地铁CBTC信号系统原理及分类
- 格式:doc
- 大小:19.00 KB
- 文档页数:2
地铁CBTC系统信号系统分析与故障1. 引言1.1 介绍地铁CBTC系统信号系统分析与故障地铁CBTC系统信号系统是一种先进的列车控制系统,它采用了计算机技术和无线通信技术,实现了列车之间的实时通信和自动调度。
CBTC系统的信号系统是系统中的关键部分,它负责向列车发送信号和指令,以确保列车能够安全、高效地运行。
对于CBTC系统信号系统的分析和故障排查显得尤为重要。
在实际运行中,CBTC系统信号系统可能会出现各种故障,例如信号传输中断、信号误码等。
为了及时排除这些故障,需要对CBTC系统信号系统进行分析,并采取相应的维修措施。
通过对故障案例的分析,可以总结出一些常见的故障原因和解决方法,为系统的维护和优化提供参考。
本文将重点介绍地铁CBTC系统信号系统的原理、分析方法、故障排查技术,以及相关的案例分析和维护优化策略。
通过对这些内容的深入探讨,可以更好地理解CBTC系统信号系统的重要性,同时也可以为今后地铁CBTC系统信号系统的发展提出建设性建议。
2. 正文2.1 CBTC系统原理CBTC系统通过无线通信技术实现列车与地面控制中心之间的实时数据传输。
列车上搭载有装有通信设备的车载控制器,地面控制中心通过无线信号与车载控制器进行数据交换,实现列车位置、速度等信息的传输。
CBTC系统通过计算机技术实现列车的实时监控和控制。
地面控制中心通过计算机系统对列车所传输的数据进行处理和分析,然后下达相应的指令控制列车的运行,包括限速、停车等操作。
CBTC系统还包括了车载信号系统和地面轨道侧信号系统的配合工作。
车载信号系统通过车载控制器对列车进行控制,地面轨道侧信号系统则通过信号灯等装置向列车发送控制指令,实现列车的安全运行。
CBTC系统原理是通过无线通信技术和计算机技术实现列车运行的实时监控和控制,保障列车运行的安全和高效。
CBTC系统的原理为地铁运行提供了技术支持,是地铁运行的重要保障之一。
2.2 CBTC系统信号系统分析CBTC系统信号系统分析主要是对地铁CBTC系统中信号系统的功能、结构、性能等进行系统的分析和研究。
城市轨道交通信号CBTC系统控制探讨随着城市化进程的加速,城市交通问题日益突出,城市轨道交通作为重要的交通方式,承担着越来越重要的角色。
作为城市轨道交通的一项重要技术,CBTC系统控制在保障列车运行安全、提高线路运行效率方面发挥着重要作用。
本文将对CBTC系统控制进行深入探讨,从技术原理、应用场景、优势及发展趋势等方面进行分析和总结。
一、技术原理CBTC系统控制主要包括列车控制、线路监控、故障诊断等功能,通过实时采集和处理列车运行状态数据、线路情况数据等信息,确保列车在线路上安全高效地运行。
其基本原理可以概括为:通过无线通信技术实现列车与地面控制中心之间的实时数据交换和信息传输;通过自动控制技术实现对列车的实时监控和调度;通过数据处理技术实现对列车运行状态数据、线路情况数据等信息的实时采集和处理,确保列车的安全运行和线路的高效运行。
二、应用场景CBTC系统控制主要应用于地铁、轻轨等城市轨道交通系统,包括地面线路、高架线路和地下线路。
在地铁系统中,CBTC系统控制可以实现列车的自动驾驶和智能调度,提高列车的运行安全性和线路的运行效率。
在轻轨系统中,CBTC系统控制可以实现列车的精准控制和调度,提高线路的运行稳定性和运行能力。
三、优势CBTC系统控制相比传统的列车控制系统具有以下几个优势:1、提高列车运行安全性。
CBTC系统采用无线通信、自动控制、数据处理等技术手段,实现列车的精准监控和调度,能够及时发现并应对列车运行中的各种异常情况,确保列车的安全运行。
2、提高线路运行效率。
CBTC系统通过实时采集和处理列车运行状态数据、线路情况数据等信息,实现列车的智能调度和线路的自动监控,提高了线路的运行稳定性和运行能力。
3、降低运营成本。
CBTC系统可以实现列车的自动驾驶和智能调度,减少了人为操作对列车运行的影响,提高了列车的运行效率,降低了运营成本。
四、发展趋势随着城市轨道交通的不断发展和城市化进程的加速,CBTC系统控制将会迎接更多的发展机遇。
