材料合成与制备 第7章 薄膜材料制备
- 格式:ppt
- 大小:4.23 MB
- 文档页数:76
材料合成与制备期末复习题第零章绪论1.材料合成:材料合成是指促使原子或分子构成材料的化学或物理过程;2.材料制备:材料制备是指研究如何控制原子与分子使其构成有用的材料,但材料制备还包括在更为宏观的尺度上控制材料的结构,使其具备所需的性能和使用效能。
3.材料合成与制备的最终目标是:制造高性能、高质量的新材料以满足各种构件、物品或仪器等物件的日益发展的需求。
4.材料合成与制备的发展方向:材料的高性能化、复合化、功能化、低维化、低成本化、绿色化;5.影响热力学过程自发进行方向的因素:(1)能量因素;(2)系统的混乱度因素; 6.隔离系统总是自发的向着熵值增加的方向进行。
7.论述反应速率的影响因素:(1)浓度对反应速率的影响:对于可逆反应,增加反应物浓度可以使平衡向产物方向移动,因此,提高反应物浓度是提高产率的一个办法,但如果反应物成本很高,将反应物之一在生成后立即分离出去或转移到另一相中去,也是提高反应产率的一个很好的办法。
对于有气相的反应,如果反应前后气体物质的反应计量数不等,则增加压力会有利于反应向气体计量数小的方向进行。
另外,对于多个反应同时进行的反应,则应按主反应的情况来控制反应物的配比;(2)温度对反应速率的影响:对于一个可逆反应,正反应吸热,则逆反应就放热;如果正反应放热,则逆反应就吸热,升高温度有利于反应向吸热方向进行,不利于放热反应;对于放热反应,用冷水浴或冰浴使其降温的办法有利于反应的进行,但影响反应速率。
实际生产中,要综合考虑单位实际内的产量和转化率同时进行;(3)溶剂等对反应速率的影响:溶剂在反应中的作用:一是提供反应的场所,二是发生溶剂化效应。
溶剂最重要的物理效应即溶剂化作用,化学效应主要有溶剂分子的催化作用和容积分子作为反应物或产物参与了化学反应。
若溶剂分子与反应物生成不稳定的溶剂化物,可使反应的活化能降低,加快反应速率;若生成稳定的溶剂化物,则使反应活化能升高,降低反应速率;若生成物与溶剂分子生成溶剂化物,不论它是否稳定,都会使反应速率加快。
《材料合成与制备技术》课程教学大纲课程代码:ABCL0412课程中文名称:材料合成与制备技术课程英文名称:Materials Synthesis and Preparation Technology课程性质:选修课程学分数:1.5课程学时数:24授课对象:材料化学专业本课程的前导课程:固体化学、有机化学一、课程简介本大纲适用于材料化学类本科。
本课程旨在介绍材料合成与加工的原理、方法和技术,着重讲述了单晶体的生长,非晶态材料的制备,薄膜的制备方法,功能陶瓷的合成与制备,结构陶瓷和功能高分子材料的制备方法等。
材料合成与加工是材料化学专业选修课,通过本课程的教学,帮助学生掌握各种材料的合成与加工的理论与方法。
本课程的重点是针对不同性能体系的材料发展起来的各种合成方法与加工制备工艺,理解各类材料合成原理和物理化学过程。
通过本课程的学习,要求学生能够使用多种类型材料的设备、分析多种类型材料的性能,并初步具备开发新设备、制备新材料的能力,为学习材料化学专业打好基础。
二、教学基本内容和要求第一章单晶材料合成与制备课程教学内容:从固相-固相平衡、液相-固相平衡和气相-固相平衡制备单晶材料的方法,提拉法制备、气相外延生长单晶硅的工艺,焰熔法制备宝石。
课程的重点、难点:重点:晶态的基本概念,晶态生长的基本原理,常见的固-液晶体生长技术。
难点:晶体生长的基本原理。
课程教学要求:要求了解固相-固相平衡的晶体生长的基本概念和机理。
了解液相-固相平衡的晶体生长的机理,掌握一些液相-固相平衡生长晶体的具体方法。
了解气相-固相平衡的晶体生长的主要方法。
第二章非晶态材料的制备课程教学内容:非晶态材料的基本概念和基本性质,非晶态材料的形成理论,非晶态材料的制备方法与原理。
课程的重点、难点:重点:非晶态的基本概念,非晶态材料生长的基本原理,常用的非晶态材料的制备原理。
课程设计实验课程名称电子功能材料制备技术实验项目名称薄膜材料及薄膜技术专业班级学生姓名学号指导教师薄膜材料及薄膜技术薄膜技术发展至今已有200年的历史。
在19世纪可以说一直是处于探索和预研阶段。
经过一代代探索者的艰辛研究,时至今日大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位,各种材料的薄膜化已经成为一种普遍趋势。
其中包括纳米薄膜、量子线、量子点等低维材料,高K值和低K值介质薄膜材料,大规模集成电路用Cu布线材料,巨磁电阻、厐磁电阻等磁致电阻薄膜材料,大禁带宽度的“硬电子学”半导体薄膜材料,发蓝光的光电半导体材料,高透明性低电阻率的透明导电材料,以金刚石薄膜为代表的各类超硬薄膜材料等。
这些新型薄膜材料的出现,为探索材料在纳米尺度内的新现象、新规律,开发材料的新特性、新功能,提高超大规模集成电路的集成度,提高信息存储记录密度,扩大半导体材料的应用范围,提高电子元器件的可靠性,提高材料的耐磨抗蚀性等,提供了物质基础。
以至于将薄膜材料及薄膜技术看成21世纪科学与技术领域的重要发展方向之一。
