半导体陶瓷
- 格式:doc
- 大小:55.52 KB
- 文档页数:6
半导体陶瓷现状及发展趋势半导体陶瓷是一种新型的材料,它具有优异的物理、化学和机械性能,被广泛应用于电子、光电、航空航天、医疗等领域。
本文将从半导体陶瓷的现状和发展趋势两个方面进行探讨。
一、半导体陶瓷的现状半导体陶瓷是一种由氧化铝、氮化硅、碳化硅等材料制成的陶瓷材料。
它具有高硬度、高强度、高温稳定性、耐腐蚀性、绝缘性等优异性能,被广泛应用于电子、光电、航空航天、医疗等领域。
在电子领域,半导体陶瓷被用作电子元器件的基板、封装材料、热散射材料等。
在光电领域,半导体陶瓷被用作激光器、光纤连接器、光学窗口等。
在航空航天领域,半导体陶瓷被用作发动机部件、热障涂层、航天器外壳等。
在医疗领域,半导体陶瓷被用作人工关节、牙科修复材料等。
半导体陶瓷的生产技术已经相对成熟,国内外许多企业都能够生产出高质量的半导体陶瓷产品。
其中,日本、美国、德国等发达国家的半导体陶瓷产业比较发达,产品质量和技术水平较高。
而我国的半导体陶瓷产业起步较晚,但随着技术的不断提升和市场需求的增加,我国的半导体陶瓷产业也在逐步发展壮大。
二、半导体陶瓷的发展趋势随着科技的不断进步和市场需求的不断增加,半导体陶瓷的发展趋势也在不断变化。
以下是半导体陶瓷的几个发展趋势:1. 多功能化随着半导体陶瓷的应用领域越来越广泛,对其性能要求也越来越高。
未来的半导体陶瓷将不仅具有高硬度、高强度、高温稳定性、耐腐蚀性、绝缘性等基本性能,还将具有多种功能,如磁性、光学、电学、热学等功能。
2. 精细化随着微电子技术的不断发展,半导体陶瓷的制造工艺也在不断精细化。
未来的半导体陶瓷将具有更高的制造精度和更小的尺寸,以适应微电子器件的发展需求。
3. 绿色化随着环保意识的不断提高,半导体陶瓷的生产也将越来越注重环保。
未来的半导体陶瓷将采用更环保的生产工艺和材料,以减少对环境的污染。
4. 智能化随着物联网、人工智能等技术的不断发展,未来的半导体陶瓷将具有更多的智能化功能,如传感、识别、控制等功能,以适应智能化时代的需求。
陶瓷半导体的原理及应用一、引言陶瓷半导体是一种重要的功能材料,具有优异的电子性能和耐高温特性,在众多领域中有广泛的应用。
本文将介绍陶瓷半导体的基本原理以及其在各个领域中的应用。
二、陶瓷半导体的基本原理陶瓷半导体具有电阻率介于导体与绝缘体之间的特性,其导电机理主要是基于电子和空穴的运动。
在陶瓷半导体中,通过外加电压或加热等方式,可以激发电子从价带跃迁到导带,从而形成导电通道。
同时,陶瓷半导体的晶格结构也会对电子的运动产生影响。
三、陶瓷半导体的应用3.1 电子器件领域陶瓷半导体在电子器件领域中有广泛的应用,例如陶瓷半导体电容器、陶瓷半导体电阻器等。
由于陶瓷半导体具有高温稳定性和耐腐蚀性,可以在恶劣环境下长时间工作,因此在航空航天、军事和工业领域中得到广泛应用。
3.2 光电子领域陶瓷半导体在光电子领域中也有重要的应用。
例如,陶瓷半导体材料可以制成高效的光电转换器件,用于太阳能电池和光电传感器等。
陶瓷半导体材料的高温稳定性和耐辐射性使其在航天器和核能领域中有广泛应用。
3.3 医疗领域陶瓷半导体在医疗领域中的应用也越来越广泛。
例如,陶瓷半导体材料可以制成生物传感器,用于检测血糖、血压等生理参数。
此外,陶瓷半导体材料还可以制成人工关节和牙科修复材料,用于骨科和牙科手术。
3.4 环境保护领域陶瓷半导体在环境保护领域中也有重要的应用。
例如,陶瓷半导体材料可以制成高效的气体传感器,用于检测空气中的有害气体。
此外,陶瓷半导体材料还可以制成光催化剂,用于光催化降解有机污染物。