cbtc系统列车追踪原理随着城市人口密度的逐渐增加,城市轨道交通也变得越来越重要。
CBTC系统(无人驾驶列车控制系统)在城市轨道交通中扮演着重要的角色。
CBTC系统可以实现列车的自动驾驶,并且确保列车间距的安全性。
本文主要介绍CBTC系统列车追踪原理以及其运作原理。
CBTC系统列车追踪原理CBTC系统的主要任务是减少列车行驶的时间、增加载客量以及提升运输效率。
为了实现这些目标,CBTC系统采用了列车追踪技术。
列车追踪原理分为两种:一种是基于信标的列车追踪原理,一种是无信标的列车追踪原理。
采用基于信标的列车追踪原理时,CBTC系统会在地下铁道上安装大量的反射器或者无线电台。
反射器或无线电台发射出信号,这些信号被列车上的接收器所接收,然后发送回CBTC系统。
CBTC系统会精确计算出列车的速度和位置,并根据列车所处的位置发出指令控制列车。
由于反射器或无线电台的数量很多,这种列车追踪原理可以准确地掌握列车的位置和速度。
无信标的列车追踪原理则是利用地铁车站和列车之间的通信来完成列车的追踪。
当列车驶进一个车站时,CBTC 系统会向列车发送一个指令,告诉列车它要到达的下一个站台的位置。
列车上的GPS接收器和惯性导航系统会根据这个位置信息预测列车的位置,并将这些数据回传给CBTC 系统。
CBTC系统将GPS位置和惯性导航信息结合起来,计算出列车的速度和位置,并根据列车所处的位置发出指令来实现列车的控制。
CBTC系统的实现CBTC系统的基本原理是通过无线通信实现列车与CBTC 系统之间的信息交换,并根据高精度传感器将列车的位置信息和速度信息回传给CBTC系统。
CBTC系统可以将地下铁道划分为数百个小区域,每个区域内有一组发射器和接收器,这些发射器和接收器是制定CBTC系统构成的一部分。
当列车驶入某个区域时,CBTC 系统可以收到列车所处的位置信息,并根据这个位置信息对列车进行控制。
CBTC系统不仅可以控制列车在同一线上运行,还可以控制列车在不同车站之间转移,第三号线上的列车可以在第二号线上进行必要的停留和倒转。
简述cbtc的原理CBTC(Communication Based Train Control,基于通信的列车控制系统)是一种先进的列车控制系统,与传统的列车信号系统相比,具有许多优势,如提高运营的安全性、准确性和容量。
CBTC系统通过使用无线通信技术和先进的计算机算法,实现了对地铁列车的实时控制和监控。
CBTC系统由车载单元(On-Board Unit,OBU)、地面设备单元(Ground Base Unit,GBU)和控制中心单元(Control Center Unit,CCU)组成。
车载单元安装在列车上,用于接收和发送控制指令以及实时传输列车运行信息。
地面设备单元安装在轨道和车站上,用于检测和传输列车位置信息。
控制中心单元是CBTC 系统的大脑,用于计算列车的运行参数和控制信号。
CBTC系统的工作原理可以简述为以下几个步骤:1. 列车识别和位置检测:车载单元通过无线通信技术与地面设备单元进行通信,获取实时的列车位置信息。
地面设备单元使用传感器和信号发射器来检测列车位置,这些设备通常布置在列车进出站口、弯道和轨道交叉口等关键位置上。
车载单元收到位置信息后,将其反馈给控制中心单元。
2. 列车控制和监控:控制中心单元根据接收到的列车位置信息,计算出列车的速度、加速度和制动力等参数,并生成相应的控制指令。
这些指令通过车载单元发送给列车上的牵引系统和制动系统,实现对列车的实时控制和调度。
同时,控制中心单元还会实时监控列车的运行状态,如速度、距离和车门状态等,以确保列车的安全运行。
3. 列车间通信和协同运行:CBTC系统还支持列车之间的通信和协同运行。
通过车载单元和地面设备单元之间的无线通信,列车可以相互感知和识别,并共享位置和速度等信息。
这就使得列车之间可以实施间隔距离自适应控制,即根据列车前后的距离和速度自动调整安全间隔,从而提高列车运行的稳定性和容量。
4. 系统安全和可靠性:CBTC系统具有高度的安全性和可靠性。
简述CBTC的基本原理及应用1. 什么是CBTC?CBTC(Communications-Based Train Control),即基于通信的列车控制系统,是一种先进的铁路列车控制系统。
