第三章 反应器内的流体流动
- 格式:pptx
- 大小:975.07 KB
- 文档页数:54
第三章均相理想反应器反应器的开发主要有两个任务:1.优化设计—反应器选型、定尺寸、确定操作条件。
2.优化操作—根据实际操作情况,修正反应器的数学模型参数,优化操作条件。
最根本任务—最高的经济和社会效益。
3.1 反应器设计基础3.1.1反应器中流体的流动与混合理想反应器的分类对理想反应器(ideal reactor),主要讨论三种类型:1.间歇反应器(Batch Reactor—BR);2.平推流反应器(Plug /Piston Flow Reactor—PFR);3.全混流反应器(Continuously Stirred Tank Reactor—CSTR)。
返混(back mixing)—不同停留时间的粒子之间的混合;混合(mixing)—不同空间位置的粒子之间的混合。
注意:返混≠混合!平推流—物料以均一流速向前推进。
特点是粒子在反应器中的停留时间相同,不存在返混。
T、P、C i随轴向位置变(齐头并进无返混,变化随轴不随径)。
全混流(理想混合)—物料进入反应器后能够达到瞬间的完全混合。
特点是反应器内各处的T、P、C i相同,物性不随反应器的位置变,返混达到最大。
3.1.2 反应器设计的基础方程反应器的工艺设计包括两方面的内容:1.由给定生产任务和原料条件设计反应器;2.对已有的反应器进行较核,看达到质量要求时,产量是否能保证,或达到产量时,质量能否保证。
反应器设计的基础方程主要是:1.动力学方程;2.物料衡算方程;3.热量衡算方程;4.动量衡算方程。
一、物料衡算方程对反应器内选取的一个微元,在单位时间内,对物质A有:进入量=排出量+反应消耗量+积累量(3.1-1)用符号表示:F in F out F r F b即:F in=F out+F r+F b(3.1-2) 1.对间操作,反应过程无进料和出料,即:F in=F out=0则:-F r=F b(3.1-4) 反应量等于负积累量。
2.对连续稳定操作,积累量为零,即:F b=0则F in=F out+F r(3.1-6)二、热量衡算方程对反应器内选定的微元,单位时间内的热量变化有:随物料流-随物料流+与边界交+反应热=积累热量入的热量出的热量换的热量符号:Q in Q out Q u Q r Q b入为正放热为正即:Q in-Q out+Q u+Q r=Q b(3.1-8) 1.对于稳定操作的反应器,热的积累为零,即:Q b=0Q in-Q out+Q u+Q r=0(3.1-9) 2.对稳态操作的绝热反应器,Q u=Q b=0,即:Q in-Q out+Q r=0(3.1-10) 反应热全部用来升高或降低物料的温度。
理想流动非理想流动理想流动反应器的分类和应用反应器内流体的流动特征主要指反应器内反应流体的流动状态、混合状态等,它们随反应器的几何结构和几何尺寸而异。
反应流体在反应器内不仅存在浓度和温度的分布,而且还存在流速分布。
这样的分布容易造成反应器内反应物处于不同的温度和浓度下进行反应,出现不同停留时间的微团之间的混合,即返混。
这些流动特征影响反应速率和反应选择率,直接影响反应结果。
所以,研究反应器中的流体流动模型是反应器选型、计算和优化的基础。
流动模型是对反应器中流体流动与返混状态的描述。
一般将流动模型分为两大类型,即理想流动模型和非理想流动模型。
非理想流动模型是关于实际工业反应器中流体流动状况对理想流动偏离的描述。
è 理想置换流动模型¢含义:理想置换流动模型也称作平推流模型或活塞流模型。
与流动方向相垂直的同一截面上各点流速、流向完全相同,即物料是齐头并肩向前运动的。
¢特点在定态情况下,所有分子的停留时间相同,浓度等参数只沿管长发生变化,与时间无关。
所有物料质点在反应器中都具有相同的停留时间。
¢反应器内浓度变化¢长径比较大和流速较高的连续操作管式反应器中的流体流动可视为理想置换流动。
è理想混合流动模型¢含义:理想混合流动模型也称为全混流模型。
反应物料以稳定的流量进入反应器,刚进入反应器的新鲜物料与存留在其中的物料瞬间达到完全混合。
反应器内物料质点返混程度为无穷大。
¢特点:所有空间位置物料的各种参数完全均匀一致,而且出口处物料性质与反应器内完全相同。
¢反应器内浓度变化¢搅拌十分强烈的连续操作搅拌釜式反应器中的流体流动可视为理想混合流动。
è非理想流动理想流动模型是二种极端状况下的流体流动,而实际的工业反应器中的反应物料流动模型往往介于两者之间。
对于所有偏离理想置换和理想混合的流动模式统称为非理想流动。