四、结论陶瓷半导体作为一种重要的功能材料,具有优异的电子性能和耐高温特性,在电子器件、光电子、医疗和环境保护等领域中有广泛的应用。
随着科技的不断发展,陶瓷半导体的应用前景将会更加广阔。
我们有理由相信,陶瓷半导体将在未来的科技创新中发挥越来越重要的作用。
半导体陶瓷的热电性能与热电器件应用半导体陶瓷是一类具有半导体特性和陶瓷结构的材料,具有优良的热电性能。
热电性能是指材料在温度差下产生的热电势和电流之间的关系,也称为热电效应。
热电器件是利用热电效应将热能转化为电能或将电能转化为热能的设备。
本文将介绍半导体陶瓷的热电性能以及其在热电器件中的应用。
半导体陶瓷具有良好的热电性能是由于其特殊的电子结构和晶体结构。
在半导体陶瓷中,电子能带结构使得材料中的电子具有特殊的能量分布。
通过加热或施加温度梯度,材料内部会产生电子迁移和扩散,从而产生热电势差和电流。
半导体陶瓷的导电性和隔热性使得其在温度梯度下产生的热电势差较大,因此具有较高的热电转换效率。
半导体陶瓷的热电性能可以通过材料的热电参数来描述。
热电参数是指材料在特定温度下的热电势差和电导率。
热电势差是指单位温度差下的电势差,通常用热电势系数(也称为Seebeck系数)来表示。
电导率是指材料中的电流密度和电场强度之间的关系,它决定了材料对电流的导电能力。
热电参数的大小往往决定了半导体陶瓷的热电转换效率。
目前,人们通过合适的掺杂和制备工艺来改善材料的热电参数,以提高热电器件的效率。
半导体陶瓷的热电器件广泛应用于能量转换和热管理领域。
在能量转换方面,半导体陶瓷可以将废热转化为电能。
废热是指在工业生产、汽车运作和电子设备使用过程中产生的热能,如果不进行有效的回收利用,将会造成能源的浪费和环境的污染。
通过将半导体陶瓷制成热电器件,可以将废热中的热能转化为电能,从而提高能源利用效率。
热电汽车座椅、热电功率发生器和热电太阳能装置等都是典型的利用半导体陶瓷热电器件进行能量转换的应用。
在热管理领域,半导体陶瓷的热电器件可以实现热能的调控和传输。
随着电子器件的迅速发展,电子器件的紧凑化和集成化导致高功率器件的热问题日益突出。
半导体陶瓷热电器件可以通过调控温度梯度实现对热的引导和散热,从而实现对电子器件的热管理。
热电散热片、热通道结构和热电冷却模块都是利用半导体陶瓷热电器件进行热管理的典型应用。
简述半导体湿敏陶瓷的工作机理一、引言半导体湿敏陶瓷是一种新型的湿度传感器材料,具有灵敏度高、响应速度快、稳定性好等特点,已广泛应用于环境监测、气象观测、工业自动化等领域。
本文将详细介绍半导体湿敏陶瓷的工作机理。
二、半导体湿敏陶瓷的基本结构半导体湿敏陶瓷由两部分组成:基片和电极。
基片是由氧化锌(ZnO)等半导体材料制成的,电极则是在基片上加工出来的金属电极。
通常情况下,电极分为两种:平面电极和薄膜电极。
三、半导体湿敏陶瓷的工作原理当半导体湿敏陶瓷暴露在空气中时,其表面吸附了一定量的水分子。
水分子会与氧化锌表面形成一个带正电荷的层,并吸引周围空气中带负电荷的离子。
这些离子会在水分子周围形成一个带正电荷的区域,从而形成一个电场。
当外界施加电压时,这个电场会影响到半导体湿敏陶瓷内部的载流子运动。
因此,半导体湿敏陶瓷的电阻值与周围空气中的湿度有关。
四、半导体湿敏陶瓷的灵敏度半导体湿敏陶瓷的灵敏度是指其电阻值随着湿度变化的程度。
实验表明,当环境湿度从10%RH增加到90%RH时,半导体湿敏陶瓷的电阻值会减小2-3个数量级。
这种高灵敏度使得半导体湿敏陶瓷在环境监测等领域具有广泛应用前景。
五、半导体湿敏陶瓷的响应速度半导体湿敏陶瓷具有快速响应和恢复时间的特点。
实验表明,当环境湿度从10%RH增加到90%RH时,其响应时间可以达到几十毫秒级别。
