所以 x x 10m (a1 1) 10n1 1 10mn1
2(a1 1)
2
x至少有n位有效数字.
1.2.3、数值运算的误差估计
(1).
( x1
x
2
)
( x1 )
(
x
2
)
(2).
(
x1
x
2
)
x1
(
x
2
)
x
2
(
x1
)
(3).
x1
x
2
x1
(
x
2
)
x
2
(
x1
)
x
2
1.2.2、误差与有效数字
1.误差
定义1、(误差的定义 ) 设x 精确值, x 近似值,称e x x为 绝对误差(误差).
当e 0时称为强近似, 当e 0时称为弱近似.
如果 e x x ,( ( x )),那么称 为
绝对误差限 .
若
称er
e
x
e
x
r
,
(
r
x x
定义2、
若x的近似值x的误差限是某一位的半 个单位, 该位到x的第一位非零数字共有 n位,就说x有n位 有效数字.它可表示为 x 10m (a1 a2 101 a2 102 ... an 10n1 ) 其中ai (i 1,2,3,..., n)是0到9中的一个数字, a1 0, m为 整数, 且 x x 1 10mn1.
x 10mn1 a1a2a3 ...an 10m a1 • a2a3 ...an .
称x有n位有效数字, a1 , a2 ,..., an是x的有效数字.
总之,当 x x 1 10mn1时, x有n位有效数字.