虚拟存储管理中硬件的地址转换和缺页中断,并用先进先出调度算法(FIFO)处理缺页中断.二实验内容或题目(1)本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。
(2)虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。
(3)要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。
(4)程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。
三实验步骤与源程序(1)实验步骤1、理解好相关实验说明。
2、根据实验说明,画出相应的程序流程图。
3、按照程序流程图,用C语言编程并实现。
(2)流程图如下:①虚页和实页结构在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。
pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。
time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。
在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。
pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。
next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。
②程序流程图如下:(3)源程序如下:#include<iostream.h>#define M 40int N;struct Pro{int num,time;};int Input(int m,Pro p[M]){cout<<"请输入实际页数:";do{cin>>m;if(m>M)cout<<"数目太多,请重试"<<endl;else break;}while(1);//cout<<"请输入各页面号:";for(int i=0;i<m;i++){cout<<"第"<<i<<"个页面号为:";cin>>p[i].num;p[i].time=0;}return m;}void print(Pro *page1)//打印当前的页面{Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)cout<<page[i].num<<" ";cout<<endl;}int Search(int e,Pro *page1 ){Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)if(e==page[i].num)return i; return -1;}int Max(Pro *page1){Pro *page=new Pro[N];page=page1;int e=page[0].time,i=0;while(i<N)//找出离现在时间最长的页面{if(e<page[i].time)e=page[i].time;i++;}for( i=0;i<N;i++)if(e==page[i].time)return i;return -1;}int Compfu(Pro *page1,int i,int t,Pro p[M]){Pro *page=new Pro[N];page=page1;int count=0;for(int j=i;j<M;j++){if(page[t].num==p[j].num )break;else count++;}return count;}int main(){cout<<"可用内存页面数:";cin>>N;Pro p[M];Pro *page=new Pro[N];char c;int m=0,t=0;float n=0;m=Input(m,p);do{for(int i=0;i<N;i++)//初试化页面基本情况{page[i].num=0;page[i].time=2-i;}i=0;cout<<"************************"<<endl;cout<<"*****f:FIFO页面置换*****"<<endl;cout<<"*****l:LRU页面置换******"<<endl;cout<<"*****o:OPT页面置换******"<<endl;cout<<"*****按其它键结束*******"<<endl;cout<<"************************"<<endl;cout<<"请选择操作类型(f,l,o):";cin>>c;if(c=='f')//FIFO页面置换{n=0;cout<<"页面置换情况: "<<endl;while(i<m){if(Search(p[i].num,page)>=0)i++;//找到相同的页面else{if(t==N)t=0;else{n++;//page[t].num=p[i].num;print(page);t++;}}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl; }if(c=='l')//LRU页面置换{ n=0;cout<<"页面置换情况: "<<endl;while(i<m){int k;k=t=Search(p[i].num,page);if(t>=0)page[t].time=0;else{n++;t=Max(page);page[t].num=p[i].num;page[t].time=0;}if(t==0){page[t+1].time++;page[t+2].time++;}if(t==1){page[2].time++;page[0].time++;}if(t==2){page[1].time++;page[0].time++;}if(k==-1) print(page); i++;}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl;}if(c=='o')//OPT页面置换{n=0;while(i<m){if(Search(p[i].num,page)>=0)i++;else{int temp=0,cn;for(t=0;t<N;t++){if(temp<Compfu(page,i,t,p)){temp=Compfu(page,i,t,p); cn=t;}}page[cn]=p[i];n++;print(page);i++;}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl; }}while(c=='f'||c=='l'||c=='o');return 0;});四测试数据与实验结果五结果分析与实验体会通过上机,我了解了许多关于操作系统的专业知识。
