2017-2018中考一模数学延庆
- 格式:doc
- 大小:360.00 KB
- 文档页数:8
延庆区2018年初三统一练习评分标准数 学一、选择题:(共8个小题,每小题2分,共16分)BACC ADCD二、填空题 (共8个小题,每空2分,共16分)9.x ≠3 10.72° 11.1 12.1:4 13.820.5x y y x +=⎧⎨=+⎩14.21° 15.△ABC 沿y 轴翻折后,再向上平移4个单位得到△DEF 16.8.8 三、解答题 17.原式=3⨯33+3-1+1-3 ……4分 =23-3 ……5分18.解:由①得,x <4. ……1分 由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分 ∴ 原不等式组的所有整数解为1,2,3. ……5分19.证明:∵AD 平分∠BAC∴∠BAD =∠DAE , ∵DE ∥AB∴∠BAD =∠ADE ……3分 ∴∠DAE =∠ADE ……4分 ∴AE =DE ……5分20. (1)作图(略) ……2分(2)到线段两端点距离相等的点在线段的垂直平分线上;垂直平分线上的点到线段两端点距离相等;等边对等角. ……5分21.(1)在Rt△ABC中,∵CE//DC,BE//DC∴四边形DBEC是平行四边形∵D是AC的中点,∠ABC=90°∴BD=DC ……1分∴四边形DBEC是菱形……2分(2)∵F是AB的中点∴BC=2DF=2,∠AFD=∠ABC=90°在Rt△AFD中,……3分∴……4分……5分22.(1)3yx……1分(2)如图22(1):∵∴OA=2PE=2∴A(2,0)……2分将A(2,0),P(1,3)代入y=kx+b可得∴……3分图22(1)∴直线AB的表达式为:y=-3x+6同理:如图22(2)直线AB的表达式为:y=x+2 ……4分综上:直线AB的表达式为y=-3x+6或y=x+2 ……5分图22(2)23.证明:(1)连接BE .∵AB 是直径, ∴∠AEB =90°.∴∠CBE +∠ECB =90°∠EBA +∠EAB =90°. ∵点E 是AD 的中点, ∴∠CBE =∠EBA .∴∠ECB =∠EAB . ……1分 ∴AB =BC . ……2分 (2)∵F A 作⊙O 的切线, ∴F A ⊥AB .∴∠F AC +∠EAB =90°. ∵∠EBA +∠EAB =90°, ∴∠F AC =∠EBA .∵1tan 2FAC ∠= AB =5,∴AE =BE = ……4分 过C 点作CH ⊥AF 于点H , ∵AB =BC ∠AEB =90°,∴AC =2AE=25. ∵1tan 2FAC ∠=, ∴CH =2. ……5分 ∵CH ∥AB AB =BC=5, ∴255FCFC =+. ∴FC=310.…6分24.(1)1,9,2. ……1分 (2) 82.5,90. ……3分 (3)千家店镇 ……4分理由:千家店镇污染指数平均数为80,永宁镇污染指数平均数为81.3,所以千家店镇污染指数平均数较低,空气质量较好;千家店镇空气质量为优的天数是4天,永宁镇空气质量为优的天数是1天,所以千家店镇空气质量为优的天数多,空气质量较好.…6分AH-1-161234554321O y x25.(1)m = 约4.3 ; ……1分 (2)4.5) ……4分 (3) 3.1或是5.1 ……6分26.(1)对称轴:x =2 ……1分 A (1,0)或B (3,0) ……1分 (2)①如图1,∵AD =CD ∴AD =3∴C 点坐标为(4,3) ……3分 将C (4,3)代入243y ax ax a =-+∴316163a a a =-+∴a =1∴抛物线的表达式为:243y x x =-+ ……4分 ②34t << ……6分 过程略27.(1)证明:∵四边形ABCD 是正方形,FDA∴∠DCB =90°. ∴∠CDF +∠E =90°. ∵BF ⊥DE , ∴∠FBC +∠E =90°.∴∠FBC =∠CDF .……2分(2)①……3分②猜想:数量关系为:BF =DF +CG . 证明:在BF 上取点M 使得BM =DF 连接CM .∵四边形ABCD 是正方形, ∴BC =DC .∵∠FBC =∠CDF ,BM =DF , ∴△BMC ≌△DFC . ∴CM =CF ,∠1=∠2. ∴△MCF 是等腰直角三角形.∴∠MCF =90°,∠4=45°. ……5分 ∵点C 与点G 关于直线DE 对称, ∴CF =GF ,∠5=∠6. ∵BF ⊥DE ,∠4=45°, ∴∠5=45°, ∴∠CFG =90°, ∴∠CFG =∠MCF , ∴CM ∥GF . ∵CM =CF ,CF =GF , ∴CM =GF ,∴四边形CGFM 是平行四边形, ∴CG =MF .∴BF =DF +CG . ……7分 28.(1)F ……1分 (2) -3≤p x ≤3 且p x ≠0 ……4分(3)4 < r≤5 ……7分GFDE C B A。
北京市延庆区2018年初中数学毕业考试试题一、选择题:(共8个小题,每小题2分,共16分) 下面各题均有四个选项,其中只有一个..是符合题意的.1.利用尺规作图,作△ABC 边上的高AD ,正确的是2.右图是某几何体的三视图,该几何体是ABCDABC DABC DABCDA B . C . D .A .三棱柱B .三棱锥C .圆柱D .圆锥3.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是A .1a >-B .0a b ⋅>C .0b a -<<-D .a b >4.计算:97...a a a b b b b+++=⋅⋅⋅⋅⋅个个A .97a bB .97a bC .79a bD .97a b5.关于x 的一元二次方程2(1)10mx m x -++=有两个不等的整数根,那么m 的值是A .1-B .1 C .0D .16.已知正六边形ABCDEF ,下列图形中不是..轴对称图形的是7.下面的统计图反映了我国2013年到2017年国内生产总值情况。
(以上数据摘自国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》)根据统计图提供的信息,下列推断不合理...的是A .与2016年相比,2017年我国国内生产总值有所增长;B .2013—2016年,我国国内生产总值的增长率逐年降低;FA BCDEF EDCAFACDEFABCDEA .B .C .D .C .2013-2017年,我国国内生产总值的平均增长率约为6。
7% ;D .2016-2017年比2014-2015年我国国内生产总值增长的多.8.某游泳池长25米,小林和小明两个人分别在游泳池的A ,B 两边,同时朝着另一边游泳,他们游泳的时间为t (秒),其中0180t ≤≤,到A 边距离为y (米),图中的实线和虚线分别表示小林和小明在游泳过程中y 与t 的对应关系.下面有四个推断:20000040000060000010000000520%亿元2013-2017年国内生产总值及其增长速度①小明游泳的平均速度小于小林游泳的平均速度;②小明游泳的距离大于小林游泳的距离; ③小明游75米时小林游了90米游泳;其中正确的是A .①②B .①③C 。
xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx 分)试题1:的绝对值是A. B. C. D.试题2:在第六次全国人口普查,截至2010年11月1日零时,延庆县常住人口为317000人,将317000用科学记数法表示应为A.3.17×105 B.31.7×104 C.3.17×104 D.0.317×106试题3:一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为A.B. C. D.试题4:如图,直线a∥b,EF⊥CD于点F,∠2=65°,则∠1的度数是A.15° B.25°C.45° D.65°试题5:下列图形中,是中心对称图形但不是轴对称图形的是A.等边三角形 B.菱形C. 平行四边形 D.矩形试题6:小明用自制的直角三角形纸板DEF测量树AB的高度.测量时,使直角边DE保持水平状态,其延长线交AB于点G;使斜边DF与点A在同一条直线上.测得边DE离地面的高度GB为1.4m,点D到AB的距离DG为6m(如图所示).已知DE=30cm,EF=20cm,那么树AB的高度等于A.4 m B.5.4 m C.9 m D.10.4 m试题7:某中学足球队9名队员的年龄情况如下:年龄(单位:岁)14 15 16 17人数 1 4 2 2则该队队员年龄的众数和中位数分别是A.15,15 B.15,16 C.15,17 D.16,15试题8:如图,在△ABC中,AB=5cm,BC=12cm,动点D、E同时从点B出发,点D由B到A以1cm/s的速度向终点A作匀速运动,点E沿BC-CA以2.4cm/s的速度向终点A作匀速运动,那么△BDE的面积S与点E运动的时间t 之间的函数图象大致是A.B. C. D.试题9:分解因式:= __________ .试题10:若分式的值为0,则x的值等于.试题11:某一次函数的图象经过点(1,-2),且函数y的值随自变量x的增大而减小,请写出一个满足上述条件的函数关系式:.试题12:如图,正三角形ABC、正四边形ABCM、正五边形ABCMN中,点E在CB的延长线上,点D在另一边反向延长线上,且BE=CD,DB延长线交AE于点F.图1中∠AFB的度数为,图2中∠AFB度数为,若将条件“正三角形、正四边形、正五边形”改为“正n边形”,其它条件不变,则∠AFB度数为.(用含n的代数式表示)图1 图2 图3试题13:如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF;求证:∠D=∠A试题14:计算:.试题15:解不等式组:试题16:已知,求代数式的值.试题17:在平面直角坐标系xOy中,一次函数的图象与反比例函数的图象的一个交点为A(1,).(1)求反比例函数的解析式;(2)若P是坐标轴上一点(P不与O重合),且满足,直接写出点P的坐标.试题18:为了响应市政府“绿色出行”的号召,小张上下班由自驾车方式改为骑自行车方式.已知小张单位与他家相距20千米,上下班高峰时段,自驾车的平均速度是自行平均车速度的2倍,骑自行车所用时间比自驾车所用时间多小时.求自驾车平均速度和自行车平均速度各是多少.试题19:如图,在△ABC中,D、E分别是AB、AC的中点,延长DE到点F,使EF=DE,连接CF.(1)求证: 四边形BCFD是平行四边形;(2)若BD=4,BC=6,∠F=60°,求CE的长.试题20:以下是根据2013年某旅游县接待游客的相关数据绘制的统计图的一部分,请根据图1,图2回答下列问题:(1)该旅游县5~8月接待游客人数一共是280万人,请将图1中的统计图补充完整;(2)该旅游县6月份4A级景点接待游客人数约为多少人?