与传统的列车控制系统相比,CBTC采用了更先进的通信技术,并能够提供更高的列车运行安全性和运行效率。
2. CBTC的基本原理CBTC的基本原理是通过无线通信技术实现列车之间、列车与基站之间的实时双向通信,从而实现列车的精确定位和安全控制。
CBTC系统主要由以下几个核心组件组成:•车载单元(On-Board Unit,OBU):在每辆列车上安装的CBTC系统的一部分,用于接收和发送控制信息,并实现列车的自动操作。
•车站设备(Station Equipment):包括基站设备和区域控制器,用于与车载单元进行通信,并对列车进行控制和监控。
•通信信道:CBTC系统采用无线通信技术,通过专用的通信信道传输控制信息。
•位置检测系统:通过安装在列车和轨道上的位置检测设备,实现对列车位置的精确定位。
•控制算法:CBTC系统使用先进的控制算法来实时计算列车的运行速度和位置,确保列车安全运行。
CBTC的基本工作流程如下:1.列车通过位置检测设备实时获取位置信息,并将数据传输给车载单元。
2.车载单元根据位置信息和控制算法,计算列车的运行速度和位置,并发送给车站设备。
3.车站设备接收到车载单元发送的数据,根据实时的运行情况,对列车进行控制和监控。
4.列车根据车载单元发送的指令,实现自动操作,包括加速、减速、停车等操作。
3. CBTC的应用CBTC系统在现代铁路运输中得到了广泛的应用,主要包括以下几个方面:3.1. 提高运行效率通过CBTC系统,铁路运输可以实现更高的运行效率。
由于CBTC系统能够实时计算列车的运行速度和位置,列车之间的安全间隔可以大大缩短,从而可以提高铁路线路的运行能力。
同时,CBTC系统还可以实现列车的自动操作,减少了人为因素对列车运行的影响,进一步提高了运行效率。
地铁C B T C信系统原理及分类公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]地铁CBTC信号系统原理及分类移动闭塞是基于通信技术的列车控制(简称CBTC—Communication Based Train Control)ATC系统,该系统不依靠轨道电路向列控车载设备传递信息,而是利用通信技术实现“车地通信”并实时地传递“列车定位”信息。
通过车载设备、轨旁通信设备实现列车与车站或控制中心之间的信息交换,完成速度控制。
系统通过建立车地之间连续、双向、高速的通信,使列车命令和状态可以在车辆和地面之间进行实时可靠的交换,并确定列车的准确位置及列车间的相对距离,保证列车的安全间隔。
移动闭塞技术是通过车载设备和轨旁设备不间断的双向通信来实现。
列车不间断向控制中心传输其标识、位置、方向和速度等信息,控制中心可以根据列车实时的速度和位置动态计算列车的最大制动距离。
列车的长度加上这一最大制动距离并在列车后方加上一定的防护距离,便组成了一个与列车同步移动的虚拟分区。
由于保证了列车前后的安全距离,两个相邻的移动闭塞分区就能以很小的间隔同时前进,这使列车能以较高的速度和较小的间隔运行,从而提高运营效率。
1.基于基于交叉感应环线技术2.基于无线电台通信技术3.基于漏泄电缆无线传输技术4.基于裂缝波导管无线传输技术1.基于基于交叉感应环线技术以敷设在钢轨间的交叉感应环线作为传输媒介的CBTC系统,在城市轨道交通中已经应用了较长时间。
交叉感应环线的缺点在于,安装在钢轨中间,安装困难且不方便工务部门对钢轨的日常维修,车-地通信的速率低。
但由于环线具有成熟的使用经验,使用寿命长以及投资少等优点,目前仍继续得到应用。
2.基于无线电台通信技术随着无线通信技术的发展,基于自由空间传输的无线传输技术的在CBTC系统中得到了应用。
无线的频点一般采用共用的2.4GHz或5.8GHz频段,采用接入点(AP)天线作为和列车进行通信的手段。
地铁CBTC信号系统北京地铁通号公司赵炜概述:移动闭塞是基于通信技术的列车控制(简称CBTC)ATC系统是利用通信技术实现“车地通信”并实时地传递“列车定位”信息。
系统通过建立车地之间连续、双向、高速的通信,使列车命令和状态可以在车辆和地面之间进行实时可靠的交换,并确定列车的准确位置及列车间的相对距离,保证列车的安全间隔。
