高中数学第二章平面向量2.1从位移速度力到向量谈如何学习平面向量素材北师大版必修4
- 格式:doc
- 大小:28.00 KB
- 文档页数:1
第二章平面向量§1从位移、速度、力到向量1.1 位移、速度和力1.2 向量的概念(教师用书独具)●三维目标1.知识与技能(1)理解、掌握向量的概念.(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念.2.过程与方法在理解向量等有关概念的基础上,充分联系实际,培养学生解决生活实际问题的能力.3.情感、态度与价值观(1)通过对向量的学习,使学生对现实生活中的向量和标量有一个清楚的认识,培养学生对现实生活中的真善美的识别能力.(2)对学生进行辨证思想的教育.●重点难点重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.难点:向量的概念,平行向量、相等向量和共线向量的区别和联系.(教师用书独具)●教学建议1.本节的教学应当特别注意从向量的物理背景、几何背景入手,从学生熟悉的矢量概念引出向量概念,还可以要求学生自己举出一些“既有大小,又有方向的量”,从而使学生更好地把握向量的特点.2.本节介绍了两种向量的表示方法:几何表示和字母表示.几何表示为用向量处理几何问题打下了基础,而字母表示则利于向量运算,这两种方法需要学生熟练掌握.教科书用黑体字母表示向量,如a ,在手写时可用a →表示.用有向线段表示向量时,要提醒学生注意AB →的方向是由点A 指向点B ,点A 是向量的起点.3.相等向量是长度相等且方向相同的向量,相等向量是一类向量的集合.任何一组平行向量都可以移动到同一直线上,因此平行向量与共线向量是等价的,这一点值得特别注意.还要注意平行向量与平行线段的区别.共线向量和平行向量是研究向量的基础,由此可以将一组平行向量平移(不改变大小和方向)到一条直线上,这给问题的研究带来方便.教学中,要使学生体会两个共线向量并不一定要在一条直线上,只要两个向量平行就是共线向量,当然,在同一直线上的向量也是平行向量.要避免向量的平行、共线与平面几何中直线、线段的平行和共线相混淆,教学中可以通过对具体例子的辨析来正确掌握概念.教学中,可以借助信息技术,通过向量的平移来说明向量的相等与起点无关.讲解中要求学生辨析“向量就是有向线段,有向线段就是向量”的说法是否正确,目的是引导学生体会向量只与方向及模的大小有关而与起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.●教学流程创设问题情境,引出问题:位移是既有大小,又有方向的量,你还能举出一些这样的量吗?引入向量概念.⇒通过引导学生回答相关问题,引出有向线段、向量的构成要素,向量的长度(模)、零向量、单位向量等相关概念,并加深对向量的理解,熟悉其几何表示方法.⇒引导学生探究相等向量、共线向量的含义与性质,深刻领会相等向量是一类向量的集合,共线(平行)向量所在线段不一定平行等性质,避免与平面几何中直线平行相混淆.⇒通过例1及其变式训练,强化对向量相关概念的理解,深刻把握好各概念的内涵和外延.⇒通过例2及其变式训练,使学生掌握向量的表示方法及其应用策略.⇒引导学生探究相等向量、共线向量等概念,并完成例3及其互动探究,掌握解此类问题的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.理解向量的有关概念及向量的几何表示.(重点)2.掌握共线向量、相等向量的概念.(难点)3.正确区分向量平行与直线平行.(易混点)向量及其表示【问题导思】1.在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别? 【提示】 面积、质量只有大小,没有方向;而速度和位移既有大小又有方向. 2.对既有大小又有方向的量,如何形象、直观地表示出来? 【提示】 利用有向线段来表示. 1.定义既有大小又有方向的量叫作向量. 2.有向线段具有方向和长度的线段叫作有向线段.其方向是由起点指向终点,以A 为起点、B 为终点的有向线段记作AB →,线段AB 的长度也叫作有向线段AB →的长度.记作|AB →|.3.向量的长度|AB →|(或|a |)表示向量AB →(或a )的大小,即长度(也称模). 4.向量的表示法(1)向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.(2)向量也可以用黑体小写字母如a ,b ,c …来表示,书写用a →,b →,c →…来表示.