(3)小明观察图2后认为,4A级景点7月份接待游客人数比8月多了,你同意他的看某旅游县5~8月4A级景点接待游客人数占该县当月游客人数百分比的统计图某旅游县5~8月各月接待游客人数统计图法吗?说明你的理由.试题21:已知:如图,在△ABC中,AB=AC,点D是边BC的中点.以CD为直径作⊙O,交边AC于点P,连接BP,交AD于点E.(1)求证:AD是⊙O的切线;(2)如果PB是⊙O的切线,BC=4,求PE 的长.试题22:阅读下面资料:小明遇到这样一个问题:如图1,对面积为a的△ABC逐次进行以下操作:分别延长AB、BC、CA至A1、B1、C1,使得A1B=AB,B1C=BC,C1A=CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1,求S1的值.小明是这样思考和解决这个问题的:如图2,连接A1C、B1A、C1B,因为A1B=AB,B1C=BC,C1A=CA,根据等高两三角形的面积比等于底之比,图1 图2所以,由此继续推理,从而解决了这个问题.(1)请直接写出S1= ;(用含字母a的式子表示).请参考小明同学思考问题的方法,解决下列问题:(2)如图3,对面积为a的△ABC逐次进行以下操作:分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S2,求S2的值.(3)如图4,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,设△APE的面积为y,△BPF的面积为x,①求△APE ,△BPF,△APF 面积之间的关系;②求△ABC的面积.图3 图4试题23:已知:抛物线与x轴相交于A、B两点,与y轴相交于点C,其中点C的坐标是(0,3),顶点为点D,联结CD,抛物线的对称轴与x轴交于点E.(1)求m的值;(2)求∠CDE的度数;(3)在抛物线对称轴的右侧部分上是否存在一点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.试题24:如图,正方形ABCD的边长是2,M是AD的中点.点E从点A出发,沿AB运动到点B停止.连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.(1)设AE=x时,△EGF的面积为y.求y关于x的函数关系式,并写出自变量x的取值范围;(2)P是MG的中点,求点P运动路线的长.试题25:已知:在平面直角坐标系xOy中,给出如下定义:线段AB及点P,任取AB上一点Q,线段PQ长度的最小值称为点P到线段AB的距离,记作d(P→AB).(1)如图1,已知C点的坐标为(1,0),D点的坐标为(3,0),求点P(2,1)到线段CD的距离d(P→CD)为;(2)已知:线段EF:y=x(0≤x≤3),点G到线段EF的距离d(P→EF)为,且点G的横坐标为1,在图2中画出图,试求点G的纵坐标.图1 图2试题1答案:B试题2答案:A试题3答案:D试题4答案:B试题5答案:C试题6答案:B试题7答案:A试题8答案:D试题9答案:试题10答案:3试题11答案:略试题12答案:60,90,试题13答案:证明:∵AC∥DF∴∠C=∠F在△DEF和△ACB中∴∴∠D=∠A 试题14答案:解:=①②试题15答案:解:由①得:x>-6由①得:∴试题16答案:==∵∴原式=2试题17答案:⑴∵点A(1,n)在一次函数的图象上,∴n=3.∴点A的坐标为(1,3).∵点的反比例函数的图象上,∴k=3.∴反比例函数的解析式为.⑵点P的坐标为(2,0)或(0,6).试题18答案:解:自行车平均速度为x km/h,自驾车平均速度为2x km/h由题意得:解方程得:60-30=2x∴x=15,经检验:x=15是所列方程的解,且符合实际意义,∴2x=30答:自行车速度为15km/h,汽车的速度为30km/h.试题19答案:证明:(1)∵D、E分别是AB、AC的中点∴∵EF=DE∴∴∴四边形BCFD是平行四边形(2)过点C作CM⊥DF于M,∵平行四边形BCFD∴CF=BD=4 DF=BC=6∴EF=DE=3∵∠F=60°∴∠MC F=30°∴Rt△CMF中,Rt△NMF中,试题20答案:(1)图略(2)(万人)(3)(万人)(万人)所以小明说的不对试题21答案:证明:(1)∵AB=AC,点D是边BC的中点∴∠ADC=∠ADB=90°∴AD是⊙O的切线(2)∵AD是⊙O的切线PB是⊙O的切线∴PE=DE连接OP∴∠BPO=90°∴∠BPO=∠ADB =90°∴∽△BPO∴∵BC=4∴CD=BD=2∴OP=1,OB=3∴∴试题22答案:(1)S1=7a;(2)∵A1B=2AB,B1C=2BC,C1A=2CA根据等高两三角形的面积比等于底之比,∴S△A1BC=S△B1CA=S△C1AB=2S△ABC=2a∴S1=19a;(3)①过点C作CG⊥BE于点G,∵S△BPC=BP•CG=70;S△PCE=PE•CG=35,∴∴即:BP=2EP同理,∴S△APB=2S△APF.=x,S△APE=y,∴x+84=2y.②∵,又∵x+84=2y∴∵S△BPF∴S△ABC=315.试题23答案:(1)∵抛物线过点C(0,3)∴1-m=3∴m=-2(2)由(1)可知该抛物线的解析式为y=-x2+2x+3=-(x-1)2+4∴此抛物线的对称轴x=1抛物线的顶点D(1,4)过点C作CF⊥DE,则CF∥OE∴F(1,3)所以CF=1,DF=4-3=1∴CF=DF又∵CF⊥DE∴∠DFC=90°∴∠CDE=45°(3)存在.①延长CF交抛物线于点P1,则CP1∥x轴,所以P1正好是C点关于DE的对称点时,有DC=DP1,得出P1点坐标(2,3);由y=-x2+2x+3得,D点坐标为(1,4),对称轴为x=1.②若以CD为底边,则PD=PC,设P点坐标为(x,y),根据两点间距离公式,得x2+(3-y)2=(x-1)2+(4-y)2,即y=4-x.又P点(x,y)在抛物线上,∴4-x=-x2+2x+3,即x2-3x+1=0,解得:<1,应舍去;∴∴y=4-x=则P2点坐标()∴符合条件的点P坐标为()和(2,3).试题24答案:解:(1)当点E与点A重合时,x=0,y=2-----------2分当点E与点A不重合时,0<x≤2在正方形ABCD中,∠A=∠ADC=90°∴∠MDF=90°,∴∠A=∠MDF在△AME和△DMF中∴△AME≌△DMF(ASA)∴ME=MF在Rt△AME中,AE=x,AM=1,ME=∴EF=2ME=2过M作MN⊥BC,垂足为N(如图)则∠MNG=90°,∠AMN=90°,MN=AB=AD=2AM ∴∠AME+∠EMN=90°∵∠EMG=90°∴∠GMN+∠EMN=90°∴∠AME=∠GMN∴Rt△AME∽Rt△NMG∴即∴MG=2ME=∴∴(2)如图,PP′即为P点运动的距离;在Rt△BMG′中,MG⊥BG′;∴∠MBG=∠G′MG=90°-∠BMG;∴tan∠MBG=∴tan∠GMG′=tan∠MBG=∴GG′=2MG=4;△MGG′中,P、P′分别是MG、MG′的中点,∴PP′是△MGG′的中位线;∴PP′=即:点P运动路线的长为2.试题25答案:(1) d(P→CD)为 1(2)在坐标平面内作出线段DE:y=x(0≤x≤3).∵点G的横坐标为1,∴点G在直线x=1上,设直线x=1交x轴于点H,交DE于点K,①如图2所示,过点G1作G1F⊥DE于点F,则G1F就是点G1到线段DE的距离,∵线段DE:y=x(0≤x≤3),∴△G1FK,△DHK均为等腰直角三角形,∵G1F=∴KF=由勾股定理得G1K=2,又∵KH=OH=1,∴H G1=3,即G1的纵坐标为3;②如图2所示,过点O作G2O⊥OE交直线x=1于点G2,由题意知△OHG2为等腰直角三角形,∵OH=1,∴G2O=∴点G2同样是满足条件的点,∴点G2的纵坐标为-1,综上,点G的纵坐标为3或-1.。
2017-2018延庆区一模考试数学(理)评分标准一、选择题 DCDB DBDB二、填空题 9. 7 10. 1±,2或3- 11. 50 12. 213. 答案不唯一 14.英, 德(第一空3分第二空2分)13题参考答案:3,;,;,ln ;,lg ;,x x x x xx x x x x e L L三、解答题 15. (Ⅰ)由sin 0得A A +=………2分即()ππ3A k k +=∈Z , ………3分 又()0,πA ∈,∴ππ3A +=,得2π3A =. ………5分 (Ⅱ)由余弦定理2222cos a b c bc A =+-⋅, ………6分又∵12,cos 2a b A ===-………8分 代入并整理得()2125c +=,故4c =; ………11分11sin 2422S bc A ==⨯⨯= ………13分 16.(Ⅰ)事件A 的人数为:400+270=670,该险种有1000人续保,所以P (A )的估计值为:6700.671000= ………3分 (Ⅱ)X 的可能取值为0,1,2,3, ………4分由出险情况的统计表可知:一辆车一年内不出险的概率为400210005=, 出险的概率为23155-=,则 ………5分 328(0)()5125P x ===,1233236(1)()()55125P x C === 2233254(2)()()55125P x C ===,3327(3)()5125P x === ………9分 π2sin 03A ⎛⎫+= ⎪⎝⎭所以的X 分布列为: X0 1 2 3 P 8125 36125 54125 27125 ………10分(Ⅲ)续保人本年度的平均保费估值为:0.85400270 1.25200 1.580 1.7540210 1.071000a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯= ………13分17(Ⅰ)如图,取AE 的中点H ,连接,HG HD ,又G 是BE 的中点,所以 //GH AB ,且12GH AB = ………1分 又F 是CD 中点,所以12DF CD =, 由四边形ABCD 是矩形得,AB CD =, //AB CD , ………2分所以GH DF =, //GH DF ,从而四边形HGFD 是平行四边形,//GF DH , ………3分又DH ⊂平面ADE ,GF ⊄平面ADE 所以//GF 平面ADE ………4分 法一:(Ⅱ)如图,在平面BEC 内,过点B 作//BQ EC ,因为,BE EC BQ BE ⊥∴⊥又因为AB ⊥平面BEC ,所以AB BE ⊥,AB BQ ⊥ 以B 为原点,分别以,,BE BQ BA u u u r u u u r u u u r 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,…5分则(0,0,2)A (0,0,0)B (2,0,0)E (2,2,1).F ………6分因为AB ⊥平面BEC ,所以A=(B u u u r 0,0,2)为平面BEC 的法向量,………7分设(x,y,z)n =r 为平面AEF 的法向量,又AE (2,0,-2)AF=(2,2,-1)=u u u r u u u r ,由2200220,0,得x z n AE x y z n AF ⎧-=⋅=⎧⎨⎨+-=⋅=⎩⎩v u u u v v u u u v 取2z =得=(2,-1,2)n r . ………9分 从而42cos ,323n BA n BA n BA ⋅===⨯⋅v u u u v v u u u v v u u u v………10分 所以平面AEF 与平面BEC 所成锐二面角的余弦值为23. (Ⅲ)假设在线段CD 存在点M ,设点M 的坐标为(2,2,)a . ………11分 因为(0,0,2)A (2,0,0)E (2,2,2).D所以(0,2,2)DE =--u u u r ,(2,2,2)AM a =-u u u u r ………12分因为DE AM ⊥,0DE AM ⋅=u u u r u u u u r 所以0a = .