实验二主存储器空间的分配和回收一、实验题目:模拟在分页式管理方式下采用位示图来表示主存分配情况,实现主存空间的分配和回收。
二、实验目的:主存的分配和回收的实现与主存储器的管理方式有关,通过本实习理解在不同的存储管理方式下应怎样实现主存空间的分配和回收。
三、实验内容:一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。
当用户提出申请存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。
当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。
四、程序中使用的数据结构及符号说明:五、程序流程图:六、程序源代码:#include <stdlib.h>#include <stdio.h>typedef int datatype;typedef struct node{datatype pageNum,blockNum;struct node *next;}linknode;typedef linknode *linklist;linklist creatlinklist(int n)/*尾插法创建带头结点的单链表*/{linklist head,r,s;int x,y,i=0;head=r=(linklist)malloc(sizeof(linknode));printf("\n请分别输入页表的页号及块号(-1表示空):\n");printf("\n页号| 块号\n");while (i<n){scanf("%d %d",&x,&y);s=(linklist)malloc(sizeof(linknode));s->pageNum=x;s->blockNum=y;r->next=s;r=s;i++;}r->next=NULL;return head;}void init(int g[100][100],int N)/*初始化位示图,将值全置为零,0表示空闲状态*/{int i,j;for(i=0;i<100;i++){for(j=0;j<100;j++){g[i][j]=0; //全置为零}}g[N+1][0]=N*N; //在数组最后一个数的后面设置一个空间用来存放剩余空闲块数}linklist Init(linklist head,int g[100][100],int n,int N){linklist p;int i,j;p=head->next;if(n<=g[N+1][0]) //首先判断作业的页数是否小于等于位示图剩余空闲块的个数{while(p){i=p->blockNum/N;j=p->blockNum%N;g[i][j]=1;g[N+1][0]--;p=p->next;}}return head;}printStr(int g[100][100],int N)/*打印位示图*/{int i,j;printf("\n此时位示图为:\n");printf("\n ");for(i=0;i<N;i++){printf(" ");printf("%d",i);}printf("\n");for(i=0;i<N;i++){printf("%d",i);for(j=0;j<N;j++){printf(" ");printf("%d",g[i][j]);}printf("\n");}printf("\n");}void print(linklist head)/*输出带头结点的单链表*/{linklist p;p=head->next;printf("\n该页表为:\n");printf("\n");printf("\n 页号| 块号\n");while(p){printf("%11d%7d\n",p->pageNum,p->blockNum);p=p->next;}printf("\n");}linklist Dis(linklist head,int g[100][100],int n,int N){linklist p;int i,j;p=head->next;if(n<=g[N+1][0]) //首先判断作业的页数是否小于等于位示图剩余空闲块的个数{while(p){for(i=0;i<N;i++){for(j=0;j<N;j++){if(g[i][j]==0){p->blockNum=N*i+j; //将对应块号记录到页表g[i][j]=1; //将块置1,表示已被占用g[N+1][0]--; //剩余空闲块减1break; //跳出循环,进行下一个页的分配}}break; //跳出循环}p=p->next; //下一个页进行分配}return head;}}linklist Recy(linklist head,int g[100][100],int n,int N)/*回收已经完成的页*/ {int i,j;linklist p;p=head->next;while(p&&p->pageNum!