向量的有关概念名称 定义 表示方法零向量 长度为零的向量 0单位向量与向量a 同方向,且长度为1a 0(向量a方向上)的向量,叫作a方向上的单位向量相等向量长度相等且方向相同的向量若a等于b,记作a=b向量平行或共线表示两个向量的有向线段所在的直线平行或重合a与b平行或共线,记作a∥b向量的有关概念下列说法正确的是( )A .若向量AB →与CD →是共线向量,则A 、B 、C 、D 必在同一直线上 B .若向量a 与b 平行,则a 与b 的方向相同或相反 C .向量AB →的长度与向量BA →的长度相等 D .单位向量都相等【思路探究】 利用共线(平行)向量、单位向量、相等向量、向量的长度等概念逐项判断正确与否.【自主解答】 对于A ,考查的是有向线段共线与向量共线的区别.事实上,有向线段共线要求线段必须在同一直线上.而向量共线时,表示向量的有向线段可以是平行的,不一定在同一直线上.对于B ,由于零向量与任一向量平行,因此若a ,b 中有一个为零向量时,其方向是不确定的.对于C ,向量AB →与BA →方向相反,但长度相等.对于D ,需要强调的是:单位向量不仅仅指的是长度,还有方向,而向量相等不仅仅需要长度相等而且还要求方向相同.【答案】 C1.对共线向量的理解是本题的关键点.向量共线即表示共线向量的有向线段在同一条直线上或平行.2.熟知向量的基本概念,弄清基本概念之间的区别与联系是解决向量概念辨析题的基础.下列说法正确的是( )A.AB →∥CD →就是AB →所在的直线平行于CD →所在的直线 B .长度相等的向量叫相等向量 C .零向量的长度等于0D .共线向量是在同一条直线上的向量【解析】 AB →∥CD →包含AB →所在的直线与CD →所在的直线平行和重合两种情况,故选项A 错;相等向量不仅要求长度相等,还要求方向相同,故选项B 错;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故选项D 错.【答案】 C向量的表示一辆汽车从A 点出发向西行驶了100km 到达B 点,然后又改变方向向北偏西40°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.(1)作出向量AB →、BC →、CD →; (2)求|AD →|.【思路探究】 先作出表示东南西北的方位图及100 km 长度的线段,然后解答问题.【自主解答】 (1)向量AB →、BC →、CD →如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线, 又∵|AB →|=|CD →|.∴在四边形ABCD 中,AB 綊CD .∴四边形ABCD 为平行四边形. ∴AD →=BC →,∴|AD →|=|BC →|=200(km).1.在画图时,向量是用有向线段来表示的,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.2.用有向线段来表示向量,显示了图形的直观性,为以后学习向量提供了几何方法,这也体现了数形结合的数学思想.应注意的是有向线段是向量的表示方法,并不是说向量就是有向线段.3.要注意能够运用向量观点将实际问题抽象成数学模型.“数学建模”能力是今后能力培养的主要方向.图2-1-1在如图的方格纸中,画出下列向量.(每个小正方形的边长为1) (1)|OA →|=4,点A 在点O 正北方向;(2)|OB →|=22,点B 在点O 东偏南45°方向;(3)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么? 【解】 (1)(2)(3)的图像如图所示.(3)c 的终点轨迹是以C 为圆心半径为2的圆.相等向量与共线向量图2-1-2如图2-1-2所示,△ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量; (2)写出与EF →的模相等的向量;(3)写出与EF →相等的向量.【思路探究】 解答本题可依据相等向量及共线向量的定义求解. 【自主解答】 ∵E 、F 分别是AC 、AB 的中点, ∴EF ∥BC ,且EF =12BC .又∵D 是BC 的中点,∴EF =BD =DC .(1)与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →. (2)与EF →的模相等的向量有:FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量有:DB →,CD →.1.