………13分所以2DM = ………14分 法二:(Ⅱ)以E 点为原点,EC 所在直线为x 轴,EB 所在直线为y 轴,过E 做垂直平面BEC 的直线为z 轴,建立空间直角坐标系,则(0,0,0)E ,(0,2,2)A ,(2,0,1)F(2,0,2)D ,1(0,0,1)n v 为平面BEC 的法向量, ………7分设2(,,)n x y z v 为平面AEF 的法向量,又()()0,2,2,2,0,1EA EF u u u v u u u v由2200n EA n EF ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u v 得22020y z x z +=⎧⎨+=⎩取2z =得2(-1,-2,2)n v ………9分 从而12121222cos ,133n n n n n n ⋅===⨯⋅u u v u u v u u v u u v u u v u u v ………10分 所以平面AEF 与平面BEC 所成锐二面角的余弦值为23. (Ⅲ)假设在线段CD 存在点M ,设点M 的坐标为(2,0,)a . ………11分因为(0,2,2)A (0,0,0)E (2,0,2)D所以(-2,0,2)DE =-u u u r ,(2,-2,2)AM a =-u u u u r ………12分因为DE AM ⊥,0DE AM ⋅=u u u r u u u u r 所以0a = .………13分所以2DM = ………14分18(Ⅰ),1)('-=xe xf 所以切线的斜率()00k f '== 又因为()01f =, ……2分 所以切线方程为 错误!未找到引用源。
延庆区2018年初三统一练习数学考生须知1•本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟. 2•在试卷和答题卡上认真填写学校名称、姓名和学号.3•试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4•在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色签字笔作答.F面各题均有四个选项,其中只有一个是符合题意的.1利用尺规作图,作△ ABC边上的高AD,正确的是2.右图是某几何体的三视图,该几何体是A .三棱柱B .三棱锥C .圆柱D .圆锥3•实数a, b在数轴上的对应点的位置如图所示,则正确的结论是A . a a TB . a b > 0C . —b c 0 £—aD . a>|b9个4 .计算a+a +... +a: —b7个9a9 aA .B .7b7b5.关于x的一兀一次方程2mx _(m +1)x +11a1 b 二-2-10 1 2 3 xC .9a9 ab7 D . b7D. -1II平A.D.A. -1B. 1有两个不等的整数根,那么m的值是6.已知正六边形 ABCDEF ,下列图形中不是.轴对称图形的是7.下面的统计图反映了我国 2013年到2017年国内生产总值情况•(以上数据摘自国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》)根据统计图提供的信息,下列推断不合理• •的是 A .与2016年相比,2017年我国国内生产总值有所增长; B . 2013-2016年,我国国内生产总值的增长率逐年降低; C . 2013-2017年,我国国内生产总值的平均增长率约为6.7% ;D . 2016-2017年比2014-2015年我国国内生产总值增长的多.亿元 1000000800000 600000 400000 200000&某游泳池长25米,小林和小明两个人分别在游泳池的 A , B 两边,同时朝着另一边游泳,他们游泳的时间为 t (秒),其中0乞t 乞180,到A 边距离为y (米),图中的实 线和虚线分别表示小林和小明在游泳过程中y 与t 的对应关系.下面有四个推断:① 小明游泳的平均速度小于小林游泳的平均速度;2013-2017年国内生产总值及其增长速度%20 15 10 5 0BDB .C .D82712220162014201520172013一 国内生产总值比上年增长(%)14.如图,AB 是O O 的弦,OC 丄AB ,Z AOC=42 °那么/ CDB 的度数为 _____________.② 小明游泳的距离大于小林游泳的距离; ③ 小明游75米时小林游了 90米游泳; ④ 小明与小林共相遇 5次;13. 2017年延庆区农业用水和居民家庭用水的总和为 8亿立方米,其中居民家庭用水比农业用水的2倍还多0.5亿立方米.设农业用水为x 亿立方米,居民家庭用水为y 亿 立方米.依题意,可列方程组为_______________ A .①② B .①③二、填空题(共8个小题,每小题2分,共16分)x 十29.若分式 ------ 有意义,则实数 X 的取值范围是.x _310 .右图是一个正五边形,则/1的度数是 ______________2a _1a 211.如果a 2-a -^0,那么代数式(a) 的值是a a —112.如图,在△ ABC 中,D , E 分别是若AD = 1,BD = 3,贝U 匹的值为BC其中正确的是315.如图,在平面直角坐标系 xOy 中,△ DEF 可以看作是△ ABC 经过若干次图形的变化(平移、轴对称、 旋转)得到的,写出一种由△ ABC 得到△ DEF 的过 程: .16.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子 10千克,那么大约有 _____ 千克种子能发芽.三、解答题(本题共 68分,第17题-22题,每小题5分;第23-26题,每小题6分;第27题,第28题每小题各7分)解答应写出文字说明、证明过程或演算步骤 .17•计算:3tan30°+1 — V3 +(2 —兀)° —(丄)‘.玉米种子发芽的频率发芽率%4p5x -2 ::: 3(x 2),18 •解不等式组:x 5并写出它的所有整数解.3x..219.如图,在△ ABC中,AD平分/ BAC交BC于点D ,过点D作DE // AB交AC于点E.求证:AE=DE .20 .已知:/ AOB及边OB上一点C .求作:/ OCD,使得/ OCD= / AOB .要求:1.尺规作图,保留作图痕迹,不写做法;(说明:作出一个即可)2 .请你写出作图的依据.21.如图,Rt △ ABC 中,/ ABC=90°,点 D , F 分别是 AC , AB 的中点,CE // DB , BE //DC .(1) 求证:四边形 DBEC 是菱形;(2) 若AD =3, DF=1,求四边形 DBEC 面积.在平面直角坐标系 xOy 中,直y = kx • b(k = 0) 与x 轴交于点A ,与y 轴交于点B ,与反比例函 数y = m (m = 0)的图象在第一象限交于点xP (1, 3),连接 OP .(1)求反比例函数y = m (m = 0)的表达式;x22. -3 一2 -1(2)若厶AOB 的面积是厶POB 的面积的2倍,-1 求直线y =kx • b 的表达式.-2 23. 如图,AB 是O O 的直径,D 是O O 上一点,点 中点,过点A 作O O 的切线交BD 的延长线于点 并延长交BF 于点C . (1)求证:AB =BC ; E 是AD 的F .连接AE(2)如果 AB=5, tan/FAC1,求FC 的长.2从北京市环保局证实,为满足 周边的环境污染进行综合治理, 程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测. 过程如下,请补充完整• 收集数据:24. 2022年冬奥会对环境质量的要求, 率先在部分村镇进行“煤改电”改造•在治理的过 北京延庆正在对其C-3从2016年12月初开始,连续一年对两镇的空气质量进行监测(将30天的空气污染指数(简称:API )的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:千家店镇:120 115 100 100 95 85 80 70 50 50 50 45永宁镇:110 90 105 80 90 85 90 60 90 45 70 60整理、描述数据:按如下表整理、描述这两镇空气污染指数的数据:(说明:空气污染指数< 50寸,空气质量为优;50V空气污染指数< 100时,空气质量为良;100V空气污染指数<150时,空气质量为轻微污染.)分析数据:两镇的空气污染指数的平均数、中位数、众数如下表所示;请将以上两个表格补充完整;得出结论:可以推断岀镇这一年中环境状况比较好,理由为(至少从两个不同的角度说明推断的合理性)25. 如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=6cm,设弦AP的长为x cm,△ APO的面积为y cm2,(当点P与点A或点B重合时,y的值为0).小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整;(1)通过取点、画图、测量、计算,得到了x与y的几组值,如下表: x/cm0.5123 3.545 5.5 5.8 y/cm20.8 1.5 2.8 3.9 4.2m 4.2 3.3 2.3那么m=8292 (2)建立平面直角坐标系,描出以表中各组对应值为坐标的点, 画出该函数图象.226. 在平面直角坐标系 xOy 中,抛物线 y=ax-4ax+3a(a >0)与x 轴交于 A , B 两点(A 在 B 的左侧).(1) 求抛物线的对称轴及点 A , B 的坐标;(2) 点C (t , 3)是抛物线y =ax 2-4ax ■ 3a(a 0)上一点,(点C 在对称轴的右侧),过点C 作x 轴的垂线,垂足为点 D .