而恢复时间则通常在一分钟左右。
六、半导体湿敏陶瓷的稳定性半导体湿敏陶瓷的稳定性是指其长期使用过程中电阻值的变化。
实验表明,半导体湿敏陶瓷的电阻值在不同湿度下变化较小,且长期使用后电阻值基本上不会发生改变。
这种稳定性使得半导体湿敏陶瓷可以长期应用于环境监测等领域。
七、半导体湿敏陶瓷的应用前景半导体湿敏陶瓷已广泛应用于环境监测、气象观测、工业自动化等领域。
例如,在环境监测中,半导体湿敏陶瓷可以用于检测室内外空气中的湿度;在气象观测中,可以用于检测大气中的水汽含量;在工业自动化中,可以用于检测生产过程中空气中的湿度等。
半导体精密陶瓷材料-概述说明以及解释1.引言1.1 概述半导体精密陶瓷材料是一种关键的材料,具有优异的电性能、热性能和化学稳定性。
随着半导体行业的发展,对于高性能、高可靠性的材料需求越来越迫切,半导体精密陶瓷材料因其独特的性能被广泛应用于半导体制造领域。
本文将介绍半导体材料的特点及精密陶瓷的应用领域,重点讨论半导体精密陶瓷材料的制备方法。
最后,文章将总结半导体精密陶瓷材料在半导体行业中的重要性,展望其未来发展方向。
通过本文的阐述,读者将能够深入了解半导体精密陶瓷材料的现状和未来发展趋势。
1.2 文章结构:本文将首先介绍半导体材料的特点,包括其在电子行业中的重要性和特殊性。
接着将探讨精密陶瓷在各个应用领域中的作用,重点分析其在半导体行业中的应用。
最后,将详细介绍半导体精密陶瓷材料的制备方法,包括制备工艺和技术要点。
通过本文的阐述,读者将能够更深入地了解半导体精密陶瓷材料在电子行业中的重要性和广泛应用,同时也能够了解其制备方法和未来发展方向,为相关领域的研究和应用提供参考和借鉴。
1.3 目的本文的主要目的是介绍和探讨半导体精密陶瓷材料的重要性和应用领域。
通过对半导体材料特点、精密陶瓷的应用领域和制备方法等方面的深入探讨,旨在帮助读者深入了解这一领域的知识和技术。
同时,也旨在强调半导体精密陶瓷材料在现代科技领域的重要作用,以及展望未来该领域的发展方向,为相关研究和应用提供参考和启示。
通过本文的阐述和总结,希望能够激发读者对半导体精密陶瓷材料的兴趣,促进该领域的进一步研究和应用。
2.正文2.1 半导体材料的特点半导体材料是一种介于导体和绝缘体之间的材料。
其特点主要包括以下几个方面:1. 高阻值:半导体材料的电阻值比金属导体高,但比绝缘体低,具有一定的导电性能。
2. 负温度系数:半导体材料在特定温度范围内,随温度的升高,电阻值会减小,且升温对其导电性具有促进作用。
3. 非线性电阻特性:半导体材料在一定范围内,电阻值不随电压的变化而线性变化,呈现出非线性电阻特性。
陶瓷半导体的原理及应用介绍在电子设备的制造中,半导体材料起着至关重要的作用。
陶瓷半导体作为一种特殊的半导体材料,具有独特的性质和广泛的应用。
本文将探讨陶瓷半导体的原理及其在各个领域的应用。
陶瓷半导体的基本原理陶瓷半导体是一种由陶瓷材料制成的半导体材料。
与传统的半导体材料相比,陶瓷半导体具有许多独特的性质和优势。
1.硬度和耐高温性陶瓷材料具有出色的硬度和优异的耐高温性能。
这使得陶瓷半导体在高温环境下能够稳定工作,并且对于各种机械和热应力有着良好的抵抗能力。
2.绝缘性陶瓷材料具有良好的绝缘性能,能够有效地阻挡电流的流动。
这使得陶瓷半导体在电气绝缘和绝缘电子器件中得到广泛应用。
3.化学稳定性陶瓷材料对化学物质的侵蚀性较低,具有良好的化学稳定性。
这使得陶瓷半导体能够在恶劣的化学环境中长期稳定工作。
陶瓷半导体的应用领域1. 电子器件陶瓷半导体在电子器件中有广泛的应用。
•陶瓷半导体用于高功率电子器件,如功率电子管和晶闸管。