本题以三角形中位线与底边的关系为载体,融相等向量及共线向量的知识于其中,求解时可充分借助于几何图形的相关性质,使向量与几何有机地结合起来,用共线向量反映几何图形中的位置关系,用向量模的关系,反映几何图形中的长度关系.2.判断一组向量是否相等,关键看向量是否方向相同和长度相等,与起点和终点位置无关.对于共线向量,则只要同向或反向即可.在本例条件不变的情况下,写出与AC →共线的向量和与CE →相等的向量. 【解】与AC →共线的向量有:CA →,FD →,DF →,CE →,EC →,AE →,EA →; 与CE →相等的向量有:EA →,DF →.忽视零向量方向致误给出下列六个命题:①两个向量相等,则它们的起点相同、终点相同; ②若|a |=|b |,则a =b ;③若AB →=DC →,则ABCD 是平行四边形; ④在平行四边形ABCD 中,一定有AB →=DC →; ⑤若m =n ,n =k ,则m =k ; ⑥若a ∥b ,b ∥c ,则a ∥c . 其中不正确的命题的个数为( )A .2B .3C .4D .5 【错解】 选B.【错因分析】 ⑥中若b =0则结论不成立,因为0的方向不确定.【防范措施】 对于向量的概念要认真理解,尤其是零向量一定要记住其特殊性.【正解】 两个向量起点相同、终点相同,则两个向量相等;但两个向量相等,却不一定起点相同,终点相同,故①不正确.根据向量相等的定义,要保证两向量相等,不仅模相等,而且方向相同,而②中方向不一定相同,故不正确.③也不正确,因为A ,B ,C ,D 可能落在同一条直线上.零向量方向不确定,它与任一向量都平行,故⑥中若b =0,则a 与c 就不一定平行了.因此⑥也不正确.【答案】 C1.学习了向量的概念及其表示,明确了有向线段与向量之间的关系. 2.掌握了特殊向量及向量之间的关系,以及它们的性质特点. 3.能在具体图形中找出相等向量与共线向量.1.下列命题中,正确的是( ) A .|a |=|b |⇒a =b B .|a |>|b |⇒a >b C .a =b ⇒a ∥bD .|a |=0⇒a =0【解析】 如果两个向量相等,则这两个向量必定平行. 【答案】 C2.如图2-1-3,AB →=DC →,AC 与BD 相交于点O ,则相等的向量是( )A.AD →与CB →B.OA →与OC →C.AC →与DB →D.DO →与OB →图2-1-3【解析】 |DO →|=|OB →|,且DO →与OB →方向相同,则DO →=OB →,故选D. 【答案】 D 3.给出下列命题:①若|a |>|b |,则a >b ;②若a =b ,则a ∥b ;③若|a |=0,则a =0;④0=0;⑤向量AB →大于向量CD →;⑥方向不同的两个向量一定不平行.其中,正确命题的序号是________.(把你认为正确的命题序号都填上)【解析】 ①不正确.|a |>|b |知模的大小,而不能确定方向,向量不能比较大小;②正确.共线向量是指方向相同或相反的向量,相等向量一定共线;③正确;④不正确.0是一个向量,而0是一个数量,应|0|=0;⑤不正确.因为向量不能比较大小,这是向量与数量的显著区别,向量的模可以比较大小;⑥不正确.因为平行向量包括方向相同和方向相反两种情况.【答案】 ②③图2-1-44.如图,在等腰梯形ABCD 中,对角线AC 与BD 相交于点O ,EF 是过点O 且平行于AB 的线段.(1)写出图中的各组共线向量; (2)写出图中的各对同向向量; (3)写出图中的各对反向向量.【解】 (1)向量DC →,BA →,EO →,OF →为一组共线向量; 向量AO →与OC →为一组共线向量; 向量OD →与OB →为一组共线向量; 向量AE →与ED →为一组共线向量; 向量BF →与FC →为一组共线向量.(2)向量DC →与EO →,OF →为同向向量,向量AO →与OC →,AE →与ED →,BF →与FC →分别为同向向量. (3)DC →与BA →,BA →与EO →,BA →与OF →,OD →与OB →为反向向量.一、选择题1.如图2-1-5,在正方形ABCD 中,可以用同一条有向线段表示的向量是( )图2-1-5A.DA →与BC →B.AB →与DC →C.DC →与DA →D.BC →与AB →【解析】 ∵AB →=DC →,∴AB →与DC →可用同一条有向线段表示. 【答案】 B图2-1-62.如图2-1-6所示,梯形ABCD 为等腰梯形,则两腰上的向量AB →与DC →的关系是( ) A.AB →=DC → B .|AB →|=|DC →| C.AB →>DC → D.AB →<DC →【解析】 |AB →|与|DC →|表示等腰梯形两腰的长度,故相等. 