22-1基础物理学讲义Electromagnetic Waves
- 格式:ppt
- 大小:1.10 MB
- 文档页数:27
Electromagnetic Fields and Electromagnetic Waves: An Exploration of Their Abbreviations In the vast and intricate realm of physics, electromagnetic fields and electromagnetic waves occupy a central and fundamental position. These phenomena, which underlie much of our modern technology, are often abbreviated for brevity and efficiency. Understanding these abbreviations not only aids in the comprehension of physics concepts but also facilitates communication among expertsin the field.The abbreviation "EMF" is commonly used to refer to electromagnetic fields. This abbreviation encapsulates the interaction between electric and magnetic fields, which together form a dynamic and pervasive force in nature. Electromagnetic fields are generated by charged particles and affect the behavior of other charged particles, creating a rich and complex tapestry of interactions.Electromagnetic waves, on the other hand, are often abbreviated as "EMW." These waves propagate through space at the speed of light, carrying energy and information. They are the basis for radio waves, microwaves, infraredradiation, visible light, ultraviolet radiation, X-rays, and gamma rays, among others. Each type of electromagnetic wave has unique properties and applications, ranging from wireless communication to medical imaging.The abbreviations "EMF" and "EMW" serve as shorthandfor complex and multifaceted concepts. However, it is important to note that these abbreviations should not be confused with each other. While both refer to electromagnetic phenomena, they describe distinct aspects of this vast and fascinating field.Electromagnetic fields (EMF) describe the interaction of electric and magnetic fields, while electromagnetic waves (EMW) refer to the propagation of energy and information through space. Understanding the distinction between these abbreviations is crucial for accurately communicating and comprehending electromagnetic phenomena. In conclusion, electromagnetic fields and electromagnetic waves are fundamental concepts in physics, with abbreviations "EMF" and "EMW" serving as shorthand for brevity and efficiency. Understanding these abbreviations and their respective meanings is essential forcomprehending the intricate and vast world of electromagnetic phenomena.**电磁场与电磁波:探索它们的缩写**在物理学的广阔而复杂的领域中,电磁场与电磁波占据着中心且基础的位置。
Physics in EnglishThe scientist does not study nature because it is useful;he studies it because he delights in it,and he delights in it because it is beautiful.If nature were not beautiful,it would not be worth knowing,and if nature were not worth knowing,life would not be worth living."------ Henri PoincareDepartment of PhysicsSchool of scienceXian Technological University 2012.9Chapter 1 What is Physics?Physics is natural science studying nature's LawsPhysics was called natural philosophy and fundamental science.The history of physicsThe history of physics encompasses two broad time periods in which classical physics and modern physics developed. Classical physics developed between 1600 and 1900. It embraces the general areas of physics known as mechanics, thermodynamics, and electromagnetism, culminating in relativity. Modern physics began developing between about 1890 and 1930, when it was realized that classical physics could not account for the newly discovered behavior of nature at the atomic and molecular level. Modern physics includes the theory of relativity as well as quantum mechanics and most of the subsequent new physics discovered and developed during the 20th century.Classical physicsClassical physics includes the traditional branches and