地铁CBTC信号系统技术交流北京地铁通号公司总工赵炜2010年5月地铁CBTC信号系统地铁信号系统是地铁运输系统中,保证行车安全、提高区间和车站通过能力的手动控制、自动控制及远程控制技术的总称,是地铁行车调度依据行车计划或运力需求组织行车,并按一定的闭塞方式指挥列车安全、正点运行的重要设备系统,具有下达行车指令、办理列车进路、开放信号并指挥行车的基本功能。
北京地铁信号系统随着核心技术的不断进步,其设备构成、主要功能均不断得到了完善和提高,尤其是列车运行控制方式和信号系统闭塞方式发生了根本性的变革。
• 简介CBTC信号系统构成及原理• 目前面临的问题及对策• CBTC信号系统的优点北京地铁2009年运营线路图地铁CBTC信号系统列车自动控制系统城市轨道交通信号系统通常由列车自动控制系统(Automatic Train Control,简称ATC)组成,ATC系统包括三个子系统:—列车自动监控系统(Automatic Train Supervision,简称ATS)—列车自动防护子系统(Automatic Train Protection,简称ATP)—列车自动运行系统(Automatic Train Operation,简称ATO)三个子系统通过信息交换网络构成闭环系统,实现地面控制与车上控制结合、现地控制与中央控制结合,构成一个以安全设备为基础,集行车指挥、运行调整以及列车驾驶自动化等功能为一体的列车自动控制系统1.列车自动监控系统ATS2.列车自动防护子系统ATP3.列车自动运行系统ATO列车自动控制系统构成图地铁CBTC信号系统介绍移动闭塞是基于通信技术的列车控制(简称CBTC—Communication Based Train Control)ATC系统,该系统不依靠轨道电路向列控车载设备传递信息,而是利用通信技术实现“车地通信”并实时地传递“列车定位”信息。
CBTC系统资料一.移动闭塞系统工作原理和特点上面我们介绍的是以轨道电路为传输信道,以传输“目标速度”为主要内容的ATC系统,这是当前我国列车自动控制系统的主要模式,从闭塞的概念分析,它们都可以归属于“准移动闭塞”的范畴,后续列车与先行列车之间的行车间隔都与闭塞分区的划分有关,也就是说,后续列车与先行列车不可能运行在在同一个闭塞分区,后续列车必须保证在先行列车所占用的闭塞分区的分界点前停车。
如图33所示。
图33. 不同闭塞制式的列车运行间隔示意图图中所示速度码制式的图例,可以对应于音频无绝缘轨道电路的ATC系统;准移动闭塞的图例可以对应于目标速度制式的ATC系统,这些制式下为了缩短行车间隔,必须缩小轨道区段的长度,当然要增加轨道电路的硬件设备;对于不同列车编组的运行线路,更是难以实现。
移动闭塞(Moving block)是缩小行车间隔,提高行车效率的有效途径,其列车运行的安全保证,不再依赖轨道电路的划分,而基于列车与地面的双向通信,如图33所示,使后续列车与先行列车之间始终保持制动距离,加上动态安全保护距离。
移动闭塞系统相比现有的ATC系统主要有以下特点:1、可以缩小列车之间的行车间隔;2、车-地之间的信息交换,不再依赖于轨道电路;3、车辆控制中心掌握在线运行各次列车的精确位置和速度;4、列车与控制中心之间保持不间断地双向通信;5、不同编组(不同长度)的列车,可以以最高的密度,运行于同一线路;6、ATC系统,从一个以硬件为基础的系统,向以软件为基础的系统演变。
基于通信的列车运行控制系统(Communication - Based Train Control—简称CBTC 系统), 便是支持移动闭塞的列车运行控制系统,它不仅适用于新建的各种城市轨道交通,也适用于旧线改造、不同编组运行以及不同线路的跨线运行。
近年来,随着通信技术的发展,尤其是无线通信、计算机网络技术和数字信号处理技术的迅速发展,信号系统的冗余、容错技术完善,在信号这个传统领域为CBTC的发展奠定了基础, CBTC系统已逐渐被信号界所认可,基于感应环线通信的移动闭塞CBTC系统,在我国也已运用于城市轨道交通;而基于无线(Radio)通信虚拟闭塞的CBTC系统,已经在国外多个城市轨道交通中被采纳,我国某些大城市的城市轨道交通也已经决定选用这种制式。