一、薄膜材料的发展在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。
自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。
生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。
生物体生命现象的重要过程就是在这些表面上进行的。
细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。
膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。
细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。
细胞膜的这些结构和功能带来了生命,带来了神奇。
二、薄膜材料的分类目前,对薄膜材料的研究正在向多种类、高性能、新工艺等方面发展,其基础研究也在向分子层次、原子层次、纳米尺度、介观结构等方向深入,新型薄膜材料的应用范围正在不断扩大。
第一章绪论1.材料按化学组成可分为金属材料、无机非金属材料、高分子材料、复合材料四类。
2.材料合成与制备是通过一定的途径,从气态、液态或固态的各种不同原材料中得到化学上及性能上不同于原材料的新材料。
研究内容:一是研究新型材料的合成方法;二是研究已知材料的新合成方法、新合成技术,从而指定节能、经济、环保的合成路线及开发新型结构和功能的材料。
3.材料科学与工程的四个基本要素:合成与加工、组成与结构、性质、使用性能。
第二章无机材料合成实验技术1.表征真空泵的工作特性的四个参量:起始压强、临界反压强、极限压强、抽气速率。
2.平衡分离过程:借助分离媒介(如热能、溶剂或吸附剂)使均相混合物系统变成两相系统,再以混合物中各组分在处于相平衡的两相中不等同的分配为依据而实现分离。
3.速率分离过程:在某种推动力(浓度差、压力差、温度差、电位差等)的作用下,有时在选择性透过膜的配合下,利用各组分扩散速率的差异实现组分的分离。
4.吸附分离过程:利用混合物中各组分与吸附剂表面结合力强弱的不同,即各组分在固体相(吸附剂)和流体相间的吸附分配能力的差异,使混合物中难吸附组分与易吸附组分得以分离。
特点:①多数吸附剂具有良好的选择性,同时,被吸附组分又可在不同的条件下脱附,方便被吸附组分的分别收集和吸附剂的再生利用;②吸附剂化学稳定性好,分离所得产物纯度高;③吸附与解吸速度快,为快速分离和获得小体积淋洗液创造了条件;④吸附剂价廉易得,实验操作简单;⑤为了增加表面作用位置,吸附剂通常制成多孔结构和大比表面积。
吸附机理:⑴吸附作用机理复杂,包括静电吸附、氢键作用、离子交换、络合作用等多种物理和化学过程;⑵从分子间作用力的观点来看,吸附作用是吸附剂表面的立场与吸附质分子之间相互作用的结果,主要是物理吸附;⑶硅胶、Al2O3表面含有大量羟基及O原子,能与许多物质形成氢键。
氢键和电荷转移相互作用均产生较强的吸附能;⑷极性吸附剂与极性分子之间的吸附力较强,选择性也较高。
材料合成与制备材料合成与制备是现代材料科学领域的重要研究内容之一,它涉及到材料的结构设计、合成方法、制备工艺等方面,对于材料的性能和应用具有重要的影响。
在这篇文档中,我们将重点介绍材料合成与制备的基本概念、常见方法和技术,希望能够为相关领域的研究者和学习者提供一些参考和帮助。
材料合成是指通过化学反应或物理方法将原料转化为所需的材料。
合成方法的选择通常取决于所需材料的性质、结构和用途。
常见的材料合成方法包括溶液法、固相法、气相法、激光烧结法等。
溶液法是指将原料溶解在溶剂中,通过控制溶液的温度、浓度、PH值等条件来实现材料的合成。
固相法是指将原料混合后在高温条件下进行反应,通常用于制备无机材料。
气相法是指将原料蒸发成气体后在一定条件下进行反应,适用于制备纳米材料和薄膜材料。
激光烧结法是指利用激光束对原料进行加热和烧结,可以实现高温、快速、均匀的材料合成。
材料制备是指将合成好的材料进行成型、加工和表面处理,以满足特定的使用要求。
常见的材料制备方法包括热压成型、注塑成型、挤压成型、烧结等。
热压成型是指将粉末材料放入模具中,在一定温度和压力下进行成型。
注塑成型是指将熔融的塑料通过注射机注入模具中进行成型。
挤压成型是指将熔融的金属材料通过挤压机挤压成型。
烧结是指将粉末材料在一定温度下进行烧结,使其颗粒相互结合形成致密的材料。
在材料合成与制备过程中,需要考虑原料的选择、反应条件的控制、设备的选择和操作技术等方面的问题。
合成和制备的过程需要严格控制各项参数,以确保所得材料的质量和性能。
同时,还需要考虑材料的成本、环保性、可持续性等方面的问题,以实现材料的可持续发展和应用。
总的来说,材料合成与制备是材料科学领域中非常重要的研究内容,它直接影响到材料的性能和应用。
通过合理选择合成方法和制备工艺,可以获得具有特定结构和性能的材料,为材料科学和工程领域的发展和应用提供重要支撑。
希望本文所介绍的内容能够对相关领域的研究者和学习者有所帮助,也欢迎大家对材料合成与制备的研究进行进一步的探讨和交流。