topics that were recognized and well-developed before the beginning of the 20th century—classical mechanics, optics, thermodynamics, and electromagnetism. Classical mechanics is concerned with bodies acted on by forces and bodies in motion and may be divided into statics (study of the forces on a body or bodies at rest), kinematics (study of motion without regard to its causes), and dynamics (study of motion and the forces that affect it); Acoustics, the study of sound, is often considered a branch of mechanics because sound is due to the motions of the particles of air or other medium through which sound waves can travel and thus can be explained in terms of the laws of mechanics. Among the important modern branches of acoustics is ultrasonics, the study of sound waves of very high frequency beyond the range of human hearing. Optics, the study of light, is concerned not only with visible light but also with infrared and ultraviolet radiation, which exhibit all of the phenomena of visible light except visibility, e.g., reflection, refraction, interference, diffraction, dispersion, and polarization of light. Heat is a form of energy, the internal energy possessed by the particles of which a substance is composed; thermodynamics deals with the relationships between heat and other forms of energy. Electricity and magnetism have been studied as a single branch of physics since the intimate connection between them was discovered in the early 19th century; an electric current gives rise to a magnetic field and a changing magnetic field induces an electric current. Electrostatics deals with electric charges at rest, electrodynamics with moving charges, and magnetostatics with magnetic poles at restThe Emergence of Classical PhysicsClassical mechanics has its roots in the work of Johannes Kepler, who, between 1600 and 1619, became the first person to describe quantitatively and accurately the elliptic paths of the planets around the Sun.The problem of the shape of the planetary orbits was not easy to solve, because all historical observations of the planets were made from the Earth, itself a moving planet. Although a crude heliocentric(Sun-centered) model of the solar system using circular orbits was proposed by the Greek astronomer Aristarchus in the third century B.C. and resurrected by Copernicus in 1542,the planetary positions predicted by Copernicus were not as accurate as those found using Ptolemy's complicated geocentric (Earth-centered} model of the second century A.D.The pure Copernican model was inaccurate because Copernicus refused to abandon the flawed concept of early Greek thought that the natural path of a moving "perfect" celestial object, such as a planet, had to be in the shape of the "perfect" geometrical figure---a circle---with the planet moving at constant speed. a scientist living at the time of Copernicus would have been forced to reject the Copernican theory with its circular planetary orbits, since they did not account for the observed motions of the planets as accurately as the existing, but more complicated, geocentric theory of Ptolemy.The change from the accurate but complex Ptolemaic geocentric model of the solar system to the accurate and simple heliocentric model of Kepler illustrates the characteristics of a good theory. With Kepler's work, accuracy and simplicity blossomed simultaneously from the heliocentric hypothesis. Kepler's model and mathematical methods began the development of physics as we know it. His work was a watershed of quantitative thought and a new worldview.Observation of nature and experimental results typically precede the general theories that account for them. The extensive observations of the planets by Tycho Brahe just prior to 1600 provided Kepler with the data he needed to model the solar system accurately and precisely。
