数值分析
第二章 矩阵分析基础
第一节 线性空间 第二节 赋范线性空间 第三节 内积空间 第四节 矩阵代数基础 第五节 矩阵的三角分解 第六节 矩阵的正交分解 第七节 矩阵的奇异值分解
数值分析
数值分析
第一节 线性空间
一、线性空间的定义 二、线性空间的性质 三、线性空间的基与维数 四、元素在给定基下的坐标 五、线性空间的同构 六、基变换公式与过渡矩阵 七、坐标变换公式 八、线性空间的子空间
f ( x) C[a, b], R
数值分析
数值分析
(2)一个集合,如果定义的加法和数乘运 算不是通常的实数间的加乘运算,则必需检验是 否满足八条线性运算规律.
例6 正实数的全体,记作 R ,在其中定义加法
及乘数运算为
a b ab, a a , R,a,b R .
P[ x]n 对运算封闭.
数值分析
数值分析
例3 n次多项式的全体 Q[ x]n { p( x) an xn a1 x a0 an , , a1, a0 R,且an 0}
对于通常的多项式加法和数乘运算不构成线性空间. 0 p 0 xn 0x 0 Q[ x]n
数乘
A (aij )mn Rmn , R
所以Rmn是线性空间。
数值分析
数值分析
例2 次数不超过n的多项式的全体,记作P[ x]n ,即
P[ x]n { p( x) an xn a1 x a0 an , , a1, a0 R},
对于通常的多项式加法, 数乘多项式的乘法构成线性
数值分析
数值分析
(3)Rn中定义的加法和数乘运算满足代数 运算的八条公理:
1. x y y x