【答案】 B图2-1-73.如图所示,△ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点,则与E F →的模相等的向量共有( )A .6个B .5个C .4个D .3个【解析】 ∵E 、F 、D 分别是边AC 、AB 和BC 的中点, ∴EF =12BC ,BD =DC =12BC .又∵AB ,BC ,AC 均不相等,从而与EF →的模相等的向量是:FE →,BD →,DB →,DC →,CD →. 【答案】 B图2-1-84.如图,点O 是正六边形ABCDEF 的中心,则以图中A ,B ,C ,D ,E ,F ,O 中任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA →外,与向量OA →共线的向量共有( )A .6个B .7个C .8个D .9个【解析】 由共线向量的定义及正六边形的性质,与向量OA →共线的向量有AO →,OD →,DO →,AD →,DA →,EF →,FE →,BC →,CB →,共有9个.故选D.【答案】 D5.下列说法中,不正确的是( ) A .0与任意一个向量都平行B .任何一个非零向量都可以平行移动C .长度不相等而方向相反的两个向量一定是共线向量D .两个有共同起点且共线的向量其终点必相同【解析】 易知A 、B 、C 均正确,D 不正确,它们的终点可能相同,故选D. 【答案】 D 二、填空题6.已知边长为3的等边△ABC ,则BC 边上的中线向量AD →的模等于________. 【解析】 由于AD =32AB =332.∴|AD →|=3 32.【答案】3 32图2-1-97.如图,设O 是正方形ABCD 的中心,则:①AO →=OC →;②AO →∥AC →;③AB →与CD →共线;④AO →=BO →.其中,所有正确的序号为________.【解析】 根据正方形的几何性质以及向量的相等和共线的条件知①②③正确,AO →与BO →的方向不相同,故④不正确.【答案】 ①②③图2-1-108.如图2-1-10所示,四边形ABCD 是边长为3的正方形,把各边三等分后,连接相应分点,共有16个交点,从中选取2个交点组成向量,则与AC →平行且长度为2 2的向量个数是________.【解析】 图中共有4个边长为2的正方形,每个正方形中有符合条件的向量2个(它们分别是连接左下和右上顶点的向量,方向相反),故满足条件的向量共有8个.【答案】 8 三、解答题9.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC →相等的向量; (2)与OB →长度相等的向量; (3)与DA →共线的向量.【解】 如图可知,(1)易知BC =AD ,所以与BC →相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点可知OB =OD =OA =OC ,所以与OB →长度相等的向量有BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA →共线的向量有AD →,BC →,CB →.图2-1-1110.如图2-1-11所示,四边形ABCD 中AB →=DC →,N 、M 分别是AD 、BC 上的点,且CN →=MA →.求证:DN →=MB →.【证明】 ∵AB →=DC →,∴|AB →|=|DC →|且AB ∥CD , ∴四边形ABCD 是平行四边形, ∴|DA →|=|CB →|,且DA ∥CB . 又∵DA →与CB →的方向相同,∴CB →=DA →.同理可证,四边形CNAM 是平行四边形,∴CM →=NA →. ∵|CB →|=|DA →|,|CM →|=|NA →|,∴|MB →|=|DN →|, 又∵DN →与MB →的方向相同,∴DN →=MB →.图2-1-1211.如图2-1-12,A 、B 、C 三点的坐标依次是(-1,0)、(0,1)、(x ,y ),其中x 、y ∈R .当x 、y 满足什么条件时,向量OC →与AB →共线(其中O 为坐标原点)?【解】 由已知,A 、B 的坐标是(-1,0)、(0,1),所以∠BAO =45°. 当点C (x ,y )的坐标满足x =y =0时,OC →=0, 这时OC →与AB →共线(零向量与任意向量都共线); 当xy ≠0,且x =y ,即点C 在一、三象限角平分线上时, 有AB ∥OC ,这时OC →与AB →共线.综上,当x =y 时,OC →与AB →共线.