城市轨道交通信号CBTC系统控制探讨一、 CBTC系统的基本原理CBTC系统是一种通过无线通信技术实现列车与控制中心之间实时通信和数据交换的轨道交通信号控制系统。
相比传统的固定区间信号系统,CBTC系统具有更高的列车运行密度、更快的调度响应速度和更精确的列车位置控制能力。
其基本原理是通过在列车上安装车载设备和轨道设备,实现两者之间的实时通信和信息交换。
控制中心通过对列车位置、速度和运行状态的监控,动态调整列车运行方式,实现更加智能化的列车调度和运行控制。
二、 CBTC系统的关键技术与挑战CBTC系统是一个包含多种技术和设备的复杂系统,其设计与实现需要克服诸多技术挑战。
CBTC系统需要实现列车和控制中心之间的高效无线通信,确保数据传输的实时性和可靠性。
CBTC系统需要配备高精度的列车位置检测与控制装置,确保对列车位置和速度的准确监测和控制。
CBTC系统还需要具备自动列车控制、故障自愈和安全保护等技术功能,以应对各种突发情况和安全风险。
这些技术问题的解决对于CBTC系统的设计和应用具有重要意义,也是当前CBTC系统研究与发展的重点方向。
三、 CBTC系统的控制策略和应用效果CBTC系统的控制策略是保证其安全性和效率的关键。
其控制策略包括列车调度算法、故障自动恢复机制、安全保护策略等内容。
列车调度算法是CBTC系统的核心,其目的是通过动态调整列车运行速度和间距,最大限度地提高轨道交通系统的运行效率。
故障自动恢复机制则是CBTC系统的安全保障之一,通过对列车设备和通信设备的实时监测和故障诊断,及时发现和处置设备故障,确保轨道交通系统的安全运行。
目前,CBTC系统在许多国家和地区都得到了广泛应用,取得了显著的效果,为城市轨道交通的安全和运营效率提供了重要保障。
通过CBTC系统的应用,大大提高了列车运行的安全性和精确度,同时也提升了城市轨道交通系统的整体运行效率和服务水平。
随着智能化技术的发展和应用,CBTC系统在未来将有更广阔的空间和更深远的影响。
地铁C B T C信系统原理及分类WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-地铁CBTC信号系统原理及分类移动闭塞是基于通信技术的列车控制(简称CBTC—Communication Based Train Control)ATC系统,该系统不依靠轨道电路向列控车载设备传递信息,而是利用通信技术实现“车地通信”并实时地传递“列车定位”信息。
通过车载设备、轨旁通信设备实现列车与车站或控制中心之间的信息交换,完成速度控制。
系统通过建立车地之间连续、双向、高速的通信,使列车命令和状态可以在车辆和地面之间进行实时可靠的交换,并确定列车的准确位置及列车间的相对距离,保证列车的安全间隔。
移动闭塞技术是通过车载设备和轨旁设备不间断的双向通信来实现。
列车不间断向控制中心传输其标识、位置、方向和速度等信息,控制中心可以根据列车实时的速度和位置动态计算列车的最大制动距离。
列车的长度加上这一最大制动距离并在列车后方加上一定的防护距离,便组成了一个与列车同步移动的虚拟分区。
由于保证了列车前后的安全距离,两个相邻的移动闭塞分区就能以很小的间隔同时前进,这使列车能以较高的速度和较小的间隔运行,从而提高运营效率。
1.基于基于交叉感应环线技术2.基于无线电台通信技术3.基于漏泄电缆无线传输技术4.基于裂缝波导管无线传输技术1.基于基于交叉感应环线技术以敷设在钢轨间的交叉感应环线作为传输媒介的CBTC系统,在城市轨道交通中已经应用了较长时间。
交叉感应环线的缺点在于,安装在钢轨中间,安装困难且不方便工务部门对钢轨的日常维修,车-地通信的速率低。
但由于环线具有成熟的使用经验,使用寿命长以及投资少等优点,目前仍继续得到应用。
2.基于无线电台通信技术随着无线通信技术的发展,基于自由空间传输的无线传输技术的在CBTC 系统中得到了应用。
无线的频点一般采用共用的或频段,采用接入点(AP)天线作为和列车进行通信的手段。
CBTC工作原理系统结构
CBTC(Communication-Based Train Control,基于通信的列车
