细菌药敏试验及耐药机制的研究
- 格式:ppt
- 大小:3.25 MB
- 文档页数:49
第章细菌药敏试验及其耐药表型检测细菌药敏试验是临床细菌感染治疗中非常重要的检测手段,通过该技术可以检测不同抗生素对细菌的敏感性,进而为合理使用抗生素提供科学的依据。
然而,在临床应用过程中,随着抗生素不合理使用的增加,细菌耐药性也随之快速发展。
因此,针对不同耐药表型的检测越来越受到关注。
一、细菌药敏试验细菌药敏试验是一种用于判断细菌对不同抗生素敏感性的方法。
常见的细菌药敏试验方法包括纸片扩散法、E测试、革兰氏染色法、微量稀释法等。
其中纸片扩散法是最常用的一种方法,其原理是将待检细菌涂在琼脂平板上,然后在板上放置一些含有不同抗菌药物的试纸,细菌耐药性差的部分会被试纸上的抗生素杀灭,出现纯净孔(抑菌圈),通过抑菌圈的直径可以初步判断细菌对抗生素的敏感性或耐药性。
细菌药敏试验有很多应用价值,如能够帮助医生选择合适的抗生素治疗细菌感染,避免了不必要的抗生素使用,同时也可作为科研人员研究细菌抗药机制的工具,为抗菌药物的开发提供依据。
二、耐药表型检测随着细菌抗药性问题的不断加重,对不同耐药表型检测的需求也越来越迫切。
耐药表型是指细菌对特定抗生素的耐药情况。
由于不同的细菌及其不同的菌株对抗生素的敏感程度有所不同,因此抗菌药物在应用过程中会出现不同菌株对不同药物的耐药表型。
目前,针对不同耐药表型检测的方法主要有两种:基于分子生物学技术的方法和基于药敏试验的方法。
1. 基于分子生物学技术的方法基于分子生物学技术的方法是检测细菌耐药性最常用的方法之一。
该方法通过检测细菌中特定的基因或者基因片段,以此确定细菌耐药性的表型。
常见的基于分子生物学技术的方法包括PCR检测、基因芯片技术、实时荧光定量PCR等。
2. 基于药敏试验的方法基于药敏试验的方法是已经成熟的检测方法之一,其通过将药敏试验的结果与临床药物疗效相结合,进而确定细菌耐药性表型。
通过检测不同抗生素对不同菌株的敏感性,可以初步反映出细菌的耐药性状态。
当然,这种方法不仅涉及到耗时、耗材、人力等成本的问题,而且还受到试验条件、条件操作等方面的影响。
药敏试验实验报告实验目的,通过对不同抗生素对细菌的敏感性进行测试,以确定最有效的药物治疗方案。
实验方法,首先,我们收集了一系列不同类型的细菌样本,包括革兰氏阳性菌和革兰氏阴性菌。
然后,我们按照标准程序将这些细菌培养在含有不同抗生素的琼脂平板上。
接着,我们观察并记录了每种细菌对不同抗生素的抗性情况。
最后,我们对实验数据进行了统计分析。
实验结果,经过实验,我们发现不同类型的细菌对抗生素的敏感性存在较大差异。
其中,革兰氏阳性菌对青霉素类抗生素表现出较高的敏感性,而对大多数氨基糖苷类抗生素则表现出较低的敏感性。
而革兰氏阴性菌对氨基糖苷类抗生素的敏感性较高,对青霉素类抗生素的敏感性较低。
此外,我们还发现了一些细菌对某些抗生素存在耐药性的情况。
实验结论,根据实验结果,我们可以得出以下结论,首先,不同类型的细菌对抗生素的敏感性存在差异,因此在临床治疗中应根据具体情况选择合适的抗生素。
其次,细菌对某些抗生素存在耐药性,这需要引起临床医生的重视,避免不必要的用药。
最后,本实验为临床抗生素治疗提供了重要的参考依据。
实验意义,本实验结果对于临床治疗具有一定的指导意义,可以帮助医生更科学地选择抗生素,提高治疗效果,减少药物滥用,降低细菌耐药性的风险。
实验不足,虽然本实验取得了一定的成果,但也存在一些不足之处。
例如,样本数量较少,实验过程中可能存在一些误差,需要进一步扩大样本量,加强实验设计,提高实验数据的可靠性。
总结,通过本次药敏试验实验,我们对不同类型细菌对抗生素的敏感性有了更深入的了解,为临床治疗提供了重要的参考依据。
希望今后能够进一步完善实验设计,提高实验数据的准确性,为临床治疗提供更多有益的信息。
脓肿分枝杆菌复合群药敏试验及耐药机制研究进展郭明日,朱彧△,孙海柏摘要:脓肿分枝杆菌复合群是非结核分枝杆菌病中最常见的快速生长型分枝杆菌之一,对大多数抗结核药物耐药,临床治疗难度大。