① 当CD = AD 时,求此时抛物线的表达式; ② 当CD ■ AD 时,求t 的取值范围.L y6 5 4 3(3)结合函数图象说明,当△(保留一位小数)APO 的面积是4时,贝U AP 的值约为27. 如图1正方形ABCD中,点E是BC延长线上一点,连接DE ,过点B作BF丄DE 于点F,连接FC.(1 )求证:/ FBC = Z CDF .(2)作点C关于直线DE的对称点G,连接CG, FG .①依据题意补全图形;②用等式表示线段DF , BF , CG之间的数量关系并加以证明.图1 备用图28.平面直角坐标系xOy 中,点A(X i , yj 与B(% , y 2),如果满足X i= 0 , % - y ? = 0 ,其中X i =X 2,则称点A 与点B 互为反等点. 已知:点C(3, 4)D(-3, - 4), E (3, 4), F ( -3, 4)已知点G ( -5, 4),连接线段CG ,若在线段CG 上存在两点P , Q 互为反等点,求点P 的横坐标X p 的取值范围;1 2 3 4 5 6 X-1 -2 -3 -4(1) F 列各点中,与点C 互为反等点;(2) (3) 已知O O 的半径为r ,若O O 与(2)中线段CG 的两个交点互为反等点,求r的取值范围.i.y6-6 -5 -4 -3 -2 -1 O延庆区2018年初三统一练习评分标准数学一、选择题:(共8个小题,每小题2分,共16分)BACC ADCD二、填空题(共8个小题,每空2分,共16分)x y =89. X M 3 10. 72 °11. 1 12. 1: 4 13.y = 2x + 0.5 14. 21 °15.A ABC沿y轴翻折后,再向上平移4个单位得到△ DEF16. 8.8三、解答题彳3 ―17. 原式=3 +i3-1+1-3 ……4分3=2、3-3 ……汾18 .解:由①得,x<4 . ....... 1分由②得,x> 1 . ••…3分原不等式组的解集为 1 ^x<4. (4)•••原不等式组的所有整数解为 1 , 2, 3. ••…5分19 .证明:T AD平分/ BAC•••/ BAD = Z DAE,•/ DE// AB•••/ BAD = Z ADE••…3 分•••/ DAE=Z ADE …分• - AE=DE …• 5 分20. (1)作图(略) ••…2分(2)到线段两端点距离相等的点在线段的垂直平分线上;垂直平分线上的点到线段两端点距离相等;等边对等角 • ••…5分 21 . ( 1)在Rt A ABC 中,T CE//DC , BE// DC•••四边形DBEC 是平行四边形 •/ D 是 AC 的中点,/ ABC=90° • BD=DC•四边形DBEC 是菱形(2)T F 是AB 的中点• BC=2DF=2,Z AFD=Z ABC=90 °在Rt A AFD 中,错误!未找到引用源。
1E DCBAEDCB A 北京市延庆县中考数一模试卷一、选择题(本题共30分,每小题3分)1.清明小长假延庆县的旅游收入约为1900万,将1900用科记数法表示应为( ) A .21910⨯ B .31.910⨯ C .41.910⨯ D .40.1910⨯ 2. 23的倒数是( ) A .23- B .23 C .32- D . 323. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5, 从中随机摸出一个小球,其标号是奇数的概率为( ) A.51 B. 52 C. 53 D. 54 4.如图,△ABC 中,∠A =90°,点D 在AC 边上,DE ∥BC , 若∠1=35°,则∠B 的数为( ) A . 25° B. 35° C. 55° D. 65°5.关于x 的方程0222=++m x x 有两个相等的实数根,那么m 的值为( ) A .2± B .1± C .1 D . 26.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )7.若把代数式223x x -+化为()2x m k -+的形式,其中m ,k 为常数,结果为( )A .2(1)4x ++B .2(1)2x -+C .2(1)4x -+D . 2(1)2x ++ 8.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE BC ∥,若AD =1,BD =2,则DEBC 的值为( )A .12 B .13 C .14 D .199完成引体向上的个数 10 9 8 7 人 数1135这 A .7和7.5 B .7和8 C .7.5和9 D .8和9CABED O10.如图,△ABC 中,∠ACB =90°,∠A =30°,AB =16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP =x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致是( )二、填空题(本题共18分,每小题3分) 11.分解因式:24x y y -= . 12.若分式1x x-的值为0,则x 的值等于_________ . 13.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为 .14.请写出一个开口向上,并且与y 轴交于点(0,2)的抛物线的表达式__________ .15. 习勾股定理相关内容后,张老师请同们交流这样的一个问题:“已知直角三角形的两条边长分别为3,4,请你求出第三边.”张华同通过计算得到第三边是5,你认为张华的答案是否正确:________,你的理由是 _______________________________________.16. 将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图161.在图162中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图161所示的状态,那么按上述规则连续完成3次变换后,骰子朝上一面的点数是________;连续完成次变换后,骰子朝上一面的点数是________.三、解答题(本题共30分,每小题5分)17.如图,△ABC 中,∠ACB =90°,延长AC 到D ,使得CD=CB ,过点D 作DE ⊥AB 于点E ,交BC 于F .求证:AB =DF .FED C BA图161 图162向右翻滚90° 逆时针旋转90°18.计算:011(3)4cos 45()2π---︒++-.19.解不等式组: 32,12.3x x x x >-⎧⎪+⎨>⎪⎩20.已知2410x x +-=,求代数式22(2)(2)(2)x x x x +-+-+的值.21.如图,一次函数1y x =+的图象与反比例函数ky x=(k 为常数,且0k ≠)的图象都经过点A (m ,2).(1)求点A 的坐标及反比例函数的表达式;(2) 设一次函数1y x =+的图象与x 轴交于点B ,若点P 是x 轴上一点,且满足△ABP 的面积是2,直接写出点P 的坐标.22.列方程或方程组解应用题:八级的生去距校10千米的科技馆参观,一部分生骑自行车先走,过了20分钟,其余的生乘汽车出发,结果他们同时到达,已知汽车的速是骑自行车生速的2倍,求骑车生每小时走多少千米?四、 解答题(本题共20分,每小题5分)23. 如图,点O 是△ABC 内一点,连结OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连结,得到四边形DEFG .(1)求证:四边形DEFG 是平行四边形;(2)如果∠OBC =45°,∠OCB =30°,OC =4,求EF 的长.G FOBCDE A24. 某区对市民开展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A .使用清洁能源B .汽车限行C .绿化造林D .拆除燃煤小锅炉调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有 人. (2)请你将统计图1补充完整.(3)已知该区人口为00人,请根据调查结果估计该市认同汽车限行的人数.25. 如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线CM . (1)求证:∠ACM =∠ABC ;(2)延长BC 到D ,使CD = BC ,连接AD 与CM 交于点E ,若⊙O 的半径为2,ED =1,求AC 的长.ODCA BM E26. 阅读下面资料: 问题情境:(1)如图1,等边△ABC ,∠CAB 和∠CBA 的平分线交于点O ,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点与点O 重合,已知OA =2,则图中重叠部分△OAB 的面积是 . 探究:(2)在(1)的条件下,将纸片绕O 点旋转至如图2所示位置,纸片两边分别与AB ,AC 交于点E ,F ,求图2中重叠部分的面积.(3)如图3,若∠ABC =α(0°<α<90°),点O 在∠ABC 的角平分线上,且BO =2,以O 为顶点的等腰三角形纸片(纸片足够大)与∠ABC 的两边AB ,AC 分别交于点E 、F ,∠EOF =180°﹣α,直接写出重叠部分的面积.(用含α的式子表示)五、解答题(本题共22分,第27题7分、28题各7分,29题8分) 27. 二次函数2y x mx n =-++的图象经过点A (﹣1,4),B (1,0),12y x b =-+经过点B ,且与二次函数2y x mx n =-++交于点D .过点D 作DC ⊥x 轴,垂足为点C .(1)求二次函数的表达式;(2)点N 是二次函数图象上一点(点N 在BD 上方),过N 作NP ⊥x 轴,垂足为点P ,交BD 于点M ,求MN 的最大值.28. 已知,点P是△ABC边AB上一动点(不与A,B重合)分别过点A,B向直线CP作垂线,垂足分别为E,F,Q为边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.29. 对于平面直角坐标系xOy 中的点P 和线段AB ,给出如下定义:在线段AB 外有一点P ,如果在线段AB 上存在两点C 、D ,使得∠CPD =90°,那么就把点P 叫做线段AB 的悬垂点.(1)已知点A (2,0),O (0,0)①若1(1,)2C ,D (1,1),E (1,2),在点C ,D ,E 中,线段AO 的悬垂点是______; ②如果点P (m ,n )在直线1y x =-上,且是线段AO 的悬垂点,求m 的取值范围; (2)如下图是帽形M (半圆与一条直径组成,点M 是半圆的圆心),且圆M 的半径是1,若帽形内部的所有点是某一条线段的悬垂点,求此线段长的取值范围.