其良好的耐高温性和化学稳定性使得陶瓷半导体能够承受高功率和复杂的工作环境。
•陶瓷半导体也用于电子陶瓷电容器,其绝缘性能和化学稳定性能确保了电容器的可靠性和长寿命。
2. 燃料电池陶瓷半导体在燃料电池领域的应用越来越广泛。
•陶瓷半导体可以用作燃料电池的电解质材料,如固体氧化物燃料电池(SOFC)中的电解质层。
其绝缘性能和耐高温性能使其能够稳定传导离子,并且长期稳定工作。
•陶瓷半导体还可用于燃料电池的催化层材料,如燃料电池阴极氧化物材料,用于提高燃料电池的效率和稳定性。
3. 传感器陶瓷半导体在传感器领域中广泛用于各种类型的传感器。
•陶瓷半导体用于气体传感器,如氧气传感器和氨气传感器。
其化学稳定性和绝缘性能使其能够稳定地检测和测量气体浓度。
•陶瓷半导体还用于热敏电阻温度传感器,其对温度的灵敏度和稳定性能确保了精确的温度测量。
4. 其他应用陶瓷半导体还可在其他领域中得到广泛应用。
•陶瓷半导体用于陶瓷底片和磁性材料的制备,如陶瓷磁体和磁性储存介质。
ptc半导体陶瓷发热体
PTC 半导体陶瓷发热体是一种新型的陶瓷发热元件,它采用高科技技术,具有高效、安全、节能等优点。
PTC 半导体陶瓷发热体的主要材料是半导体陶瓷,它是由钨、钼、钴等金属氧化物和其他材料混合烧结而成的,具有很高的电阻率和良好的绝缘性能。
PTC 半导体陶瓷发热体的发热原理是基于PTC 效应,即正温度系数效应。
在常温下,PTC 半导体陶瓷发热体的电阻值较小,当电流通过时,PTC 半导体陶瓷发热体的温度会逐渐升高,其电阻值也会随之升高,从而减少电流通过时的热量损失。
当PTC 半导体陶瓷发热体的温度达到居里点时,其电阻值会急剧升高,从而限制电流通过,使其温度保持在居里点附近。
PTC 半导体陶瓷发热体具有高效、安全、节能等优点,被广泛应用于暖风机、电吹风、电暖器、暖手宝等小家电产品中。
陶瓷在半导体行业中的应用引言:陶瓷作为一种非金属材料,具有优异的物理和化学性质,因此在半导体行业中得到了广泛的应用。
本文将介绍陶瓷在半导体行业中的应用领域和具体应用案例,以及陶瓷的优点和挑战。
一、陶瓷在半导体制造中的应用领域1.1 电子封装陶瓷在电子封装领域中被广泛应用于半导体器件的外壳和基板。
陶瓷外壳能够提供良好的机械保护和热导性,保护器件免受外界环境的干扰。
陶瓷基板则用于连接和支撑电子元件,其优异的绝缘性能和热稳定性能使得电子元件能够在恶劣的工作环境下稳定运行。
1.2 电路板陶瓷电路板在高频电子设备中得到了广泛应用,例如无线通信设备和雷达系统。
陶瓷电路板具有低介电损耗和优异的热性能,能够提供更好的信号传输和更高的工作频率。
此外,陶瓷电路板还具有良好的尺寸稳定性和机械强度,能够满足复杂电路的布线要求。
1.3 热散热器陶瓷在热散热器中的应用主要是利用其优异的导热性能。
由于半导体器件在工作过程中会产生大量的热量,需要通过散热器将其散发出去,以保证器件的正常运行。
陶瓷材料具有较高的导热系数和优异的热稳定性,能够有效地将热量传导到散热器表面,提高散热效率。
二、陶瓷在半导体制造中的具体应用案例2.1 氧化铝陶瓷封装氧化铝陶瓷封装被广泛应用于高频电子设备中。
其具有优异的机械强度、良好的绝缘性能和较高的热导性能,能够有效地保护电子元件,并提供良好的信号传输和散热性能。
2.2 氧化铝陶瓷基板氧化铝陶瓷基板被广泛应用于电子元件的连接和支撑。
其具有优异的绝缘性能和热稳定性能,能够在高温和高电压环境下稳定运行。
此外,氧化铝陶瓷基板还具有良好的尺寸稳定性和机械强度,能够满足复杂电路的布线要求。
2.3 氮化硅陶瓷电路板氮化硅陶瓷电路板被广泛应用于高频电子设备中。