脓肿分枝杆菌复合群的3个亚种对多种抗生素的敏感性存在较大差异,临床实验室对其3个亚种的准确分型鉴定对于治疗药物的选择有重要价值。
中华医学会结核病学分会制定了非结核分枝杆菌病诊断与治疗指南(2020版),按照美国临床和实验室标准协会(CLSI )分枝杆菌药敏试验标准(2018版)进行脓肿分枝杆菌药敏试验,建议根据药敏试验结果选用多药联合治疗方案。
现就脓肿分枝杆菌复合群药敏试验及对主要治疗药物的耐药机制的研究进展进行综述。
关键词:非结核分枝杆菌;微生物敏感性试验;抗药性,细菌;抗菌药;脓肿分枝杆菌复合群中图分类号:R446.5文献标志码:ADOI :10.11958/20211209Research progress on drug sensitivity test and drug resistance mechanism ofMycobacterium abscessus complexGUO Ming-ri,ZHU Yu △,SUN Hai-bai Department of Clinical Laboratory,Haihe Hospital,Tianjin University,China Key Research Laboratory for Infectious DiseasePrevention for State Administration of Traditional Chinese Medicine,Tianjin 300350,China△ReviserE-mail:***************Abstract:Mycobacterium abscessus complex (MABC)is one of the most common fast-growing mycobacteria innontuberculosis mycobacterial diseases.Drug resistance to most of the antituberculosis drugs makes its clinical teratment very difficult.There are great differences in the sensitivity of the three subspecies of MABC to a variety of antibiotics.The accurate typing and identification of the three subspecies in clinical laboratory is of great value for the selection of therapeutic drugs.The tuberculosis branch of Chinese Medicine Association has formulated the guideline for the diagnosisand treatment of nontuberculosis mycobacterial disease (2020Edition),MABC susceptibility test should be carried out according to the standard of mycobacterium susceptibility test from Clinical and Laboratory Standards Institute (CLSI)of theUnited States (2018Edition).It is suggested that multidrug combination therapy should be selected according to the results of drug sensitivity test.In order to provide reference for related research,this paper reviewed the progress of drug sensitivitytest of MABC and its