延庆县毕业考试答案初三数题号 1 2 3 4 5 6 7 8 9 104分 4分 5分① ② 5分4分 2分5分5分 4分 2分1分011(3)4cos 45()2123π---︒++-=-+=3分 1分三、解答题(本题共30分,每小题5分) 17. 证明:证明:∵ DE ⊥AB ∴∠DEA=90° ∵∠ACB =90° ∴∠DEA=∠ACB ∴∠D=∠B在△DCF 和△ACB 中DCB ACB DC BC B D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴DCF ACB ∆≅∆∴AB =DF18.解:19. 32,12.3x x x x >-⎧⎪+⎨>⎪⎩解:由①得:x>1 由①得:15x < ∴115x -<<22222220.(2)(2)(2)44448x x x x x x x x x x +-+-+=++-++=++ ∵2410x x +-=∴241x x +=∴原式=921. ⑴ ∵点A (m ,2)在一次函数1y x =+的图象上,5分3分 5分 4分4分 5分 3分2分4分2分60MA FG E BCD∴m=1.∴点A 的坐标为(1,2).∵点A 的反比例函数xky =的图象上,∴k=2.∴反比例函数的解析式为2y x=. ⑵ 点P 的坐标为(1,0)或(3,0).24.(1)200 (2)5分 1分 2分3分 5分O D C A BME(3)8020020000080000÷⨯=25.证明:(1)证明:连接OC . ∵ AB 为⊙O 的直径, ∴ ∠ACB = 90°.∴ ∠ABC +∠BAC = 90°. ∵ CM 是⊙O 的切线, ∴ OC ⊥CM .∴ ∠ACM +∠ACO = 90°. ·································································· 1分[来∵ CO = AO ,∴ ∠BAC =∠ACO . ∴ ∠ACM =∠ABC . ··············································································· 2分 (2)解:∵ BC = CD ,OB=OA ,∴ OC ∥AD. 又∵ OC ⊥CE ,∴CE ⊥AD . 3分[∵ ∠ACD =∠ACB = 90°,∴ ∠AEC =∠ACD . ∴ ΔADC ∽ΔACE .∴AD ACAC AE=. ····················································································· 4分[ 而⊙O 的半径为2, ∴ AD = 4. ∴43AC AC =. ∴ AC = 2 3 . ······················································································ 5分[ 26.(1) 3(2) 连接AO 、BO ,如图②,由题意可得:∠EOF =∠AOB ,则∠EOA =∠FOB . 在△EOA 和△FOB 中,EAO FBO OA OBEOA FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△EOA ≌△FOB . ∴S 四边形AEOF =S △OAB .过点O 作ON ⊥AB ,垂足为N ,如图, ∵△ABC 为等边三角形, ∴∠CAB =∠CBA =60°.∵∠CAB 和∠CBA 的平分线交于点O ∴∠OAB =∠OBA =30°. ∴OB=OA =2. ∵ON ⊥AB ,∴AN=NB ,ON =1.∴AN =N FEOCBA4分 5分D P ABCE FQPFEQD CBA ∴AB=2AN =2. ∴S △OAB =AB •ON =. S 四边形AEOF = (3) S 面积=4sincos.27. 解:(1)∵二次函数2y x mx n =-++的图象经过点A (﹣1,4),B (1,0) ∴4101m nm n=--+⎧⎨=-++⎩∴m=2,n=3∴二次函数的表达式为223y x x =--+ (2)12y x b =-+经过点B ∴12b = 画出图形()211(,),2322M m m m m m -+--+设,则N ∴21123()22MN m m m =--+--+设 ∴23522MN m m =--+∴2349()416MN m =-++ ∴MN 的最大值为491628.解:(1)AE ∥BF ,QE=QF , (2)QE=QF ,证明:如图2,延长EQ 交BF 于D , ∵AE ∥BF ,∴∠AEQ=∠BDQ , 在△BDQ 和△AEQ 中AEQ BDQ AQE BQD AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDQ ≌△AEQ (ASA ), ∴QE=QD , ∵BF ⊥CP ,∴FQ 是Rt △DEF 斜边上的中线, ∴QE=QF=QD , 即QE=QF . (3)(2)中的结论仍然成立, 证明:如图3,延长EQ 、FB 交于D , ∵AE ∥BF ,7分 2分 6分 5分3分 4分2分3分5分4分∴∠AEQ =∠D ,在△AQE 和△BQD 中AEQ BDQ AQE BQD AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, 图3 ∴△AQE ≌△BQD (AAS ), ∴QE=QD ,∵BF ⊥CP ,∴FQ 是Rt △DEF 斜边DE 上的中线, ∴QE=QF . 说明:第三问画出图形给1分 29.(1)线段AO 的悬垂点是C ,D ;(2)以点D 为圆心,以1为半径做圆,设1y x =-与⊙D 交于点B ,C与x 轴,y 轴的交点坐标为(1,0),(0,1) ∴∠ODB=45° ∴DE=BE在Rt △DBE 中,由勾股定理得:DE=22∴2211122m m -≤≤+≠且 (3)设这条线段的长为a①当2a <时,如图1,凡是⊙D 外的点不满足条件; ②当2a =时,如图2,所有的点均满足条件; ③当2a >时,如图3,所有的点均满足条件; 综上所述:2a ≥以上答案仅供参考。
延庆区2017—2018学年度高三模拟试卷数学(理科) 2018.3本试卷共6页,满分150分,考试时间120分钟第Ⅰ卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合2{|02},{|1}A x x B x x =≤≤=>,则A B =U (A ){|01}x x ≤≤ (B ){|0x x >或1}x <- (C ){|12}x x <≤ (D ){|0x x ≥或1}x <-2. 在复平面内,复数-2i1i +的对应点位于的象限是(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3. 已知函数()f x 是定义域为R 的奇函数,且(1)2f =-,那么(1)(0)f f -+= (A )-2 (B )0 (C )1 (D )24. 已知非零向量c b a ρρρ,,则“()0a b c ⋅=-r r r ”是“c b ρρ=”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件5. 若x ,y 满足2030x y x y x ≤≥≥-⎧⎪+⎨⎪⎩则22x y +的最小值为(A )0 (B )3 (C )4.5 (D )56. 该程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,4,则输出的a 为(A )0 (B )2 (C )4 (D )147. 某三棱锥的三视图如图所示,则该三棱锥的最长棱的长为(A 2 (B 3 (C ) 2 (D 58. 若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数适当排序后可成等差数列,且适当排序后也可成等比数列,则a b +的值等于 (A )4 (B )5 (C )6 (D )7正(主)视图侧(左)视图俯 视 图(7题图)1112第Ⅱ卷(非选择题)二、填空题:本大题共6小题,每小题5分,共30分.9. 设双曲线2214x y -=的焦点为12,,F F P 为该双曲线上的一点,若13PF =,则2PF = .10. 已知()2sin 2f x x =ω,其周期为π,则ω= ,当,63x ππ⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最大值为 .11. 无偿献血是践行社会主义核心价值观的具体行动,需要在报名的2名男教师和6名女教师中,选取5人参加无偿献血,要求男、女教师都有,则不同的选取方法的种数为 .(结果用数值表示)12. 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设():cos sin 2l +=ρθθ,M 为l 与224x y +=的交点,则M 的极径为 .13. 已知()()和f x g x 在定义域内均为增函数,但()()f x g x ⋅不一定是增函数,例如当()f x = 且()g x = 时,()()f x g x ⋅不是增函数.14. 有4个不同国籍的人,他们的名字分别是A 、B 、C 、D ,他们分别来自英国、美国、德国、法国(名字顺序与国籍顺序不一定一致). 现已知每人只从事一个职业,且:(1)A 和来自美国的人他们俩是医生; (2)B 和来自德国的人他们俩是教师; (3)C 会游泳而来自德国的人不会游泳; (4)A 和来自法国的人他们俩一起去打球.根据以上条件可推测出A 是来自 国的人,D 是来自 国的人.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin AA=0,a,b=2.(Ⅰ)求角A;(Ⅱ)求边c及△ABC的面积.16.(本小题满分13分)某车险的基本保费为a(单位:元),继续购买车险的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85a a 1.25a 1.5a 1.75a2a 随机调查了该险种的1000名续保人在一年内的出险情况,得到如下统计表:出险次数0 1 2 3 4 ≥5频数400 270 200 80 40 10 (Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”,求()P A的估计值;(Ⅱ)某公司有三辆汽车,基本保费均为a,根据随机调查表的出险情况,记X为三辆车中一年内出险的车辆个数,写出X的分布列;(Ⅲ)求续保人本年度的平均保费估计值.如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE EC ⊥,2AB BE EC ===,点,G F 分别是线段,BE DC 的中点.