=n) //找出要回收的页号{p=p->next;}if(p) //找到{i=p->blockNum/N;j=p->blockNum%N;g[i][j]=0; //将该块置0,表空闲状态g[N+1][0]++;p->blockNum=-1; //页表中对应的块号为空,置成-1}return head;}void main(){int m,n,N;int x,y,a,b,t;int graph[100][100];linklist head,Head;printf("\n*****分页式存储管理分配及回收算法*****\n");printf("\n请输入位示图字长:");scanf("%d",&N);printf("\n请输入已占用内存作业的页数:");scanf("%d",&m);head=creatlinklist(m);init(graph,N);head=Init(head,graph,m,N);printStr(graph,N);printf("\n当前空闲块数为:%d",graph[N+1][0]);printf("\n\n现在进行作业分配:\n");printf("\n请输入需要分配的作业的页数:");scanf("%d",&n);Head=creatlinklist(n);Head=Dis(Head,graph,n,N);print(Head);printStr(graph,N);printf("\n当前空闲块数为:%d",graph[N+1][0]);printf("\n\n您是否想回收已完成的页,“是”请按1,“否”请按0:");scanf("%d",&x);if(x) //判断是否要回收{printf("\n请输入您要回收的页号:");scanf("%d %d %d %d",&y,&a,&b,&t);head=Recy(head,graph,y,N);head=Recy(head,graph,a,N);head=Recy(head,graph,b,N);head=Recy(head,graph,t,N);printStr(graph,N);}printf("\n当前空闲块数为:%d",graph[N+1][0]);printf("\n");}七、运行结果:实习小结:本次实验是自己花了很多的时间去琢磨去尝试才完成的,虽然还不是很完美,但是在设计的过程中自己在对编程方面的逻辑思维得到了很好的锻炼。
操作系统实验指导书实验一进程控制与描述一、实验目的通过对 Windows XP编程,进一步熟悉操作系统的基本概念,较好地理解Windows XP的结构。
通过创建进程、观察正在运行的进程和终止进程的程序设计和调试操作,进一步熟悉操作系统的进程概念,理解 Windows XP进程的“一生”。
二、实验环境硬件环境:计算机一台,局域网环境;软件环境: Windows XP, Visual C++ 6.0 专业版或企业版。
三、实验内容和步骤第一部分Windows 编程Windows XP可以识别的程序包括控制台应用程序、GUI 应用程序和服务应用程序。
本实验中主要用到的是控制台应用程序和GUI 应用程序。
1、简单的控制台应用程序创建一个名为“Hello ”的应用程序, 在“开始”菜单中单击“程序”-“附件” -“记事本”命令,将程序键入记事本中,并把代码保存为1-1.cpp 。
程序 1-1 Windows XP的GUI应用程序#include <iostream>void main(){Std::cout<<”Hello, Windows XP”<<std::endl;}在“命令提示符”窗口运行CL.EXE ,产生 1-1.EXE 文件:C:\> CL 1-1.cpp运行 1-1.EXE 程序,运行结果是:(如果运行不成功,则可能的原因是什么?)_2、 GUI应用程序Windows XP Professional 下的 GUI 应用程序,使用Visual C++ 编译器创建一个GUI 应用程序,代码中包括了WinMain() 方法,该方法GUI 类型的应用程序的标准入口点。
在“开始”菜单中单击“程序”-“附件” -“记事本”命令,将程序键入记事本中,并把代码保存为1-2.cpp。
程序1-2 Windows XP的 GUI 应用程序// msgbox 项目# include <windows.h>// 标准的 include// 告诉连接器与包括MessageBox API 函数的 user32 库进行连接# pragma comment(lib,“ user32.lib” )//这是一个可以弹出信息框然后退出的筒单的应用程序int APIENTRY WinMain(HINSTANCE/* hInstance */ ,HINSTANCE/* hPrevInstance */ ,LPSTR/* lpCmdLine */,int/* nCmdShow */ ){:: MessageBox(NULL,“ Hello, Windows 2000“ Greetings” ,MB_OK) ;”,// 没有父窗口// 消息框中的文本// 消息框标题// 其中只有一个OK按钮//返回 0 以便通知系统不进入消息循环return(0) ;}也可以利用任何其他文本编辑器键入程序代码,如果这样,例如使用程序,则应该注意什么问题?保存时将文件保存为“.cpp”的 c++文件在“命令提示符”窗口运行CL.EXE ,产生 1-2.EXE 文件:WORD来键入和编辑C:\> CL 1-2.cpp在程序1-2的GUI应用程序中,首先需要Windows.h头文件,以便获得传送给WinMain()和MessageBox() API 函数的数据类型定义。
操作系统-页式地址重定位模拟实验报告一、实验目的:1、用高级语言编写和调试模拟实现页式地址重定位。
2、加深理解页式地址重定位技术在多道程序设计中的作用和意义。
二、实验原理:当进程在CPU上运行时,如指令中涉及逻辑地址时,操作系统自动根据页长得到页号和页内偏移,把页内偏移拷贝到物理地址寄存器,再根据页号,查页表,得到该页在内存中的块号,把块号左移页长的位数,写到物理地址寄存器。