其具有低介电损耗、优异的热性能和较高的工作频率,能够提供更好的信号传输和更高的工作频率。
此外,氮化硅陶瓷电路板还具有良好的尺寸稳定性和机械强度,能够满足复杂电路的布线要求。
半导体陶瓷专题报告一.半导体陶瓷简介半导体陶瓷概念:具有半导体特性、电导率约在10-6~10-5S/m的陶瓷。
半导体陶瓷的电导率因外界条件(温度、光照、电场、气氛和温度等)的变化而发生显著的变化,因此可以将外界环境的物理量变化转变为电信号,制成各种用途的敏感元件。
半导体陶瓷生产工艺的共同特点是必须经过半导化过程。
半导化过程可通过掺杂不等价离子取代部分主晶相离子(例如,BaTiO3中的Ba2+被La3+取代),使晶格产生缺陷,形成施主或受主能级,以得到n型或p型的半导体陶瓷。
另一种方法是控制烧成气氛、烧结温度和冷却过程。
例如氧化气氛可以造成氧过剩,还原气氛可以造成氧不足,这样可使化合物的组成偏离化学计量而达到半导化。
半导体陶瓷敏感材料的生产工艺简单,成本低廉,体积小,用途广泛。
半导体陶瓷的分类:按用途分类:1.压敏陶瓷压敏陶瓷系指对电压变化敏感的非线性电阻陶瓷。
目前压敏陶瓷主要有SiC、TiO2、SrTiO3和ZnO四大类,但应用广、性能好的当属氧化锌压敏陶瓷,由于ZnO压敏陶瓷呈现较好的压敏特性,在电力系统、电子线路、家用电器等各种装置中都有广泛的应用,尤其在高性能浪涌吸收、过压保护、超导性能和无间隙避雷器方面的应用最为突出。
它们的电阻率相对于电压是可变的,在某一临界电压下电阻值很高,超过这一临界电压则电阻急剧降低。
自七十年代日本首先使用ZnO无间隙避雷器取代传统的SiC串联间隙避雷器以来,国内外都相继开展了这方面的研究。
但氧化锌压敏陶瓷在高压领域的应用还存在局限性。
如生产高压避雷器,则需要大量的ZnO压敏电阻阀片叠加,不仅加大了产品的外形尺寸,而且高压避雷器要求较低的残压比也极难实现,为此必须研究开发新的高性能高压压敏陶瓷材料。
通过对试样结果的分析,用化学级原料成功地制备出性能优异的SnO2压敏陶瓷,新型SnO2压敏陶瓷显示出优异的非线性电流——电压特性,与目前国内外市场上流行的ZnO压敏材料相比,其性能高于前者。
新型无机非金属材料——“半导体陶瓷”08070328 唐雅稚摘要:我国在新型无机非金属—“半导体陶瓷材料”的研究方面已经取得了一些成果,与国际先进水平的差距正在缩小,一大批引进产品已逐步被国产化,许多产品已受到国际上的重视,某些产品已经出口。
当前我们正处在科学兴国,以技术—经济为核心的重要发展时期,新材料已列为优先发展的重要领域之一,信息通讯事业已引起高度重视。
毫无疑问,半导体陶瓷及其传感技术有着美好的发展前景。
本文对热敏,压敏、湿敏、气敏等五类半导体陶瓷的基本原理,主要陶瓷材料,在生活中的用途作了简要的叙述。
关键词:新型无机非金属材料、半导体陶瓷作为四大材料中(钢铁、有色、有机和无机非金属材料)工业之一的无机非金属材料工业在我国经济建设中起着重要的作用。
无机非金属材料可分为传统无机非金属材料(建筑材料)和新型无机非金属材料。
新型无机非金属材料就是指具有高强、轻质、耐磨、抗腐、耐高温、抗氧化以及特殊的电、光、声、磁等一系列优异综合性能的新型材料,是其它材料难以替代的功能材料和结构材料。
无机非金属新材料具有独特的性能,是高技术产业不可缺少的关键材料。
新型无机非金属材料种类繁多,用途广泛。
例如人工晶体材料中激光、非线性光学和红外等晶体,用于弹道制导、电子对抗、潜艇通讯、激光武器等。
特种陶瓷中,耐高温、高韧性陶瓷可用于航空、航天发动机、卫星遥感,可制作特殊性能的防弹装甲陶瓷及特种纤维及用于电子对抗等。
新型无机非金属材料中,我对半导体陶瓷情有独钟。