控制)是一种先进的列车控制系统,它采用了多个通信技术和算法来实现列车控制和信号传输。
CBTC工作原理和系统结构
如下:
1. 数据通信:CBTC系统采用无线数据通信技术来传输列车位置、速度、状态等信息。
常见的通信技术包括Wi-Fi、无线传
感器网络等。
2. 轨道设备:CBTC系统包括在轨设备,如轨道信号机、传感
器等,用于检测和监测列车的位置、速度、状态等信息,并将其传输给控制中心。
3. 列车设备:列车上安装有CBTC设备,它能够接收轨道设
备传输的信息,并根据这些信息控制列车的运行状态,如速度、加速度等。
4. 控制中心:CBTC系统的控制中心负责管理整个系统,并与
列车设备、轨道设备进行通信,以确保列车的安全运行。
控制中心使用算法来计算列车的轨道位置、运行速度,并将控制信号发送给列车设备。
5. 系统安全:CBTC系统具备多重安全保护措施,如故障检测
和容错机制,以确保列车的安全运行。
当系统出现故障时,CBTC系统能够快速切换到备份系统以保持列车控制。
总之,CBTC是基于通信技术的列车控制系统,它通过无线数据通信、轨道设备、列车设备和控制中心之间的相互作用,实现了对列车运行的精确控制,提高了列车的安全性、运行效率和运行能力。
地铁CBTC信号系统原理及分类移动闭塞是基于通信技术的列车控制(简称CBTC—Communication Based Train Control)ATC系统,该系统不依靠轨道电路向列控车载设备传递信息,而是利用通信技术实现“车地通信”并实时地传递“列车定位”信息。
通过车载设备、轨旁通信设备实现列车与车站或控制中心之间的信息交换,完成速度控制。
系统通过建立车地之间连续、双向、高速的通信,使列车命令和状态可以在车辆和地面之间进行实时可靠的交换,并确定列车的准确位置及列车间的相对距离,保证列车的安全间隔。
移动闭塞技术是通过车载设备和轨旁设备不间断的双向通信来实现。
列车不间断向控制中心传输其标识、位置、方向和速度等信息,控制中心可以根据列车实时的速度和位置动态计算列车的最大制动距离。
列车的长度加上这一最大制动距离并在列车后方加上一定的防护距离,便组成了一个与列车同步移动的虚拟分区。
由于保证了列车前后的安全距离,两个相邻的移动闭塞分区就能以很小的间隔同时前进,这使列车能以较高的速度和较小的间隔运行,从而提高运营效率。
1.基于基于交叉感应环线技术2.基于无线电台通信技术3.基于漏泄电缆无线传输技术4.基于裂缝波导管无线传输技术1.基于基于交叉感应环线技术以敷设在钢轨间的交叉感应环线作为传输媒介的CBTC系统,在城市轨道交通中已经应用了较长时间。
交叉感应环线的缺点在于,安装在钢轨中间,安装困难且不方便工务部门对钢轨的日常维修,车-地通信的速率低。
但由于环线具有成熟的使用经验,使用寿命长以及投资少等优点,目前仍继续得到应用。
2.基于无线电台通信技术随着无线通信技术的发展,基于自由空间传输的无线传输技术的在CBTC 系统中得到了应用。
无线的频点一般采用共用的2.4GHz或5.8GHz频段,采用接入点(AP)天线作为和列车进行通信的手段。
AP的设置保证区间的无线重叠覆盖。
自由空间传输的无线具有自由空间转播,对于车载通信设备的安装位置限制少;传输速率高;实现空间的重叠覆盖,单个接入设备故障不影响系统的正常工作;轨旁设备少,安装与钢轨无关,方便安装及维护的特点。
徐州地铁一号线CBTC信号系统设计摘要:CBTC技术是一种采用先进的通信、计算机技术,连续控制、监测列车运行的移动闭塞方式,实现列车与轨旁设备实时双向通信且信息量大。
本文重点介绍了徐州地铁一号线CBTC信号系统的设计,详细阐述了CBTC系统的总体构成、主要功能及系统原理。
关键词:CBTC;ATP;ATS;ATO;联锁徐州市城市轨道交通一号线一期工程西端起点位于龟山西侧的路窝村站,止于高铁徐州东站站,采用高可靠、高安全、先进的、完善的CBTC 信号系统。
1CBTC系统总体构成正线配置完整的ATC系统,包括列车自动监控子系统、连续式列车移动控制子系统、计算机联锁子系统,以及数据通信子系统,正线信号系统的构成。
此外,在控制中心、设备集中站和维护部配置了相应的维护监测子系统设备。