三、实验内容:1、设计页表结构2、设计地址重定位算法3、有良好的人机对话界面四、存储结构typedef struct PageTable{int page_num;int pic_num;}PageTable;PageTable PT[N];typedef struct LogicalAdd{int page_num;int page_add;}LogicalAdd;LogicalAdd LA;int Page_length;//页长int Page_num;//页数int Process;//进程大小int Address;//逻辑地址五、函数列表Input();//输入Init();//初始化Translate();//生成物理地址Output();//输出Main();//主函数六、运行结果截图:(1)输入(2)查看页表(3)查看物理地址(4)退出七、源程序代码:#include<iostream>#include<cstdlib>#include<string>#include<time.h>using namespace std;#define N 50typedef struct PageTable{int page_num;int pic_num;}PageTable;PageTable PT[N];typedef struct LogicalAdd{int page_num;int page_add;}LogicalAdd;LogicalAdd LA;int Page_length;//页长int Page_num;//页数int Process;//进程大小int Address;//逻辑地址void Input(){cout << "输入进程长度:";cin >> Process;cout<< "输入页长:";cin >> Page_length;cout<< "请输入逻辑地址:";cin >> Address;}int Init(){srand(time(0));int i,temp;int sum=1;Page_num=Process/Page_length+1;//cout<< "num=" << Page_num<< endl;PT[0].pic_num=1;for(i=0;i<Page_num;i++){PT[i].page_num=i;temp=rand()%3+1;sum+=temp;PT[i].pic_num+=sum;//cout<< PT[i].pic_num <<endl;}LA.page_num=Address/Page_length;if(LA.page_num>=Page_num){cout << "所查逻辑地址不在该页内,初始化失败!"<<endl;return -1;}LA.page_add=Address%Page_length;}int Translate(){int i=0;int res;while(i<Page_num){if(PT[i].page_num==LA.page_num){res=PT[i].pic_num;break;}else i++;}if(i>=N)return -1;return res*Page_length+LA.page_add;}void Output(int res){if(res==0){cout<< "构造的页表如下:"<<endl;cout<< "页号\t块号"<<endl;for(int i=0;i<Page_num;i++){cout << PT[i].page_num << "\t";cout<< PT[i].pic_num<<endl;}}elsecout << "物理地址为:"<< res<<endl;}int main(){int k;cout<< "\t*************欢迎使用页式地址重定位模拟系统*****************\n";for(;;){cout << "\t---请输入以下选项---"<<endl;cout<< "1.输入信息;"<<endl << "2.查看页表;"<<endl<<"3.查看物理地址;"<<endl<<"4. 退出;"<<endl;cin>> k;switch(k){case 1:Input();if(Init()==-1)return -1;break;case 2:Output(0);break;case 3:Output(Translate());break;case 4:cout << "O(∩_∩)O谢谢使用,再见!"<<endl;exit(0);break;}}return 1;}八、小结通过本次实验,加深了我对于分页式存储管理方式的理解,以及编程实现了页式地址重定位模拟。
____大学____学院实验报告课程名称:计算机操作系统实验名称:存储管理实验实验日期:班级:姓名:学号:仪器编号: XX实验报告要求:1.实验目的 2.实验要求 3.实验步骤 4.程序清单 5.运行情况6.流程图 7.实验体会1、实验目的①通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉虚存管理的各种页面淘汰法。
②通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。
2、实验要求①设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。
可以假定每个作业都是批处理作业,并且不允许动态申请内存。
为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。
②设计一个可变式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。
对分区的管理法可以是下面三种算法之一:首次适应算法;最坏适应算法;最佳适应算法。
③编写并调试一个段页式存储管理的地址转换的模拟程序。
首先设计好段表、页表,然后给出若干个有一定代表性的地址,通过查找段表页表后得到转换的地址。
要求打印转换前的地址,相应的段表,页表条款及转换后的地址,以便检查。
3、实验步骤(1)理解实验要求,联系所学知识;(2)根据要求编写调度算法;(3)编写完整的实验代码并在VC++ 6.0环境下编译运行;(4)调试程序直至得出结果。