(教师用书独具)如图是中国象棋的半个棋盘,“马走日”是中国象棋的走法,“马”可以从A 跳到A 1或A 2,用向量AA 1→、AA 2→表示“马”走了一步.试在图中画出“马”在B 、C 分别走了一步的所有情况.【解】如图所示,在B处有3种走法;在C处有8种走法.如图,在4×5的方格图中,有一个向量AB →,分别以图中的格点为起点和终点作向量.(1)与向量AB →相等的向量有多少个? (2)与向量AB →长度相等的向量有多少个?【解】 (1)结合向量相等的定义及方格的特征可知与向量AB →相等的向量有3个. (2)与向量AB →长度相等的向量有39个,因为对角线长度与AB →长度相等的每个矩形中有4个与向量AB →长度相等的向量.而这样的矩形共有10个,所以共有4×10-1=39个.§2从位移的合成到向量的加法2.1 向量的加法 2.2 向量的减法(教师用书独具)●三维目标1.知识与技能(1)能熟练运用三角形法则和平行四边形法则,作出几个向量的和、差向量.(2)能结合图形进行向量计算.(3)能准确表达向量加法的交换律和结合律,并能熟练地进行向量计算.2.过程与方法由概念的形成过程和解题的思维过程,体验数形结合思想的指导作用.3.情感、态度与价值观通过阐述向量的减法运算可以转化为向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.●重点难点重点:向量的加法、减法运算.难点:向量加法、减法的几何意义.(教师用书独具)●教学建议几何中的向量加法是用几何作图来定义的,教科书给出了两个向量求和的三角形法则和平行四边形法则,多个向量求和的多边形法则.教科书采用三角形法则来定义向量的加法,这种定义对两向量共线时同样适用,而当两个向量共线时,平行四边形法则就不适用了.当两向量不共线时,向量加法的三角形法则和平行四边形法则是一致的.当求两个或多个不共线向量的和时,和向量是从第一个向量的始点指向最后一个向量的终点.类比数的运算中减法是加法的逆运算,将向量的减法定义为向量加法的逆运算.教学时,要结合三角形法则认真体会其含义.两个向量的减法是把两个向量的始点放在一起,它们的差是以减向量的终点为起点,被减向量的终点为终点的向量.●教学流程创设问题情境:对比实数的加法运算,如何求出两向量的和呢?⇒引导学生结合物理中力的合成,类比发现向量加法的定义及其运算性质.⇒引导学生探究向量减法的定义及向量减法的几何意义.⇒通过例1及变式训练,使学生熟练掌握向量的加、减运算.⇒通过例2及变式训练,使学生熟练掌握利用向量加、减法的几何意义作用.⇒通过例3及变式训练,掌握向量加、减法的综合应用.⇒归纳整理,进行课堂小结,整体认识所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.掌握向量的加法、减法运算.(重点)2.理解向量加法与减法的几何意义及加、减法的关系.(难点)向量求和法则及运算律【问题导思】一架飞机要从A地经B地运物资到C地,问从A地到B地,与从B地到C地这两次位移之和是什么?【提示】 如图所示,这两次位移之和为AB →+BC →,而实际位移为AC →. 由此可以看出AB →+BC →=AC →. 类别图示几何意义向量求和 的法则平行 四边 形法则已知向量a ,b ,作AB →=a ,AD →=b ,再作平行AD →的BC →=b ,连接DC ,则四边形ABCD 为平行四边形,向量AC →叫作向量a 与b 的和,表示为AC →=a +b向量加 法的运 算律交换律 a +b =b +a结合律(a +b )+c =a +(b +c )相反向量【问题导思】向量AB →与向量BA →是一对特殊的向量,它们的长度和方向之间有什么关系? 【提示】 向量AB →与向量BA →长度相等,但方向相反,即AB →=-BA →. 定义把与a 长度相等、方向相反的向量,叫作a 的相反向量,记作-a性质(1)零向量的相反向量仍是零向量,于是-(-a )=a ;(2)互为相反向量的两个向量的和为0,即a +(-a )=(-a )+a =0;(3)若a +b =0,则a =-b ,b =-a向量的减法【问题导思】1.两个相反数的和为零,那么两个相反向量的和也为零向量吗? 【提示】 是零向量.2.根据向量的加法,如何求作a -b?【提示】 先作出-b ,再按三角形或平行四边形法则作出a +(-b ).定义向量a 加上b 的相反向量叫作a 与b 的差,即a -b =a +(-b ),求两个向量差的运算,叫作向量的减法几何 意义如图,设OA →=a ,OB →=b ,则BA →=a -b ,即a -b 表示为从向量b 的终点指向向量a 的终点的向量向量的加法、减法运算(1)在平行四边形ABCD 中,AB →+CB →-DC →=( )A.BC →B.AC →C.DA →D.BD →(2)化简AB →+DA →+BD →-BC →-CA →=________. 