半导体陶瓷是与我们日常生活息息相关的材料。
上世纪五十年代以来,科学家发现本来是绝缘体的金属氧化物陶瓷,如钛酸钡、二氧化钛、二氧化锡和氧化锌等,只要掺入微量的其他金属氧化物,它们就会变得有导电能力,它们的电阻介于绝缘体和金属之间,这就是半导体陶瓷。
各种半导体陶瓷的电阻会分别随环境的温度、湿度、气氛、光线强弱和施加电压等的变化而改变几十到几百万倍,它们分别被叫做热敏、湿敏、气敏、光敏、和电压敏陶瓷,利用这些陶瓷可以制造各种各样的电子器件为人类服务。
半导体陶瓷专题报告一.半导体陶瓷简介半导体陶瓷概念:具有半导体特性、电导率约在10-6~10-5S/m的陶瓷。
半导体陶瓷的电导率因外界条件(温度、光照、电场、气氛和温度等)的变化而发生显著的变化,因此可以将外界环境的物理量变化转变为电信号,制成各种用途的敏感元件。
半导体陶瓷生产工艺的共同特点是必须经过半导化过程。
半导化过程可通过掺杂不等价离子取代部分主晶相离子(例如,BaTiO3中的Ba2+被La3+取代),使晶格产生缺陷,形成施主或受主能级,以得到n型或p型的半导体陶瓷。
另一种方法是控制烧成气氛、烧结温度和冷却过程。
例如氧化气氛可以造成氧过剩,还原气氛可以造成氧不足,这样可使化合物的组成偏离化学计量而达到半导化。
半导体陶瓷敏感材料的生产工艺简单,成本低廉,体积小,用途广泛。
半导体陶瓷的分类:按用途分类:1.压敏陶瓷压敏陶瓷系指对电压变化敏感的非线性电阻陶瓷。
目前压敏陶瓷主要有SiC、TiO2、SrTiO3和ZnO四大类,但应用广、性能好的当属氧化锌压敏陶瓷,由于ZnO压敏陶瓷呈现较好的压敏特性,在电力系统、电子线路、家用电器等各种装置中都有广泛的应用,尤其在高性能浪涌吸收、过压保护、超导性能和无间隙避雷器方面的应用最为突出。
它们的电阻率相对于电压是可变的,在某一临界电压下电阻值很高,超过这一临界电压则电阻急剧降低。
自七十年代日本首先使用ZnO无间隙避雷器取代传统的SiC串联间隙避雷器以来,国内外都相继开展了这方面的研究。
但氧化锌压敏陶瓷在高压领域的应用还存在局限性。
如生产高压避雷器,则需要大量的ZnO压敏电阻阀片叠加,不仅加大了产品的外形尺寸,而且高压避雷器要求较低的残压比也极难实现,为此必须研究开发新的高性能高压压敏陶瓷材料。
通过对试样结果的分析,用化学级原料成功地制备出性能优异的SnO2压敏陶瓷,新型SnO2压敏陶瓷显示出优异的非线性电流——电压特性,与目前国内外市场上流行的ZnO压敏材料相比,其性能高于前者。
2.热敏陶瓷电阻率明显随温度变化的一类功能陶瓷。
按阻温特性分为正温度系数(简称PTC)热敏陶瓷和负温度系数(简称NTC)热敏陶瓷。
①正温度系数热敏陶瓷的电阻率随温度升高按指数关系增加。
这种特性由陶瓷组织中晶粒和晶界的电性能所决定,只有晶粒充分半导体化、晶界具有适当绝缘性的陶瓷才具有这种特性。
常用的正温度系数热敏陶瓷是掺入施主杂质、在还原气氛中烧结的半导体化BaTiO3陶瓷,主要用于制作开关型和缓变型热敏陶瓷电阻、电流限制器等。
②负温度系数热敏陶瓷的电阻率随温度升高按指数关系减小。
这种陶瓷大多是具有尖晶石结构的过渡金属氧化物固溶体,即多数含有一种或多种过渡金属(如Mn,Cu,Ni,Fe等)的氧化物,化学通式为AB2O4,其导电机理因组成、结构和半导体化的方式不同而异。
负温度系数热敏陶瓷主要用于温度测量和温度补偿。
此外,还有电阻率随温度升高呈线性变化的热敏陶瓷,以及电阻率在某一临界温度发生突变的热敏陶瓷。
后者用于制造开关器件,故称开关热敏陶瓷。
热敏陶瓷按使用温度区间又分为低温(4~20K、20~80K、77~300K等)陶瓷、中温(又称通用,-60~300℃)陶瓷和高温(300~1000℃)陶瓷3种3.光敏陶瓷指具有光电导或光生伏特效应的陶瓷。