4、程序清单①#include <stdio.h>#include <stdio.h>#include<math.h>#include<stdlib.h>#define NUM 4#define alloMemory(type) (type*)malloc(sizeof(type)) struct partiTab{int no;int size;int firstAddr;char state;}parTab[NUM];typedef struct partiTab PARTITAB;typedef struct jcb { /*定义作业控制块JCB ,部分信息省略*/ char name[10]; //作业名int size; //作业大小struct jcb* link; //链指针}JCB;typedef struct{JCB *front,*rear;}jcbQue;jcbQue *jcbReadyQue;void AllocateMemory(int size);void createTab();void checkTab();void recycleMemory(int i);void AllocateMemory(int size){int i;for(i=0;i<NUM;i++){PARTITAB p=parTab[i];if(p.state='N' && p.size>size)parTab[i].state='Y';elseprintf("没有空闲分区,无法分配内存!\n"); }}void createTab(){int i;for( i=1;i<=NUM;i++){//getPartiTab(PARTITAB);parTab[i-1].no=i;parTab[i-1].size=20;parTab[i-1].firstAddr=21;parTab[i-1].state='N';}}void checkTab(){int i;printf("分区号\t大小\t起址\t状态\n");for(i=0;i<NUM;i++){printf("%d\t",parTab[i].no);printf("%d\t",parTab[i].size);printf("%d\t",parTab[i].firstAddr);printf("%c\t",parTab[i].state);printf("\n");}}void recycleMemory(int i){parTab[i-1].state='N';}int main(int argc, char* argv[]){int i;printf("\n\n\t\t*********************************************\t\t\n"); printf("\t\t\t\t实验一存储管理实验\n");printf("\t\t\t\t固定式分区分配存储管理\n");printf("\t\t*********************************************\t\t\n"); createTab();checkTab();printf("请按任意键继续:\n");getchar();printf("每个分区装入一道作业:\n");for(i=0;i<NUM;i++){AllocateMemory((i+1)*3);}checkTab();printf("请按任意键继续:\n");getchar();printf("假如一段时间后,其中一个作业结束,回收给它分配的分区(假如该作业在第2分区)\n");recycleMemory(2);checkTab();printf("请按任意键继续:\n");getchar();printf("接着,从外存后备作业队列中选择一个作业装入该分区(假如该作业大小为10)\n");AllocateMemory(10);checkTab();return 0;}#include<stdio.h>#include <dos.h>#include<stdlib.h>#include<conio.h>#define n 10#define m 10#define minisize 100struct{float address;float length;int flag;}used_table[n];struct{float address;float length;int flag;}free_table[m];void allocate(char J,float xk) {int i,k;float ad;k=-1;for(i=0; i<m; i++)if(free_table[i].length>=xk&&free_table[i].flag==1) if(k==-1||free_table[i].length<free_table[k].length) k=i;if(k==-1){printf("无可用空闲区\n");return;}if(free_table[k].length-xk<=minisize){free_table[k].flag=0;ad=free_table[k].address;xk=free_table[k].length;}else{free_table[k].length=free_table[k].length-xk;ad=free_table[k].address+free_table[k].length;}i=0;while(used_table[i].flag!=0&&i<n)i++;if(i>=n){printf("无表目填写已分分区,错误\n");if(free_table[k].flag==0)free_table[k].flag=1;else{free_table[k].length=free_table[k].length+xk;return;}}else{used_table[i].address=ad;used_table[i].length=xk;used_table[i].flag=J;}return;}void reclaim(char J){int i,k,j,s,t;float S,L;s=0;while((used_table[s].flag!=J||used_table[s].flag==0)&&s<n)s++;if(s>=n){printf("找不到该作业\n");return;}used_table[s].flag=0;S=used_table[s].address;L=used_table[s].length;j=-1;k=-1;i=0;while(i<m&&(j==-1||k==-1)){if(free_table[i].flag==1){if(free_table[i].address+free_table[i].length==S)k=i; if(free_table[i].address==S+L)j=i;}i++;}if(k!