【思路探究】 (1)利用平行四边形法则和性质;(2)可用三角形法则,即所谓“首尾相连”;也可以引入空间一点O ,转化成以O 为起点的向量进行化简.【自主解答】 (1)在▱ABCD 中,AB →=DC →,CB →=DA →, ∴AB →+CB →-DC →=(AB →-DC →)+CB →=DA →. (2)法一 原式=AB →+BD →+DA →-(BC →+CA →) =0-BA →=AB →.法二 在平面内任取一点O ,连接OA ,OB ,OC ,OD ,则 原式=(OB →-OA →)+(OA →-OD →)+(OD →-OB →)-(OC →-OB →)-(OA →-OC →) =OB →-OA →+OA →-OD →+OD →-OB →-OC →+OB →-OA →+OC →=OB →-OA →=AB →. 【答案】 (1)C (2)AB →1.求解这类问题,一定要灵活应用向量加法、减法的三角形与平行四边形法则,并注意向量的起点和终点,当向量首尾相连且为和时,用加法;运用向量减法的三角形法则时,一定有两向量起点相同.2.运用向量减法法则时,常考虑方法:(1)通过相反向量,把向量减法转化为加法;(2)引入点O ,将向量起点统一.化简:(1)(BA →-BC →)-(ED →-EC →); (2)(AC →+BO →+OA →)-(DC →-DO →-OB →). 【解】 (1)(BA →-BC →)-(ED →-EC →) =CA →-CD →=DA →.(2)(AC →+BO →+OA →)-(DC →-DO →-OB →) =AC →+BA →-DC →+(DO →+OB →) =AC →+BA →-DC →+DB → =BC →-DC →+DB → =BC →+CD →+DB → =BC →+CB →=0.利用向量加法、减法的几何意义作图图2-2-1如图2-2-1所示,O 为△ABC 内一点,OA →=a ,OB →=b ,OC →=c .求作b +c -a .【思路探究】 解答本题可用平行四边形法则作b +c ,再作b +c -a .【自主解答】 法一 以OB →、OC →为邻边作▱OBDC ,连接OD →、AD →,则OD →=OB →+OC →=b +c ,AD →=OD →-OA →=b +c -a .法二 作CD →=OB →=b ,连接AD ,则AC →=OC →-OA →=c -a ,AD →=AC →+CD →=c -a +b =b +c -a .1.运用三角形法则,作两个向量和的关键是作平移,首尾连.作两个向量差的关键是作平移,共起点,两尾连,指被减.2.当两向量不共线时,也可采用平行四边形法则,多个向量相加减时要注意灵活运用运算律.如图,已知向量a,b,c不共线,求作向量a+b-c.图2-2-2图(1)【解】 法一 如图(1)所示,在平面内任取一点O , 作OA →=a ,AB →=b , 则OB →=a +b ,再作OC →=c , 则CB →=a +b -c .图(2)法二 如图(2)所示,在平面内任取一点O ,作OA →=a ,AB →=b , 则OB →=a +b ,再作CB →=c ,则BC →=-c 连接OC ,则OC →=a +b -c .向量加减法的综合应用图2-2-3如图2-2-3所示,O 是平行四边形ABCD 的对角线AC 、BD 的交点,设AB →=a ,DA →=b ,OC →=c ,求证:b +c -a =OA →.【思路探究】 要证明b +c -a =OA →,可转化为证明b +c =OA →+a ,从而利用向量加法证明;也可以从c -a 入手,利用向量减法证明.【自主解答】 在▱ABCD 中,DA →=CB →=b ,OC →=c 法一 ∵b +c =DA →+OC →=OC →+CB →=OB →, 又∵OA →+a =OA →+AB →=OB →.∴b +c =OA →+a ,即b +c -a =OA →. 法二 ∵c -a =OC →-AB →=OC →-DC →=OD →, OD →=OA →+AD →=OA →-b ,∴c -a =OA →-b ,即b +c -a =OA →.1.法一是利用三角形加法法则证明两个向量的和相等;法二是利用向量减法法则证明两个向量的差相等,证明时可灵活选择方法.2.灵活选择方法,优化思维过程,通过恒等变形来证明等价命题是常用的证明恒等式的方法.P 、Q 是△ABC 的边BC 上的两点,且BP →=QC →,求证:AB →+AC →=AP →+AQ →. 