如硫化镉、碲化镉、砷化镓、磷化铟、锗酸铋等陶瓷或单晶。
当光照射到它的表面时电导增加。
利用光敏陶瓷这一特性,可制作适于不同波段范围的光敏电阻器。
光敏陶瓷主要是半导体陶瓷,其导电机理分为本征光导和杂质光导。
对本征半导体陶瓷材料,当入射光子能量大于或等于禁带宽度时,价带顶的电子跃迁至导带,而在价带产生空穴,这一电子-空穴对即为附加电导的载流子,使材料阻值下降;对杂质半导体陶瓷,当杂质原子未全部电离时,光照能使未电离的杂质原子激发出电子或空穴,产生附加电导,从而使阻值下降。
不同波长的光子具有不同的能量,因此,一定的陶瓷材料只对应一定的光谱产生光导效应,所以有紫外(0.1~0.4微米)、可见光(0.4~0.76微米)和红外(0.76~3微米)光敏陶瓷。
CdS是制作可见光光敏电阻器的陶瓷材料。
纯CdS的禁带宽度为2.4电子伏特(eV),相当于绿光波长范围。
制作时,掺以Cl取代S,可烧结成多晶N型半导体;掺入Cu及Ag、Au1价离子,使其起敏化中心的作用,可提高陶瓷的灵敏度。
纯CdS灵敏度峰值波长为520纳米(nm),纯CdSe的灵敏度峰值波长为720nm。
将CdS与CaSe按一定配比烧结形成不同比例的固溶体,可制得峰值波长在520~720nm 连续变化的光敏陶瓷。
ZnS、PbS、InSb等是制作紫外及红外光敏电阻器常用的陶瓷材料。
4.气敏陶瓷指电导率随着所接触气体分子的种类不同而变化的陶瓷。
如氧化锌、氧化锡、氧化铁、五氧化二钒、氧化锆、氧化镍和氧化钴等系统的陶瓷。
气敏陶瓷的工作原理基于元件表面的气体吸附和随之产生的元件导电率的变化而设计。
具体吸附原理为:当吸附还原性气体时,此还原性气体就把其电子给予半导体,而以正电荷与半导体相吸附着。
进入到n型半导体内的电子,束缚少数载流子空穴,使空穴与电子的复合率降低。
这实际上是加强了自由电子形成电流的能力,因而元件的电阻值减小。
与此相反,若n型半导体元件吸附氧化性气体,气体将以负离子形式吸附着,而将其空穴给予半导体,结果是使导电电子数目减少,而使元件电阻值增加。
人们在研制试验各种陶瓷时,发现半导体陶瓷作为气敏材料的灵敏度非常高。
如薄膜状氧化锌气敏材料可检测氢气、氧气、乙烯和丙烯气体;以铂作催化剂时可检测乙烷和丙烷等烷烃类可燃性气体;氧化锡气敏材料可检测甲烷、乙烷等可燃性气体。
氧化铱系材料是测氧分压最常用的敏感材料。
此外,氧化铁、氧化钨、氧化铝、氧化铝等氧化物都有一定的气敏特性。
它们通过有选择地吸附气体,使半导体的表面能态发生改变,从而引起电导率的变化,以此确定某种未知气体及其浓度。
目前探测诸如一氧化碳、酒精、煤气、苯、丙烷、氢、二氧化硫等气体的气敏陶瓷已经获得了成功。
半导体陶瓷气敏材料在工业上有着极为广阔的应用前景。
如对煤矿开采中的瓦斯进行控制与检测,对煤气输送和化工生产中管道气体泄漏进行监测等。
5.湿敏陶瓷指电导率随湿度呈明显变化的陶瓷。
如四氧化三铁、氧化钛、氧化钾-氧化铁、铬酸镁-氧化钛及氧化锌-氧化锂-氧化钒等系统的陶瓷。
它们的电导率对水特别敏感,适宜用作湿度的测量和控制。
湿敏陶瓷是当气敏陶瓷晶粒界处吸附水分子时,由于水分子是一种强极性分子,其分子结构不不对称。
由于水分子不对称,在氢原子一侧必然具有很强的正电场,使得表面吸附的水分子可能从半导体表面吸附的O2-或O-离子中吸取电子,甚至从满带中直接俘获电子。
因此将引起晶粒表面电子能态变化,从而导致晶粒表面电阻和整个元件的电阻变化。