(Ⅰ)求证://GF 平面ADE ;(Ⅱ)求平面AEF 与平面BEC 所成锐二面角的余弦值;(Ⅲ)在线段CD 上是否存在一点M ,使得DE AM ⊥,若存在,求DM 的长,若不存在,请说明理由.18.(本小题满分13分)已知函数x e x f x-=)((e 为自然对数的底数).(Ⅰ)求曲线()=y f x 在点(0,(0))f 处的切线方程;(Ⅱ)设不等式ax x f >)(的解集为P ,且P x x ⊆≤≤}20|{,求实数a 的取值范围; (Ⅲ)设()()g x f x ax =-,写出函数()g x 的零点的个数.(只需写出结论)已知椭圆E :()222210x y a b a b+=>>过点01(),且离心率2e =.(Ⅰ)求椭圆E 的方程; (Ⅱ)设动直线l 与两定直线1:0l x y -=和2:0l x y +=分别交于,P Q 两点.若直线l 总与椭圆E 有且只有一个公共点,试探究:OPQ ∆的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.20.(本小题满分13分)设满足以下两个条件的有穷数列12,,,n a a a L 为(2,3,4,)n n =L 阶“Q 数列”: ①120n a a a +++=L ; ②121n a a a +++=L . (Ⅰ)分别写出一个单调递增的3阶和4阶“Q 数列”;(Ⅱ)若2018阶“Q 数列”是递增的等差数列,求该数列的通项公式; (Ⅲ)记n 阶“Q 数列”的前k 项和为(1,2,3,,)k S k n =L ,试证12k S ≤.(考生务必将答案答在答题卡上,在试卷上作答无效)。
2018年北京市延庆区初三数学一模试卷(含答案)延庆区2018年初三统一练习数学考生须知 1.本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和学号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色签字笔作答.一、选择题:(共8个小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个是符合题意的. 1.利用尺规作图,作△ABC边上的高AD,正确的是2.右图是某几何体的三视图,该几何体是 A.三棱柱 B.三棱锥 C.圆柱 D.圆锥3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是A. B. C. D. 4.计算: A. B. C. D.5.关于的一元二次方程有两个不等的整数根,那么的值是 A. B.1 C.0 D. 6.已知正六边形ABCDEF,下列图形中不是轴对称图形的是7.下面的统计图反映了我国2013年到2017年国内生产总值情况.(以上数据摘自国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》)根据统计图提供的信息,下列推断不合理的是A.与2016年相比,2017年我国国内生产总值有所增长; B.2013-2016年,我国国内生产总值的增长率逐年降低; C.2013-2017年,我国国内生产总值的平均增长率约为6.7% ; D.2016-2017年比2014-2015年我国国内生产总值增长的多.8.某游泳池长25米,小林和小明两个人分别在游泳池的A,B两边,同时朝着另一边游泳,他们游泳的时间为(秒),其中,到A边距离为y(米),图中的实线和虚线分别表示小林和小明在游泳过程中y与t的对应关系.下面有四个推断:①小明游泳的平均速度小于小林游泳的平均速度;②小明游泳的距离大于小林游泳的距离;③小明游75米时小林游了90米游泳;④小明与小林共相遇5次;其中正确的是 A.①② B.①③ C.③④ D.②④二、填空题(共8个小题,每小题2分,共16分) 9.若分式有意义,则实数的取值范围是. 10.右图是一个正五边形,则∠1的度数是. 11.如果,那么代数式的值是. 12.如图,在△ABC 中,D,E分别是AB,AC上的点,DE∥BC,若AD=1,BD=3,则的值为.13.2017年延庆区农业用水和居民家庭用水的总和为8亿立方米,其中居民家庭用水比农业用水的2倍还多0.5亿立方米.设农业用水为x亿立方米,居民家庭用水为y亿立方米.依题意,可列方程组为____________. 14.如图,AB是⊙O的弦,OC⊥AB,∠AOC=42°,那么∠CDB的度数为____________.15.如图,在平面直角坐标系中,△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC 得到△DEF的过程:.16.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有____千克种子能发芽.三、解答题(本题共68分,第17题-22题,每小题5分;第23-26题,每小题6分;第27题,第28题每小题各7分)解答应写出文字说明、证明过程或演算步骤. 17.计算:. 18.解不等式组:并写出它的所有整数解.19.如图,在△ABC中,AD平分∠BAC交BC于点D,过点D 作DE∥AB 交AC于点E.求证:AE=DE.20.已知:∠AOB及边OB上一点C.求作:∠OCD,使得∠OCD=∠AOB.要求:1.尺规作图,保留作图痕迹,不写做法;(说明:作出一个即可) 2.请你写出作图的依据.21.如图,Rt△ABC中,∠ABC=90°,点D,F 分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.22.在平面直角坐标系xOy中,直与x轴交于点A,与y轴交于点B,与反比例函数的图象在第一象限交于点 P(1,3),连接OP.(1)求反比例函数的表达式;(2)若△AOB的面积是△POB的面积的2倍,求直线的表达式. 23.如图,是⊙O的直径,D是⊙O上一点,点是的中点,过点作⊙O的切线交的延长线于点F.连接并延长交于点.(1)求证:;(2)如果AB=5,,求的长.24.从北京市环保局证实,为满足2022年冬奥会对环境质量的要求,北京延庆正在对其周边的环境污染进行综合治理,率先在部分村镇进行“煤改电”改造.在治理的过程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测.过程如下,请补充完整. 收集数据: 从2016年12月初开始,连续一年对两镇的空气质量进行监测(将30天的空气污染指数(简称:API)的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:千家店镇:120 115 100 100 95 85 80 70 50 50 50 45 永宁镇:110 90 105 80 90 85 90 60 90 45 70 60 整理、描述数据:按如下表整理、描述这两镇空气污染指数的数据:空气质量为优空气质量为良空气质量为轻微污染千家店镇 4 6 2 永宁镇(说明:空气污染指数≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻微污染.)分析数据:两镇的空气污染指数的平均数、中位数、众数如下表所示;城镇平均数中位数众数千家店 80 50 永宁 81.3 87.5请将以上两个表格补充完整;得出结论:可以推断出______镇这一年中环境状况比较好,理由为_____________. (至少从两个不同的角度说明推断的合理性) 25.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=6cm,设弦AP的长为 cm,△APO的面积为 cm2,(当点P与点A或点B重合时,y的值为0).小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整;(1)通过取点、画图、测量、计算,得到了x与y的几组值,如下表: x/cm 0.5 1 2 3 3.5 4 5 5.5 5.8 y/cm2 0.8 1.5 2.8 3.9 4.2 m 4.2 3.3 2.3 那么m= ;(保留一位小数)(2)建立平面直角坐标系,描出以表中各组对应值为坐标的点,画出该函数图象.(3)结合函数图象说明,当△APO的面积是4时,则AP的值约为.(保留一位小数)26.在平面直角坐标系xOy中,抛物线y=ax2-4ax+3a(a>0) 与x轴交于A,B两点(A在B的左侧).(1)求抛物线的对称轴及点A,B 的坐标;(2)点C(t,3)是抛物线上一点,(点C在对称轴的右侧),过点C 作x轴的垂线,垂足为点D.①当时,求此时抛物线的表达式;②当时,求t的取值范围.27.如图1,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE 于点F,连接FC.(1)求证:∠FBC=∠CDF.(2)作点C关于直线DE的对称点G,连接CG,FG.①依据题意补全图形;②用等式表示线段DF,BF,CG之间的数量关系并加以证明.28.平面直角坐标系xOy中,点,与,,如果满足,,其中,则称点A与点B互为反等点.已知:点C(3,4) (1)下列各点中,与点C互为反等点; D( 3, 4),E(3,4),F( 3,4)(2)已知点G( 5,4),连接线段CG,若在线段CG上存在两点P,Q互为反等点,求点P的横坐标的取值范围;(3)已知⊙O的半径为r,若⊙O与(2)中线段CG的两个交点互为反等点,求r的取值范围.延庆区2018年初三统一练习评分标准数学一、选择题:(共8个小题,每小题2分,共16分) BACC ADCD 二、填空题(共8个小题,每空2分,共16分) 9.x≠3 10.72° 11.1 12.1:4 13. 14.21° 15.△ABC沿y轴翻折后,再向上平移4个单位得到△DEF 16.8.8 三、解答题 17.原式=3 + -1+1-3 ……4分 =2 -3 ……5分18.解:由①得,x<4.……1分由②得,x≥1 .……3分∴ 原不等式组的解集为1≤x<4.……4分∴ 原不等式组的所有整数解为1,2,3.……5分19.证明:∵AD平分∠BAC ∴∠BAD =∠DAE,∵DE∥AB ∴∠BAD=∠ADE ……3分∴∠DAE =∠ADE ……4分∴AE=DE ……5分 20.(1)作图(略)……2分(2)到线段两端点距离相等的点在线段的垂直平分线上;垂直平分线上的点到线段两端点距离相等;等边对等角. ......5分 21.(1)在Rt△ABC中,∵CE//DC,BE//DC ∴四边形DBEC是平行四边形∵D是AC的中点,∠ABC=90° ∴BD=DC (1)分∴四边形DBEC是菱形……2分(2)∵F是AB的中点∴BC=2DF=2,∠AFD=∠ABC=90° 在Rt△AFD中, ......3分∴ (4)分......5分 22.