物理电学完整知识点物理电学是物理学中研究电荷、电场、电流、电压、电阻、电容、电感以及电磁现象的分支。
以下是物理电学的完整知识点概述:1. 电荷(Charge)- 基本粒子的属性,分为正电荷和负电荷。
- 电荷守恒定律:在一个封闭系统中,总电荷量保持不变。
2. 电场(Electric Field)- 电荷周围存在的一种力场,可以对其他电荷施加力。
- 电场强度(E):单位正电荷在电场中受到的力。
- 电场线:表示电场方向和强度的虚拟线条。
3. 电势(Electric Potential)- 电荷在电场中具有的势能,与电场强度和距离有关。
- 电势差(Voltage, V):两点间的电势能差。
4. 电流(Electric Current, I)- 电荷的流动,单位时间内通过导体横截面的电荷量。
- 电流的方向:正电荷移动的方向。
5. 电阻(Resistance, R)- 导体对电流的阻碍作用,与材料的性质、温度、长度和截面积有关。
- 欧姆定律:V = IR,电压与电流和电阻成正比。
6. 电容(Capacitance, C)- 存储电荷的能力,与两个导体板的面积、板间距和介电常数有关。
- 充电和放电过程:电容器在充电时存储能量,在放电时释放能量。
7. 电感(Inductance, L)- 线圈对电流变化的抵抗能力,与线圈的匝数、面积和材料有关。
- 感应电动势:当电流通过线圈时,会在其周围产生变化的磁场,从而在线圈中产生感应电动势。
8. 电磁感应(Electromagnetic Induction)- 变化的磁场可以在导体中产生电动势。
- 法拉第电磁感应定律和楞次定律描述了电磁感应的基本原理。
9. 电路(Circuit)- 由电源、导线、电阻、电容、电感等元件组成的闭合路径。
- 串联和并联电路:元件连接的方式影响电流和电压的分布。
10. 直流电(DC)与交流电(AC)- 直流电:电流方向和大小不随时间变化。
- 交流电:电流方向和大小随时间周期性变化。
《电磁场与电磁波》课程教学大纲一、课程基本信息课程代码:课程名称:电磁场与电磁波英文名称:Electromagnetic Fields and Electromagnetic Waves课程类别:专业基础课学时:63学分:3适用对象: 电子信息专业考核方式:考试先修课程:大学物理、高等数学与工程数学(包括矢量分析,场论和数理方程等)二、课程简介电磁场与电磁波是通信技术的理论基础,是电子信息专业本科学生的知识结构中重要组成部分。
本课程使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。
使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。
培养学生正确的思维方法和分析问题的能力,使学生学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。
为后续课程打下坚实的理论基础。
Electromagnetic Field and Electromagnetic Wave is the theoretical foundation of communication technology, it is one of the most important components of the knowledge structerue for undergraduate students who major in information and electronic. Electromagnetic Field and Electromagnetic Wave make students grasp the theorem and the physical meaning of the Maxwell equations and mathematical expressions. It also make students grasp building method and analyzing method of some important mathematical model (such as wave equation,Laplace equation). This course trains students on the proper ways of thinking and ability to analyze issues, It also provides a solid theoretical foundation for following courses.三、课程性质与教学目的一切电现象,都会产生电磁场,而电磁波的辐射与传播规律,更是一切无线电活动的基础。
电磁波和核磁共振(Nuclear Magnetic Resonance,简称NMR)是物理学和化学领域中的两个重要概念,它们之间有一定的关联。
1. 电磁波(Electromagnetic Waves):
- 电磁波是由电场和磁场相互耦合而产生的波动现象。
它们是一种无质量的能量传播方式,可以在真空中传播,速度等于光速。
- 电磁波的典型例子包括可见光、无线电波、微波、红外线、紫外线、X射线和γ射线等。
- 电磁波具有不同的波长和频率,可以用于许多应用,包括通信、成像、加热和科学研究等。
2. 核磁共振(Nuclear Magnetic Resonance,NMR):
- 核磁共振是一种用于分析样本中核自旋的技术。
它广泛应用于化学、生物化学、药物研发和医学等领域。
- 在NMR中,样本放置在强磁场中,核自旋(通常是氢、碳、氮等核子的自旋)会在特定的频率下共振。
通过测量核自旋的共振频率和强度,可以获得关于样本的结构和组成信息。
- NMR可以用于确定化合物的结构、跟踪反应动力学、研究生物分子的结构和相互作用等。
虽然电磁波是一种广泛的物理现象,但核磁共振是一种特定的实验技术,利用核子的磁性来获得有关样本的信息。
在NMR实验中,尤其是在高分辨率NMR中,使用射频脉冲来操纵和观察核自旋的行为。
这种技术的核心是核磁共振现象,涉及到核子在外加磁场下的共振吸收和发射。
因此,虽然电磁波广泛存在于自然界中,但在核磁共振中,我们特别关注核自旋与电磁波之间的相互作用,以从中获得有关样本的信息。
物理22章知识点总结22.1 电子衍射22.1.1 电子衍射的实验现象电子衍射是指当高速电子穿过晶体或金属薄膜时,会发生衍射现象,表现出干涉条纹的特点。
22.1.2 德布罗意波长德布罗意波长是指用来描述粒子的波动性质的物理量,可以通过德布罗意关系来计算,表达式为λ=h/p,其中λ为德布罗意波长,h为普朗克常量,p为粒子的动量。
22.1.3 配合滤镜配合滤镜是指用来改变电子的能量和波长,从而探测不同物质的衍射图样,通过调节配合滤镜的电压,可以控制电子的能量,进而改变其德布罗意波长。
22.2 光子的波粒二象性22.2.1 光的波粒二象性光既可以表现出波动性,又可以表现出粒子性。
在实验中,光的波动性可以由干涉和衍射来解释,而光的粒子性可以由光电效应和康普顿散射来解释。
22.2.2 波长和频率光的波长和频率之间有着紧密的关系,可以通过光速等于波长乘以频率来表示。
22.2.3 光子的动量和能量光子的动量和能量与其波长和频率之间有着一定的关系,可以通过光子动量公式和光子能量公式来计算。
22.2.4 波包与波束波包是指由不同波长的波构成的波动现象,而波束是一组处于相干状态的波所组成的集合,可以在物理实验中观察到波束的干涉和衍射现象。
22.3 康普顿效应22.3.1 康普顿效应的实验现象康普顿效应是指当X射线与物质相互作用时,X射线会散射出不同波长和动量的光子,导致散射光的能量和波长发生改变。
22.3.2 康普顿公式康普顿公式可以通过光子的波粒二象性来解释,用来描述康普顿效应中散射光的波长和入射光的波长之间的关系,表达式为λ'-λ=h/mc(1-cosθ),其中λ'为散射光的波长,λ为入射光的波长,h为普朗克常量,m为光子的静止质量,c为光速,θ为散射角。
22.3.3 康普顿散射的能量守恒和动量守恒在康普顿散射中,能量守恒和动量守恒是两个重要的物理定律,能够用来解释散射光的能量和动量之间的关系。