二. 半导体材料具体分析BaTiO3瓷的半导化机理纯BaTiO3陶瓷的禁带宽度 2.5~3.2ev,因而室温电阻率很高(>1010Ω•cm),然而在特殊情况下,BaTiO3瓷可形成n型半导体,使BaTiO3成为半导体陶瓷的方法及过程,称为BaTiO3瓷的半导化。
1.原子价控制法(施主掺杂法)在高纯(≥99.9%)BaTiO3中掺入微量(<0.3%mol)的离子半径与Ba2+相近,电价比Ba2+离子高的离子或离子半径与Ti4+相近而电价比Ti4+高的离子,它们将取代Ba2+或Ti4+位形成置换固溶体,在室温下,上述离子电离而成为施主,向BaTiO3提供导带电子(使部分T i4++e→Ti3+),从而ρV下降(102Ω•cm),成为半导瓷。
实验发现:施主掺杂量不能太大,否则不能实现半导化。
原因:(1) 若掺杂量过多,而Ti的3d能级上可容的电子数有限,为维持电中性,生成钡空位,而钡空位为二价负电中心,起受主作用,因而与施主能级上的电子复合,ρv↑。
(2)若掺杂量过多,三价离子取代A位的同时还取代B位,当取代A位时形成施主,提供导带电子e,而取代B位时形成受主,提供空穴h,空穴与电子复合,使ρV↑,掺量越多,则取代B位几率愈大,故ρV愈高。
2. 强制还原法在还原气氛中烧结或热处理,将生成氧空位而使部分Ti4+→Ti3+,从而实现半导化。
(102~106Ω•cm)强制还原法往往用于生产晶界层电容器,可使晶粒电阻率很低,从而制得介电系数很高(ε>20000)的晶界层电容器。
强制还原法所得的半导体BaTiO3阻温系数小,不具有PTC特性,虽然在掺入施主杂质的同时采用还原气氛烧结可使半导化掺杂范围扩展,但由于工艺复杂(二次气氛烧结:还原-氧化)或PTC性能差(只用还原气氛),故此法在PTC热敏电阻器生产中,目前几乎无人采用。
3. AST法当材料中含有Fe、K等受主杂质时,不利于晶粒半导化。
加入SiO2或AST玻璃(Al2O3·SiO2·TiO2)可以使上述有害半导的杂质从晶粒进入晶界,富集于晶界,从而有利于陶瓷的半导化。
AST玻璃可采用Sol-Gel法制备或以溶液形式加入。
4. 工业纯原料原子价控法的不足对于工业纯原料,由于含杂量较高,特别是含有Fe3+、Mn3+(或Mn2+)、Cu+、Cr3+、Mg2+、Al3+(K+、Na+)等离子,它们往往在烧结过程中取代BaTiO3中的Ti4+离子而成为受主,防碍BaTiO3的半导化。
PTC热敏电阻1.PTC热敏电阻简介1950年,荷兰Phillip公司的海曼等人在BaTiO3中掺入稀土元素(Sb、La、Sm、Gd、Ho、Y、Nb)时发现BaTiO3的室温电阻率降低到101~104Ω·cm,与此同时,当材料温度超过居里温度时,在几十度的范围内,电阻率会增大4~10个数量级,即PTC效应。
2. BaTiO3基PTCR的研究进展施主掺杂的BaTiO3基陶瓷在氧化性气氛中烧结或者退火时,表现出一种PTC(正温度系数)效应,即试样在铁电相-顺电相转变时(居里温度附近),电阻发生急剧的增大。
典型的BaTiO3基PTC陶瓷在居里温度附近电阻将由<100W•cm跃变到105~109W•cm。
由于具有这种性能,BaTiO3基PTC陶瓷已经在很多方面得到了广泛的应用。
攻关难点:低电阻率、高升阻比、高耐压掺杂元素的研究等价离子掺杂:Sr2+、Pb2+、Ca2+、Sn4+、Ce4+、Zr4+、Hf4+不等价离子掺杂:Bi3+、稀土;Nb5+、Ta5+高价施主掺杂:半导化;受主Mn2+掺杂:提高PTCR特性和温度系数与金属复合的研究研究表明,与金属复合的BaTiO3基PTCR具有较低的室温电阻率和较大的电阻突跃。
掺杂Ag,Cr金属粉降低烧结温度的研究玻璃相的主要成分为Al2O3、SiO2、TiO2,简称AST。
玻璃相可吸附杂质,有利于半导化。