=-1)if(j!=-1) /* 上邻空闲区,下邻空闲区,三项合并*/ {free_table[k].length=free_table[j].length+free_table[k].length+L; free_table[j].flag=0;}else/*上邻空闲区,下邻非空闲区,与上邻合并*/free_table[k].length=free_table[k].length+L;else if(j!=-1) /*上邻非空闲区,下邻为空闲区,与下邻合并*/{free_table[j].address=S;free_table[j].length=free_table[j].length+L;}else /*上下邻均为非空闲区,回收区域直接填入*/{/*在空闲区表中寻找空栏目*/t=0;while(free_table[t].flag==1&&t<m)t++;if(t>=m) /*空闲区表满,回收空间失败,将已分配表复原*/{printf("主存空闲表没有空间,回收空间失败\n");used_table[s].flag=J;return;}free_table[t].address=S;free_table[t].length=L;free_table[t].flag=1;}return;}/*主存回收函数结束*/int main( ){printf("\n\n\t\t*********************************************\t\t\n"); printf("\t\t\t\t实验三存储管理实验\n");printf("\n\t\t\t可变式分区分配 (最佳适应算法)\n");printf("\t\t*********************************************\n");int i,a;float xk;char J;/*空闲分区表初始化:*/free_table[0].address=10240; /*起始地址假定为10240*/free_table[0].length=10240; /*长度假定为10240,即10k*/free_table[0].flag=1; /*初始空闲区为一个整体空闲区*/for(i=1; i<m; i++)free_table[i].flag=0; /*其余空闲分区表项未被使用*//*已分配表初始化:*/for(i=0; i<n; i++)used_table[i].flag=0; /*初始时均未分配*/{printf("功能选择项:\n1。
昆明理工大学信息工程与自动化学院学生实验报告(2012 —2013 学年第二学期)一、实验目的存储管理的主要功能之一是合理地分配空间。
请求页式管理是一种常用的虚拟存储管理技术。
通过本次实验, 要求学生通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解, 通过请求页式存储管理中页面置换算法模拟设计, 了解虚拟存储技术的特点, 掌握请求页式存储管理的页面置换算法。
二、实验原理及基本技术路线图(方框原理图)用C或C++语言模拟实现请求式分页管理。
要求实现: 页表的数据结构、分页式内存空间的分配及回收(建议采用位图法)、地址重定位、页面置换算法(从FIFO,LRU,NRU中任选一种)。
int subareaSize[num]={8,12,16,32,24,16,64,128,40,64};//分区大小Process *pro=NULL;//保持进程信息int ProcessNum=0;//进程数目int applyProcessNum=0;//每次申请进程数目int maxApplyNum=0;//最大可申请数目int *applyIndex=NULL;//申请进程队列int totalApplyNum=0;//申请总数int *assignPointer=NULL;//已分配内存的进程队列int assignFlag=0;//分配索引, 表示已申请队列已分配的进程数int exeIndex;//执行的进程号Node *subareaNode=new Node[3];//分区回收时, 进程所在分区及其前, 后分区信息LinkList createLinkList(int n );//建立空闲分区链Node firstFit(LinkList &head,Process pro);//首次适应算法Node nestFit(LinkList &head,Process pro,Node flag);//循环适应算法Node bestFit(LinkList &head,Process pro);//最佳适应算法Node worstFit(LinkList &head,Process pro);//最坏适应算法Node assign(LinkList &head,int orderIndex,int index,Node flagNode);//一次分区分配int assignMemory(LinkList &head);//内存分配void insertNode(LinkList &head,Node q,int index);//插入节点Node deleteNode(LinkList &head,int index);//删除节点int display(LinkList &head);//打印分区分配情况int lowAttemper(int *excursionPointer);//低级调度int findSubarea(LinkList &head,int index);//回收内存int creatProcess();//创建进程Process* randomCreatPro(int n);//随机产生进程下面是各种方法简述:(1) 最优替换算法, 即OPT算法。
操作系统-请求页式存储管理实验报告分析解析实验背景在计算机系统中,内存是一项很重要的资源。