resistance mechanism to main therapeutic drugs.Key words:nontuberculous mycobacteria;microbial sensitivity tests;drug resistance,bacterial;anti-bacterial agents;Mycobacterium abscessus complex基金项目:2020年度天津市卫生健康科技项目(ZC20102);天津市津南区科技局科技项目(201805003)作者单位:天津市海河医院、天津大学海河医院检验科;国家中医药管理局传染病重点研究室(邮编300350)作者简介:郭明日(1982),男,硕士,副主任检验师,主要从事病原菌分子耐药及鉴定方面研究。
为了研究细菌耐药性及其产生机制,本实验选取金黄色葡萄球菌作为研究对象,通过体外实验探究阿莫西林克拉维酸钾对金黄色葡萄球菌的最低杀菌浓度(MBC)和最小抑菌浓度(MIC)的影响,并分析其耐药性产生的原因。
二、实验材料1. 实验菌株:金黄色葡萄球菌标准菌株ATCC292132. 抗菌药物:阿莫西林克拉维酸钾3. 培养基:营养肉汤、营养琼脂4. 仪器设备:全自动微生物药敏鉴定仪、微量稀释器、恒温培养箱、移液器、离心机等三、实验方法1. 菌株活化:将金黄色葡萄球菌标准菌株ATCC29213接种于营养肉汤中,37℃恒温培养18-24小时,待菌液浓度达到1×10^8 CFU/mL时,用于后续实验。
2. MBC测定:采用微量稀释法,将阿莫西林克拉维酸钾药物浓度梯度稀释至1/2MIC,将活化后的金黄色葡萄球菌菌液按1:100的比例加入至稀释后的药物中,混匀后置于恒温培养箱中培养24小时,观察细菌生长情况,以无菌生长的最低药物浓度为MBC。
3. MIC测定:采用微量稀释法,将阿莫西林克拉维酸钾药物浓度梯度稀释至1/2MIC,将活化后的金黄色葡萄球菌菌液按1:100的比例加入至稀释后的药物中,混匀后置于恒温培养箱中培养24小时,观察细菌生长情况,以抑制细菌生长的最低药物浓度为MIC。
4. 耐药性分析:将金黄色葡萄球菌进行多步体外诱导试验,观察其在阿莫西林克拉维酸钾作用下耐药性的变化。
四、实验结果1. MBC和MIC测定结果:金黄色葡萄球菌对阿莫西林克拉维酸钾的MBC为16μg/mL,MIC为8μg/mL。
2. 耐药性分析结果:经过34天诱导后,金黄色葡萄球菌对阿莫西林克拉维酸钾的耐药性明显增强,MBC值是标准菌株MBC值的32倍。
1. 本实验结果显示,金黄色葡萄球菌对阿莫西林克拉维酸钾的耐药性随诱导时间的延长而逐渐增强,这可能与细菌产生的β-内酰胺酶有关。
β-内酰胺酶是一种能够水解β-内酰胺类抗生素的酶,导致药物失活,从而产生耐药性。
药敏试验原理
药敏试验是一种用来测试细菌对抗生素的敏感性的实验方法。
它可以帮助医生选择最有效的抗生素治疗感染,避免使用对细菌无效的抗生素,从而减少抗生素滥用和耐药性的发展。
药敏试验原理是基于细菌对抗生素的敏感性和耐药性,通过一系列的实验步骤来确定细菌对不同抗生素的敏感程度,从而为临床治疗提供指导。
首先,需要收集患者的痰液、血液或尿液等样本,分离出感染的细菌。
然后将这些细菌培养在含有各种抗生素的琼脂平板上,观察并记录细菌在不同抗生素下的生长情况。
通过比较不同抗生素对细菌的杀菌效果,可以确定细菌对抗生素的敏感性。
在药敏试验中,通常会使用一系列的抗生素,包括青霉素、头孢菌素、氨基糖苷类抗生素等。
这些抗生素代表了不同的药物类别和作用机制,可以全面评估细菌的耐药性。
通过观察细菌在不同抗生素下的生长情况,可以确定细菌对各种抗生素的敏感性,从而为临床治疗提供参考依据。
在进行药敏试验时,需要严格遵守操作规程,确保实验结果的准确性和可靠性。
同时,还需要考虑到不同细菌对抗生素的敏感性
可能存在差异,因此在选择抗生素治疗时,需要根据具体的细菌种类和药敏试验结果来进行个体化治疗。
总的来说,药敏试验是一种非常重要的临床实验方法,可以帮助医生选择最有效的抗生素治疗感染,减少抗生素滥用和耐药性的发展。