试车线配置与正线一致的ATP轨旁设备及相应的试验设备,提供试车功能。
培训中心设置具有地面和车载ATC功能培训设施,提供培训功能。
车辆段/停车场配置相应的信号设备。
ATS子系统由控制中心设备和分布于全线设备集中站、非设备集中站设备组成,通过冗余的网络连接。
控制中心的应用服务器和数据库服务器充分考虑了冗余设置,以便提高系统的可用度。
当一台服务器故障时系统自动切换到备机运行,不影响系统的正常运行。
ATP/ATO子系统在连续式通信条件下,列车自动防护和列车自动驾驶功能保证列车的安全监督和连续运行。
正线联锁子系统配置了3套西门子SICAS联锁,位于杏山子、徐州火车站及徐州东站。
车辆段/停车场系统由联锁系统和信号集中监测设备构成。
联锁系统是一个SIL4级别的安全子系统,可以保证安全高效的控制进路,管理现场转辙机,信号机等室外设备。
DCS子系统由多个物理完全独立的子系统有线网络和车-地通信无线网络组成。
无线LTE通信系统,为轨旁和车载子系统之间提供了透明、连续、双向、基于LTE的数据传输,保证了列车控制应用系统在轨道交通系统中的通畅运行以及车地之间连续大容量的数据传输,通信通过漏缆实现。
简述CBTC的工作原理及其应用1. CBTC概述CBTC(Communication-Based Train Control)是一种基于通信技术的列车控制系统,它在列车和信号系统之间使用无线通信技术进行数据传输,实现对列车的高度自动化控制。
CBTC通过实时监控列车位置和运行速度,提高了列车运行的效率和安全性。
2. CBTC的工作原理CBTC的工作原理可以概括为以下几个步骤:2.1 列车定位CBTC系统使用各种传感器和定位技术来准确监测列车的位置。
这些传感器可以是轨道侧安装的设备,也可以是装在列车上的设备。
列车位置的准确测量对CBTC系统的正常运行至关重要。
2.2 数据通信CBTC系统使用无线通信技术,在列车和信号系统之间传输数据。
这些数据包括列车当前的位置、速度、目标站点等信息。
通过实时传输数据,CBTC系统能够迅速做出调度决策,提高列车运行的灵活性和效率。
2.3 列车控制CBTC系统根据接收到的数据和预设的列车运行规则,控制列车的运行。
它可以自动控制列车的加速、减速、停车等操作,以保证列车在安全范围内运行。
CBTC系统还可以根据实时交通情况做出决策,优化列车的调度,减少延误。
2.4 安全保护CBTC系统具有多重安全保护机制,以确保列车运行的安全性。
例如,CBTC系统可以监测列车与其他列车之间的最小安全间距,并在接近危险情况时发出警报。
同时,CBTC还可以监测电力供应、信号灯等设备的状态,及时发现并解决潜在的故障。
3. CBTC的应用CBTC系统已广泛应用于城市轨道交通系统,并取得了显著的效果。
以下是CBTC在交通领域的主要应用:3.1 增加运行容量CBTC系统可以提高列车运行的效率,减少车辆之间的最小间距,从而增加线路的运行容量。
通过实时调度和自适应控制,CBTC系统能够更有效地利用轨道资源,减少拥堵和延误。
3.2 提高安全性CBTC系统具有高度自动化的列车控制功能,可以实时监测列车的位置和运行情况,并进行精确的调度。
地铁CBTC信号系统原理及分类移动闭塞是基于通信技术的列车控制(简称CBTC—Communication Based Train Control)ATC系统,该系统不依靠轨道电路向列控车载设备传递信息,而是利用通信技术实现“车地通信”并实时地传递“列车定位”信息。
通过车载设备、轨旁通信设备实现列车与车站或控制中心之间的信息交换,完成速度控制。
系统通过建立车地之间连续、双向、高速的通信,使列车命令和状态可以在车辆和地面之间进行实时可靠的交换,并确定列车的准确位置及列车间的相对距离,保证列车的安全间隔。
移动闭塞技术是通过车载设备和轨旁设备不间断的双向通信来实现。
列车不间断向控制中心传输其标识、位置、方向和速度等信息,控制中心可以根据列车实时的速度和位置动态计算列车的最大制动距离。
列车的长度加上这一最大制动距离并在列车后方加上一定的防护距离,便组成了一个与列车同步移动的虚拟分区。