【证明】 ∵AP →=AB →+BP →, AQ →=AC →+CQ →,∴AP →+AQ →=AB →+BP →+AC →+CQ →, 又∵BP →=QC →,∴BP →+CQ →=0, ∴AP →+AQ →=AB →+AC →.错用向量减法法则致误如图所示,已知一点O 到平行四边形ABCD 的三个顶点A 、B 、C 的向量分别为r 1、r 2、r 3,求OD →.图2-2-4【错解】 因为OD →=OC →+CD →, CD →=BA →=OB →-OA →,所以OD →=OC →+OB →-OA →=r 3+r 2-r 1.【错因分析】 错误使用了向量的减法法则导致解错.【防范措施】 减法口决:始点相同,连接终点,箭头指向被减向量.应把首尾相接的放在一起计算,始点相同的放在一起计算.必要时,可画出图像,结合图像观察将使问题更为直观.【正解】 OD →=OC →+CD →=OC →+BA →=OC →+OA →-OB →=r 3+r 1-r 2.1.学习了向量加法的三角形法则和平行四边形法则.2.学习了相反向量的概念,知道向量的减法是向量加法的逆运算. 3.学习了向量减法运算并且掌握了它的几何意义.4.掌握了利用向量的加、减法进行化简、作图、表示其他向量,体会了数形结合的应用.1.正方形ABCD 的边长为1,则|AB →+AD →|为( ) A .1 B. 2 C .3D .2 2【解析】 ∵AB →+AD →=AC →,∴|AB →+AD →|=|AC →|=2,故选B. 【答案】 B2.下列说法正确的是( ) A .0+0=0B .对任意向量a ,b ,都有a +b =b +aC .对任意向量a ,b ,有|a +b |>0D .等式|a +b |=|a |+|b |不可能成立【解析】 ∵0+0=0,∴A 不正确;|a +b |≥0,∴C 不正确;当a ,b 同向共线时,|a +b |=|a |+|b |成立,∴D 不正确;B 正确,故选B. 【答案】 B3.化简AB →-DC →-AD →=________. 【解析】 原式=AB →-(AD →+DC →) =AB →-AC →=CB →. 【答案】 CB →图2-2-54.如图2-2-5,已知一点O 到平行四边形ABCD 的3个顶点A 、B 、C 的向量分别为a 、b 、c ,试用a ,b ,c 表示向量OD →.【解】 OD →=OA →+AD →。
浅谈如何学习平面向量
作为现代数学重要标志之一的向量引入中学数学以后,给中学数学带来了无限生机.由于向量融数、形于一体,“具有代数形式和几何形式的双重身份,使它成为中学数学知识的一个交汇点,成为联系多项内容的媒介”.因而,向量的引入大大拓宽了解题的思路和方法,“使它在研究其它问题时得到了广泛的应用”.以下笔者着重介绍“平面向量”的考试要求,并针对此单元的学习谈几点粗浅建议.
1.以本为本,重视教材的示范作用
数学教材是学习数学基础知识、形成基本技能的“蓝本”,能力是在知识传授和学习过程中得到培养和发展的.近年高考中平面向量的有些问题与课本的练习题相同或相似,虽然只是个别小题,但它对我们的学习具有指导意义.
2.注重数学思想方法的学习
(1)数形结合的思想方法
由于向量本身具有代数形式和几何形式双重身份,所以在向量知识的整个学习过程中,都体现了数形结合的思想方法,在解决问题过程中要形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识.
(2)化归转化的思想方法
同学们在今后学习向量的夹角、平行、垂直等关系时均可化归为对应向量或向量坐标的运算问题;三角形形状的判定可化归为相应向量的数量积问题;向量的数量积公式,沟通了向量与实数间的转化关系;一些实际问题也可以运用向量知识去解决.
(3)分类讨论的思想方法
向量可分为共线向量与不共线向量;平行向量(共线向量)可分为同向向量和反向向量;向量a在b方向上的投影随着它们之间的夹角的不同,有正数、负数和零三种情形;定比分点公式中的 随分点P的位置不同,可以大于零,也可以小于零.
3.突出向量与其他数学知识的交汇
新课程增加了新的学习内容,其意义不仅在于数学内容的更新,更重要的是新的思维方法的引入,可以帮助我们更有效地处理和解决数学问题和实际应用问题,启示我们在今后的学习中,应突出向量的工具性,注重向量与其他知识的交汇与融合,但不宜“深挖洞”.总之,在新课的学习中,同学们应该系统地、全面地掌握平面向量的基础知识和基本技能,熟练地掌握重点知识及其应用,并注意数学思想方法的应用.
1。