其中,操作系统需要管理内存,以便为用户进程和内核提供适当的内存空间。
页式内存管理是操作系统能够管理和维护内存的一种方式。
在页式内存管理中,主存分为固定大小的框架,称为页框,而进程的地址空间被分割为固定大小的页。
页式内存管理系统采用了一种称为“请求页式存储”的技术,允许进程只存取正在使用的那些页面。
这样可以节省空间,并且提高了处理器访问内存的速度。
实验环境本次实验使用的操作系统是 Ubuntu 20.04 LTS 操作系统。
实验目标本次实验的主要目标是通过模拟请求页式内存管理系统,来了解和深入理解页式内存管理技术。
本次实验需要完成以下任务:1.编写一个简单的请求页式存储模拟器;2.使用该模拟器对作业和内存进行模拟;3.分析模拟结果并撰写实验报告。
实验过程阅读并理解作业说明在开始实验之前,我们首先需要阅读和了解具体的作业说明。
在本次实验中,我们需要完成一个请求页式存储模拟器,以及使用该模拟器对作业与内存进行模拟。
编写模拟器在了解了作业说明后,我们开始按照作业的要求,编写请求页式内存管理模拟器。
在这里,我们需要使用到Python 编程语言。
实际上,我们在编写该模拟器时,主要分为以下几步:1.文件操作:首先,我们需要通过读取文件中的数据来模拟进程对内存的请求。
在输入文件中,每一行表示一个请求,包含了进程 ID、请求的地址和访问类型。
2.内存分配:接着,我们需要模拟请求页式内存管理系统中对于内存分配的操作,即在访问时,将需要的页加载到内存中,如果内存已满,则需要选择一个页面将其从内存中移除,为新的页面腾出空间。
3.页面置换:如果进行页面置换,则需要选出最久未访问的页面并移出内存,空出空间用于新的页面,这就是所谓的“最久未使用”(LRU)策略。
进行模拟有了模拟器之后,我们就可以针对不同的作业和内存大小进行实验。
在实验的过程中,我们可以观察不同大小的内存和不同的作业怎样影响模拟的结果。
实验六虚拟存储器一、实验内容模拟分页式虚拟存储管理中硬件的地址转换和缺页中断,以及选择页面调度算法处理缺页中断。
二、实验目的在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。
用这种办法扩充的主存储器称为虚拟存储器。
通过本实验帮助同学理解在分页式存储管理中怎样实现虚拟存储器。
三、实验题目本实验有三道题目,其中第一题必做,第二,三题中可任选一个。
第一题:模拟分页式存储管理中硬件的地址转换和产生缺页中断。
[提示](1)分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。
为此,在为作业建立页表时,应说明哪些页已在主存,哪些页尚未装入主存,页表的格式为:其中,标志----用来表示对应页是否已经装入主存,标志位=1,则表示该页已经在主存,标志位=0,则表示该页尚未装入主存。
主存块号----用来表示已经装入主存的页所占的块号。
在磁盘上的位置----用来指出作业副本的每一页被存放在磁盘上的位置。
(2)作业执行时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式:绝对地址=块号×块长+单元号计算出欲访问的主存单元地址。
如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。
若访问的页对应标志为“0”,则表示该页不在主存,这时硬件发“缺页中断”信号,有操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后再重新执行这条指令。
(3)设计一个“地址转换”程序来模拟硬件的地址转换工作。
当访问的页在主存时,则形成绝对地址,但不去模拟指令的执行,而用输出转换后的地址来代替一条指令的执行。
当访问的页不在主存时,则输出“* 该页页号”,表示产生了一次缺页中断。
模拟操作系统的页面置换实验报告(模板)一、综设计实验题目:模拟操作系统的页面置换二、中文摘要:了解页面置换的概念。
理解页面置换的算法。
加深对页面置换算法的理解。
锻炼知识的运用能力和实践能力。
掌握用随机数生成满足一定条件的指令地址流的方法。
关键词:页面置换先进先出置换算法(FIFO)OPT 算法RLU算法C++三、前言实验目的1、掌握操作系统的页面置换过程,加深理解页式虚拟存储器的实现原理。
2、掌握用随机数生成满足一定条件的指令地址流的方法。
3、掌握页面置换的模拟方法。
实验要求与内容1、采用一种熟悉的语言,如C、PASCAL 或C++等,编制程序,最好关键代码采用C/C++,界面设计可采用其它自己喜欢的语言。
2、模拟操作系统采用OPT、FIFO 和LRU 算法进行页面置换的过程。
3、设程序中地址范围为0 到32767,采用随机数生成256 个指令地址,满足50%的地址是顺序执行,25%向前跳,25%向后跳。
为满足上述条件,可采取下列方法:设d0=10000,第n个指令地址为dn,第n+1 个指令地址为dn+1,n的取值范围为0 到255。
每次生成一个1 到1024 范围内的随机数a,如果a落在1 到512 范围内,则dn+1=dn+1。
如果a落在513 到768范围内,则设置dn+1为1 到dn范围内一个随机数。
如果a落在769 到1024范围内,则设置dn+1为dn到32767 范围内一个随机数。
例如:srand();初始化一个随机函数。
a[0]=10*rand()/32767*255+1;a[1]=10*rand()/32767*a[0]…语句可用来产生a[0]与a[1]中的随机数。
或采用以下方式:(1)通过随机数产生一个指令序列,共320 条指令。
指令的地址按下述原则生成:A:50%的指令是顺序执行的B:25%的指令是均匀分布在前地址部分C:25%的指令是均匀分布在后地址部分具体的实施方法是:A:在[0,319]的指令地址之间随机选取一起点mB:顺序执行一条指令,即执行地址为m+1 的指令C:在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m'D:顺序执行一条指令,其地址为m'+1E:在后地址[m'+2,319]中随机选取一条指令并执行F:重复步骤A-E,直到320 次指令(2)将指令序列变换为页地址流设:页面大小为1K;用户内存容量4 页到32 页;用户虚存容量为32K。