由于保证了列车前后的安全距离,两个相邻的移动闭塞分区就能以很小的间隔同时前进,这使列车能以较高的速度和较小的间隔运行,从而提高运营效率。
1.基于基于交叉感应环线技术2.基于无线电台通信技术3.基于漏泄电缆无线传输技术4.基于裂缝波导管无线传输技术1.基于基于交叉感应环线技术以敷设在钢轨间的交叉感应环线作为传输媒介的CBTC系统,在城市轨道交通中已经应用了较长时间。
交叉感应环线的缺点在于,安装在钢轨中间,安装困难且不方便工务部门对钢轨的日常维修,车-地通信的速率低。
但由于环线具有成熟的使用经验,使用寿命长以及投资少等优点,目前仍继续得到应用。
2.基于无线电台通信技术随着无线通信技术的发展,基于自由空间传输的无线传输技术的在CBTC 系统中得到了应用。
无线的频点一般采用共用的2.4GHz或5.8GHz频段,采用接入点(AP)天线作为和列车进行通信的手段。
AP的设置保证区间的无线重叠覆盖。
自由空间传输的无线具有自由空间转播,对于车载通信设备的安装位置限制少;传输速率高;实现空间的重叠覆盖,单个接入设备故障不影响系统的正常工作;轨旁设备少,安装与钢轨无关,方便安装及维护的特点。
地铁CBTC信号系统原理及分类
移动闭塞是基于通信技术的列车控制(简称CBTC—Communication Based Train Control)ATC系统,该系统不依靠轨道电路向列控车载设备传递信息,而是利用通信技术实现“车地通信”并实时地传递“列车定位”信息。
通过车载设备、轨旁通信设备实现列车与车站或控制中心之间的信息交换,完成速度控制。
系统通过建立车地之间连续、双向、高速的通信,使列车命令和状态可以在车辆和地面之间进行实时可靠的交换,并确定列车的准确位置及列车间的相对距离,保证列车的安全间隔。
移动闭塞技术是通过车载设备和轨旁设备不间断的双向通信来实现。
列车不间断向控制中心传输其标识、位置、方向和速度等信息,控制中心可以根据列车实时的速度和位置动态计算列车的最大制动距离。
列车的长度加上这一最大制动距离并在列车后方加上一定的防护距离,便组成了一个与列车同步移动的虚拟分区。
由于保证了列车前后的安全距离,两个相邻的移动闭塞分区就能以很小的间隔同时前进,这使列车能以较高的速度和较小的间隔运行,从而提高运营效率。
1.基于基于交叉感应环线技术
2.基于无线电台通信技术
3.基于漏泄电缆无线传输技术
4.基于裂缝波导管无线传输技术
1.基于基于交叉感应环线技术
以敷设在钢轨间的交叉感应环线作为传输媒介的CBTC系统,在城市轨道交通中已经应用了较长时间。
交叉感应环线的缺点在于,安装在钢轨中间,安装困难且不方便工务部门对钢轨的日常维修,车-地通信的速率低。
但由于环线具有成熟的使用经验,使用寿命长以及投资少等优点,目前仍继续得到应用。
2.基于无线电台通信技术
随着无线通信技术的发展,基于自由空间传输的无线传输技术的在CBTC 系统中得到了应用。
无线的频点一般采用共用的2.4GHz或5.8GHz频段,采用接入点(AP)天线作为和列车进行通信的手段。
AP的设置保证区间的无线重叠覆盖。
自由空间传输的无线具有自由空间转播,对于车载通信设备的安装位置限制少;传输速率高;实现空间的重叠覆盖,单个接入设备故障不影响系统的正常工作;轨旁设备少,安装与钢轨无关,方便安装及维护的特点。
基于无线电台通信传输方式CBTC系统,已经在北京地铁10号线成功应用。
3.基于漏泄电缆无线传输技术
Alstom的CBTC系统在需要的时候也可采用漏泄电缆传输方式,而新研发的系统采用的不多。
漏泄电缆方式特点是场强覆盖较好、可控,抗干扰能力强。
单点AP的控制距离通常达800m(每侧漏泄电缆长度400m)。
缺点是漏泄同轴电缆价格较高。
4.基于裂缝波导管无线传输技术
采用波导系统作为车地双向传输地媒介。
即采用沿线铺设的裂缝波导及与波导连接的无线接入点作为轨旁与列车的双向传输通道。
该系统的波导系统具有通信容量大,可在隧道及弯曲通道中传输、干扰及衰耗小、无其他车辆引起的传输反射、可在密集城区传输等特点。
波导的另一个优点是传输速率大,可以满足列车控制系统的需要。
波导的缺点在于安装困难,需全线沿线路安装波导管,安装维护复杂,并且造价高。
北京地铁2号线、机场线均采用裂缝波导管传输技术。