(1)......1分(2)如图22(1):∵ ∴OA=2PE=2 ∴A(2,0)......2分将A(2,0),P(1,3)代入y=kx+b 可得∴ (3)分图22(1)∴直线AB的表达式为:y=-3x+6 同理:如图22(2)直线AB的表达式为:y=x+2 ……4分综上:直线AB的表达式为y=-3x+6或y=x+2 ……5分 23.证明:(1)连接BE.∵AB是直径,∴∠AEB=90°.∴∠CBE+∠ECB=90°∠EBA+∠EAB=90°.∵点是的中点,∴∠CBE =∠EBA.∴∠ECB =∠EAB.……1分∴AB=BC.……2分(2)∵FA作⊙O的切线,∴FA⊥AB.∴∠FAC+∠EAB=90°.∵∠EBA+∠EAB=90°,∴∠FAC=∠EBA.∵ AB=5,∴ .......4分过C点作CH⊥AF于点H,∵AB=BC ∠AEB=90°,∴AC=2AE=2 .∵ ,∴CH=2. (5)分∵CH∥AB AB=BC=5,∴ .∴FC= .…6分24.(1)1,9,2.……1分(2) 82.5,90.……3分(3)千家店镇……4分理由:千家店镇污染指数平均数为80,永宁镇污染指数平均数为81.3,所以千家店镇污染指数平均数较低,空气质量较好;千家店镇空气质量为优的天数是4天,永宁镇空气质量为优的天数是1天,所以千家店镇空气质量为优的天数多,空气质量较好.…6分 25.(1)m= 约4.3 ;……1分(画此函数图象时要体现出x约为4.2时,y有最大值,为4.5) (4)分 (3) 3.1或是5.1 ……6分26.(1)对称轴:x=2 ……1分 A(1,0)或B(3,0)……1分(2)①如图1,∵AD=CD ∴AD=3 ∴C点坐标为(4,3)……3分将C(4,3)代入∴ ∴a=1 ∴抛物线的表达式为:……4分② ……6分过程略27.(1)证明:∵四边形ABCD是正方形,∴∠DCB =90°.∴∠CDF+∠E =90°.∵BF⊥DE,∴∠FBC+∠E =90°.∴∠FBC =∠CDF . (2)分……3分②猜想:数量关系为:BF=DF+CG.证明:在BF上取点M使得BM=DF连接CM.∵四边形ABCD是正方形,∴BC=DC.∵∠FBC =∠CDF,BM=DF,∴△BMC≌△DFC.∴CM=CF,∠1=∠2.∴△MCF 是等腰直角三角形.∴∠MCF =90°,∠4=45°.……5分∵点C 与点G关于直线DE对称,∴CF=GF,∠5=∠6.∵BF⊥DE,∠4=45°,∴∠5=45°,∴∠CFG =90°,∴∠CFG=∠MCF,∴CM∥GF.∵CM=CF,CF=GF,∴CM=GF,∴四边形CGFM是平行四边形,∴CG=MF.∴BF=DF+CG.……7分 28.(1)F ……1分 (2) -3≤ ≤3 且≠0 ……4分(3)4 < r≤5 ……7分。
如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!延庆区2016—2017学年度一模考试高三数学(理科)2017年3月本试卷共4页,满分150分,考试时间120分钟第Ⅰ卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则A. B. C. D.【答案】B【解析】本题选择B选项.2.等差数列中,则A. B. C. D.【答案】A【解析】本题选择A选项.3.已知是互相垂直的两个单位向量,,,则A. B. C. D.【答案】B【解析】本题选择B选项.4.右图是一个算法的程序框图,如果输入,,那么输出的结果为A. B. C. D.【答案】C【解析】模拟程序框图运行过程,如下;当i=1时,,满足循环条件,此时i=2;当i=2时,,满足循环条件,此时i=3;当i=3时,,满足循环条件,此时i=4;当i=4时,,不满足循环条件,此时本题选择C选项.点睛:识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.5.某宣传部门网站为弘扬社会主义思想文化,开展了以核心价值观为主题的系列宣传活动,并以“社会主义核心价值观”作为关键词便于网民搜索.此后,该网站的点击量每月都比上月增长,那么个月后,该网站的点击量和原来相比,增长为原来的A.倍以上,但不超过倍B.倍以上,但不超过倍C.倍以上,但不超过倍D.倍以上,但不超过倍【答案】D【解析】设第一个月的点击量为1.则4个月后点击量.该网站的点击量和原来相比,增长为原来的5倍以上,但不超过6倍。
本题选择D选项.6.角的终边经过的一点的坐标是,则“”的充要条件是A. B. C. D.【答案】B【解析】,“|a|=1”的充要条件是.本题选择B选项.7.设,,,则间的大小关系是A. B. C. D.【答案】A【解析】∵,∴c>b>a.本题选择A选项.点睛:实数比较大小:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.当底数与指数都不相同时,选取适当的“媒介”数(通常以“0”或“1”为媒介),分别与要比较的数比较,从而可间接地比较出要比较的数的大小.8.某翻译公司为提升员工业务能力,为员工开设了英语、法语、西班牙语和德语四个语种的培训过程,要求每名员工参加且只参加其中两种。
2018北京中考数学——延庆一模一、选择题:(共8个小题,每小题2分,共16分)BACC ADCD二、填空题 (共8个小题,每空2分,共16分)9.x ≠3 10.72° 11.1 12.1:4 13.820.5x y y x +=⎧⎨=+⎩14.21° 15.△ABC 沿y 轴翻折后,再向上平移4个单位得到△DEF 16.8.8 三、解答题17.原式=3⨯33+3-1+1-3 ……4分 =23-3 ……5分18.解:由①得,x <4. ……1分 由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分 ∴ 原不等式组的所有整数解为1,2,3. ……5分19.证明:∵AD 平分∠BAC∴∠BAD =∠DAE , ∵DE ∥AB∴∠BAD =∠ADE ……3分 ∴∠DAE =∠ADE ……4分 ∴AE =DE ……5分20. (1)作图(略) ……2分(2)到线段两端点距离相等的点在线段的垂直平分线上;垂直平分线上的点到线段两端点距离相等;等边对等角. ……5分21.(1)在Rt△ABC 中,∵CE //DC ,BE //DC∴四边形DBEC 是平行四边形∵D 是AC 的中点,∠ABC =90°∴BD =DC ……1分 ∴四边形DBEC 是菱形 ……2分 (2)∵F 是AB 的中点∴BC =2DF =2,∠AFD =∠ABC =90° 在Rt△AFD 中,……3分 ∴……4分……5分22.(1)3yx=……1分(2)如图22(1):∵∴OA=2PE=2∴A(2,0)……2分将A(2,0),P(1,3)代入y=kx+b可得∴……3分图22(1)∴直线AB的表达式为:y=-3x+6同理:如图22(2)直线AB的表达式为:y=x+2 ……4分综上:直线AB的表达式为y=-3x+6或y=x+2 ……5分图22(2 23.证明:(1)连接BE.∵AB是直径,∴∠AEB=90°.∴∠CBE+∠ECB=90°∠EBA+∠EAB=90°.∵点E是AD的中点,∴∠CBE=∠EBA.∴∠ECB=∠EAB.……1分∴AB=BC.……2分(2)∵FA作⊙O的切线,∴FA⊥AB.∴∠FAC+∠EAB=90°.∵∠EBA+∠EAB=90°,∴∠FAC=∠EBA.∵1tan2FAC∠=AB=5,∴AE=BE=.……4分过C点作CH⊥AF于点H,∵AB=BC∠AEB=90°,∴AC=2AE=25.∵1 tan2FAC∠=,∴CH=2.……5分∵CH∥AB AB=BC=5,∴255FCFC=+.∴FC=310.…6分AH2018北京中考数学——延庆一模-16123454321O 24.(1)1,9,2. ……1分 (2) 82.5,90. ……3分 (3)千家店镇 ……4分理由:千家店镇污染指数平均数为80,永宁镇污染指数平均数为81.3,所以千家店镇污染指数平均数较低,空气质量较好;千家店镇空气质量为优的天数是4天,永宁镇空气质量为优的天数是1天,所以千家店镇空气质量为优的天数多,空气质量较好.…6分25.(1)m = 约4.3 ; ……1分 (2)(画此函数图象时要体现出x 约为4.2时,有最大值,为4.5) (3) 3.1或是5.1 ……6分 26.(1)对称轴:x =2 ……1分 A (1,0)或B (3,0) ……1分 (2)①如图1,∵AD =CD ∴AD =3∴C 点坐标为(4,3) ……3分 将C (4,3)代入243y ax ax a =-+ ∴316163a a a =-+∴a =1∴抛物线的表达式为:243y x x =-+ ……4分 ②34t << ……6分 过程略27.(1)证明:∵四边形ABCD 是正方形,∴∠DCB=90°. ∴∠CDF +∠E =90°. ∵BF ⊥DE ,∴∠FBC +∠E =90°.∴∠FBC =∠CDF .……2分图1 FDEBA(2)①……3分②猜想:数量关系为:BF =DF +CG . 证明:在BF 上取点M 使得BM =DF 连接CM .∵四边形ABCD 是正方形, ∴BC =DC .∵∠FBC =∠CDF ,BM =DF , ∴△BMC ≌△DFC . ∴CM =CF ,∠1=∠2.∴△MCF 是等腰直角三角形.∴∠MCF =90°,∠4=45°. ……5分 ∵点C 与点G 关于直线DE 对称, ∴CF =GF ,∠5=∠6.∵BF ⊥DE ,∠4=45°, ∴∠5=45°, ∴∠CFG =90°, ∴∠CFG =∠MCF , ∴CM ∥GF .∵CM =CF ,CF =GF , ∴CM =GF ,∴四边形CGFM 是平行四边形, ∴CG =MF .∴BF =DF +CG . ……7分 28.(1)F ……1分(2) -3≤p x ≤3 且p x ≠0 ……4分(3)4 < r≤5 ……7分GF DE C BA。
延庆区2017-2018年初三统一练习
数 学 2018.4
一、选择题:(共8个小题,每小题2分,共16分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.利用尺规作图,作△ABC 边上的高AD ,正确的是 2.右图是某几何体的三视图,该几何体是
A .三棱柱
B .三棱锥
C .圆柱
D .圆锥
3.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是 A .1a >- B .0a b ⋅>
C .0b a -<<-
D .a b >
4.计算:
97...a a a
b b b b +++=⋅⋅⋅⋅⋅
个
个
A .97a b
B .97a b
C .79a
b
D .97a b
A
B
C
D
A
B
C D
A
B
C D
A
B
C
D
A B . C . D .