操作系统-页式地址重定位模拟实验报告
实验目的:
1、用高级语言编写和调试模拟实现页式地址重
定位。
2、加深理解页式地址重定位技术在多道程
实验原理:
序设计中的作用和意义。
当进程在CPU±运行时,如指令中涉及逻辑
地址时,操作系统自动根据页长得到页号和页内偏移,把页内偏移拷贝到物理地址寄存器, 再根据页号,查页表,得到该页在内存中的块号,把块号左移页长的位数,写到物理地址寄存器。
三、实验内容;
1、设计页表结构
2、设计地址重定位算法
3、有良好的人机对话界面
四、存储结构
typedef struct PageTable
int page num; int pic num; JPageTable;
PageTable PT[N];
typedef struct LogicalAdd
{
int page_ num;
int page_add;
}LogicalAdd;
LogicalAdd LA;
int Page_le ngth;// 页长
int Page_ num;// 页数
int Process;//进程大小
int Address;// 逻辑地址
一、函数列表
In put (); // 输入
In it (); //初始化
Tran slate ();〃生成物理地址
Output ();〃输出
Main ();〃主函数
六、运行结果截图:
(1)输入
(3)查看物理地址
(4)退出
■ w D?0S_2\Debu g\OS_2 心 h
辆理地;it 为:347
亠-一请输人次下选项-一 ,N 息? 页耒; 吻理地址;
P<n_n>o 谢谢使用.再见! Press k 童y to
continue 七、源程序代码:
#in clude<iostream>
#in clude<cstdlib>
#in clude<stri ng>
#in clude<time.h>using n
amespace std;
#defi ne N 50 typedef struct
PageTable {
int page_ num;
int pic_ num; }PageTable;
PageTable PT[N]; typedef
struct LogicalAdd {
int page_ num;
int page_add;
}LogicalAdd;
1 - 岀
LogicalAdd LA;
int Page_le ngth;// 页长
int Page_ nu m;// 页数
int Process;// 进程大小
int Address;// 逻辑地址
void In put()
{
cout <<"输入进程长度:“;
cin >>Process;
cout<<"输入页长:";
cin >>Page_le ngth;
cout<<"请输入逻辑地址:";
cin >>Address;
}
int In it()
{
sran d(time(0));
int i,temp;
int sum=1;
Page_ nu m=Process/Page_le ngth+1;
〃cout<<"n um="<< Page_ num<< en dl;
PT[0].pic_num=1;
for(i=0;i<Page_ nu m;i++)
{
PT[i].page_ num=i;
temp=ra nd()%3+1;
sum+=temp;
PT[i].pic_ nu m+=sum;
〃cout<< PT[i].pic_ num <<e ndl;
}
LA.page_ num=Address/Page_le ngth;
if(LA.page_ num>=Page_ nu m){
cout <<"所查逻辑地址不在该页内,初始化失败!"<<endl;
return -1;
}
LA.page_add=Address%Page_length;
int Tran slate()
{
int i=0;
in t res;
while(i<Page_ num)
{
if(PT[i].page_ num==LA.page_
num){ res=PT[i].pic_ num;
break;
}
else i++;
}
if(i>=N)
return -1;
return res*Page_le ngth+LA.page_add; }
void Output(int res)
{
if(res==0)
{
cout« "构造的页表如下:"<<endl;
coutvv "页号\t 块号"<<endl;
for(i nt i=0;i<Page_ num;i++)
{
cout << PT[i].page_num <<"\t"; coutvv
PT[i].pic_ num«e ndl;
}
}
else
cout <<"物理地址为:"<< resvvendl;
}
int mai n()
{
int k;
cout« "\t************* 欢迎使用页式地址
^重定位模拟系^统*****************\n";
for(;;)
{
cout <<"\t---请输入以下选项---"v<endl;
coutvv "1.输入信息;"<<endl <<"2.查看页表;"<<endlv<"3.查看物理地址;"<<endl<v"4. 退出;"<<endl;
cin>> k;
H
u
」n a)
」
宀宀
三eaiq
S W X ①
=pu
①v
y
'
旺
o(u —u )0
・・
v v 芍
8
-寸①
Seo
空eaiq0()2e_sue
」匕
芍d-no
G ①Seo
空eaiq
s )
芍
"①Seo
三eaiq
V E m a l u d H s u
w
9ndu-
-L ①Seo
)
(善。
七MS
丿£小结
-通过本次实验,加深了我对于分页式存储管理—方式的理解,以及编程实现了页式地址重定位模拟。
在编程过程中所遇到的困难不多,为了简化模拟过程,我使用了十进制数来表示各数据(单位字节)。
页表的构建上,我是根据输入的页长和进程空间的大小来动态分配空间和页表的表长的,块号的生成用了累加随机数的方式。