通过对细菌对抗生素的敏感性进行评估,可以为临床治疗提供科学依据,提高治疗效果,减少并发症的发生,对于维护患者的健康具有重要意义。
研究发现新型细菌抗生素对耐药性细菌的有效性实验报告近年来,细菌耐药性的问题日益严重,抗生素的有效性在医疗领域中备受关注。
为了探究新型细菌抗生素对耐药性细菌的有效性,我们进行了一系列的实验研究。
实验设计:我们选取了多种常见的耐药性细菌株进行实验,包括金黄色葡萄球菌、大肠杆菌等。
在实验开始前,我们对这些细菌株进行了药敏试验,确认其对传统抗生素的耐药性。
实验组分别接种了新型细菌抗生素及常规抗生素,对照组接种了常规抗生素。
我们观察了两组细菌的生长情况、细菌数量以及药物的杀菌效果。
实验结果:经过一段时间的观察,我们得出了以下结论:1. 新型细菌抗生素对耐药性细菌具有较强的抑制作用。
与常规抗生素相比,新型细菌抗生素能够更有效地控制细菌的生长,抑制其扩散。
2. 对照组的细菌在常规抗生素的作用下,细菌数量没有显著下降,甚至有些细菌株还表现出了抗药性进一步增强的趋势。
3. 在新型细菌抗生素的作用下,细菌数量迅速减少,并且在一段时间后保持较低的水平。
这说明新型细菌抗生素对耐药性细菌具有较好的杀菌效果。
实验分析:新型细菌抗生素的出现对抗药性细菌的治疗提供了新的希望。
与传统抗生素相比,新型细菌抗生素具有以下优势:1. 新型细菌抗生素采用了不同的作用机制,能够抑制细菌生长的不同环节,从而降低细菌产生耐药性的风险。
2. 对于多重耐药的细菌株,传统抗生素往往无法达到理想的治疗效果。
而新型细菌抗生素在这方面表现出了明显的优势,能够有效地杀灭这些耐药性细菌。
3. 新型细菌抗生素在药物的安全性上也有所改进,减少了对人体的不良反应。
实验结论:本次实验结果证实了新型细菌抗生素对耐药性细菌的有效性,为解决细菌耐药性问题提供了新的选择。
然而,需要进一步的研究来确定新型细菌抗生素的药物安全性以及耐药性的产生机制。
我们希望通过不断的探索和创新,为医疗领域提供更好的抗生素治疗方案,抑制细菌耐药性的持续发展,保护人类健康。
细菌耐药——挑战与对策自19 世纪晚期德国科学家Robert Koch 证实了感染性疾病的细菌起源学说起,人类一直致力于与细菌感染性疾病的斗争。
以青霉素为代表的抗生素的发现和发明,曾一度有效控制了细菌感染性疾病。
人们在庆幸一代又一代新型广谱高效抗菌药物出现的同时,也惊叹越来越多的耐药菌株种类和越来越高的耐药比例。
细菌耐药已经成为严重的公共卫生问题,而且其发展速度远远超过抗菌药物研制,有专家预言,长此以往,人类将再次陷入对细菌感染无药可治的困境,即进入“后抗生素时代”。
通过对细菌耐药机制的研究来研发新的抗菌药物、正确合理应用现有抗菌药物是应对这种挑战的关键。
一、细菌耐药机制细菌耐药的原因很复杂,抗菌药物滥用所造成的压力使细菌产生获得性耐药,如产生各种灭活酶或钝化酶、抗生素结合位点改变、细胞膜通透性改变、泵出机制。
研究者和临床工作者近年来发现细菌表现为生物被膜的多细胞结构群体也是临床上抗菌药物治疗无效的重要原因。
美国疾病预防与控制中心(CDC)的研究结果表明,约65%的感染性疾病与细菌生物被膜有关,这也是抗感染治疗面临的新挑战。
细菌生物被膜是指附着在有生命或无生命物体表面的由细菌自身产生的胞外多聚基质包裹的菌细胞结构群体。
与浮游细菌相比,生物被膜细菌对抗菌药物的抗性可提高10-1000 倍,现有药物难以清除生物被膜,造成感染反复发作。
本课题组曾对铜绿假单胞菌生物被膜的胞外多糖主要成分之一——藻酸盐做过深入研究,并从临床一位反复肺部感染的老年患者的痰标本中分离出一株含新的mucA 基因突变的黏液型铜绿假单胞菌。
本课题组通过同源重组对改突变基因的功能进行了研究,目前的结果表明该新型突变的mucA 基因通过藻酸盐以外的途径影响铜绿假单胞菌生物被膜的形成和耐药。
进一步的深入研究还在进行中。
二、中国细菌耐药流行趋势根据中国CHINET 2005 年度的调查结果,甲氧西林耐药金黄色葡萄球菌(MRS A)与甲氧西林耐药凝固酶阴性葡萄球菌(MRCNS)的检出率分别为69%与82%,明显高于2002-2003 年度的调查结果(分别为41.0%与29.1%)。