5.关于x 的一元二次方程2(1)10mx m x -++=有两个不等的整数根,那么m 的值是 A .1- B .1 C .0 D .1± 6.已知正六边形ABCDEF ,下列图形中不是..轴对称图形的是
7.下面的统计图反映了我国2013年到2017年国内生产总值情况.(以上数据摘自 国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》) 根据统计图提供的信息,下列推断不合..理.
的是 A .与2016年相比,2017年我国国内生产总值有所增长; B .2013-2016年,我国国内生产总值的增长率逐年降低; C .2013-2017年,我国国内生产总值的平均增长率约为6.7% ; D .2016-2017年比2014-2015年我国国内生产总值增长的多.
F
A B
C
D
E
F E
D
C
A
F A
C
D
E
F
A
B
C
D
E
A .
B .
C .
D .
200000
40000060000010000000
520%
亿元2013-2017年国内生产总值及其增长速度
8.某游泳池长25米,小林和小明两个人分别在游泳池的A ,B 两边,同时朝着另一边 游泳,他们游泳的时间为t (秒),其中0180t ≤≤,到A 边距离为y (米),图中的实 线和虚线分别表示小林和小明在游泳过程中y 与t 的对应关系.下面有四个推断: ①小明游泳的平均速度小于小林游泳的平均速度; ②小明游泳的距离大于小林游泳的距离; ③小明游75米时小林游了90米游泳; ④小明与小林共相遇5次;
其中正确的是 A .①② B .①③ C.③④ D .②④
二、填空题(共8个小题,每小题2分,共16分) 9.若分式
2
3
x x +-有意义,则实数x 的取值范围是 . 10.右图是一个正五边形,则∠1的度数是 .
11.如果2
10a a --=,那么代数式2
21()1
a a a a a --⋅-的值是 . 12.如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,DE ∥
BC ,
若AD =1,BD =3,则DE
BC
的值为 .
13.2017年延庆区农业用水和居民家庭用水的总和为8亿立方米,其中居民家庭用水比
农业用水的2倍还多0.5亿立方米.设农业用水为x 亿立方米,居民家庭用水为y 亿 立方米.依题意,可列方程组为____________.
1
C
D
E
14.如图,AB 是⊙O 的弦,OC ⊥AB ,∠AOC =42°,
那么∠CDB 的度数为____________.
15.如图,在平面直角坐标系xOy 中,△DEF 可以看
作是△ABC
旋转)得到的,写出一种由△ABC 得到△DEF 的过 程:
.
16.某农科所在相同条件下做玉米种子发芽实验,结果如下:
某位顾客购进这种玉米种子10千克,那么大约有____千克种子能发芽. 三、解答题(本题共68分,第17题-22题,每小题5分;第23-26题,每小题6分;
第27题,第28题每小题各7分)解答应写出文字说明、证明过程或演算步骤. 17.计算:
1
13tan 301(2)()3
π-︒+-+--.
%
18.解不等式组:523(2)53.2
x x x x -<+⎧⎪
⎨+≤⎪⎩, 并写出它的所有整数解.
19.如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,
过点D 作DE ∥AB 交AC 于点E . 求证:AE=DE .
20.已知:∠AOB 及边OB 上一点C .
求作:∠OCD ,使得∠OCD=∠AOB .
要求:1.尺规作图,保留作图痕迹,不写做法;
(说明:作出一个..
即可) 2.请你写出作图的依据.
21.如图,Rt △ABC 中,∠ABC =90°,点D ,F
分别是AC ,AB 的中点,CE ∥DB ,BE ∥DC . (1)求证:四边形DBEC 是菱形;
(2)若AD =3, DF =1,求四边形DBEC 面积.
22.在平面直角坐标系xOy 中,直(y kx b k =+≠与x 轴交于点A ,与y 轴交于点B ,与反比例函数(0)m
y m x
=≠的图象在第一象限交于点
P (1,3),连接OP .
(1)求反比例函数(0)m
y m x
=≠的表达式;
(2)若△AOB 的面积是△POB 的面积的2倍,
求直线y kx b =+的表达式.
E
D
C
B
A
F
E
D
C
B
A
23.如图,AB 是⊙O 的直径,D 是⊙O 上一点,点E 是AD 的
中点,过点A 作⊙O 的切线交BD 的延长线于点F .连接AE 并延长交BF 于点C . (1)求证:AB BC =; (2)如果AB =5,1
tan 2
FAC ∠=,求FC 的长.
24.从北京市环保局证实,为满足2022年冬奥会对环境质量的要求,北京延庆正在对其
周边的环境污染进行综合治理,率先在部分村镇进行“煤改电”改造.在治理的过 程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测. 过程如下,请补充完整. 收集数据:
从2016年12月初开始,连续一年对两镇的空气质量进行监测(将30天的空气污染 指数(简称:API )的平均值作为每个月的空气污染指数,12个月的空气污染指数 如下:
千家店镇:120 115 100 100 95 85 80 70 50 50 50 45 永宁 镇:110 90 105 80 90 85 90 60 90 45 70 60 整理、描述数据:
按如下表整理、描述这两镇空气污染指数的数据:
质量为良;100<空气污染指数≤150时,空气质量为轻微污染.) 分析数据:
两镇的空气污染指数的平均数、中位数、众数如下表所示;
请将以上两个表格补充完整;
得出结论:可以推断出______镇这一年中环境状况比较好,理由为_____________.
(至少从两个不同的角度说明推断的合理性)
A
25.如图,点P 是以O 为圆心,AB 为直径的半圆
上的动点,AB =6cm ,设弦AP 的长为x cm , △APO 的面积为y cm 2,(当点P 与点A 或 点B 重合时,y 的值为0).
小明根据学习函数的经验,对函数y 随
自变量x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整;
(1)通过取点、画图、测量、计算,得到了x 与y 的几组值,如下表:
那么m = ;(保留一位小数) (2)建立平面直角坐标系,描出
以表中各组对应值为坐标的点, 画出该函数图象.
(3)结合函数图象说明,当△APO 的面积是4时,则AP 的值约为
.
(保留一位小数)
26.在平面直角坐标系xOy 中,抛物线y =ax 2-4ax +3a (a >
与x 轴交于A ,
B 两点(A 在B 的左侧). (1)求抛物线的对称轴及点A ,B 的坐标; (2)点
C (t ,3)是抛物线2
43(0)y ax ax a a =-+>
上一点,(点C 在对称轴的右侧),过点C 作x 轴的垂线,垂足为点D .
①当CD AD =时,求此时抛物线的表达式; ②当CD AD >时,求t 的取值范围.
27.如图1,正方形ABCD 中,点E 是BC 延长线上一点,连接DE ,过点B 作BF ⊥DE
于点F ,连接FC .
(1)求证:∠FBC =∠CDF .
(2)作点C 关于直线DE 的对称点G ,连接CG ,FG .
①依据题意补全图形;
②用等式表示线段DF ,BF ,CG 之间的数量关系并加以证明.
28.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,
其中12x x ≠,则称点A 与点B 互为反等点. 已知:点C (3,4)
(1)下列各点中, 与点C 互为
反等点;
D (-3,-4),
E (3,4),
F (-3,4) (2)已知点
G (-5,4),连接线段CG ,若
在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围; (3)已知⊙O 的半径为r ,若⊙O 与(2)中
线段CG 的两个交点互为反等点, 求r 的取值范围.
图1
备用图
F
D
E
C B
A F
D
E
C B
A。