第八章晶闸管及应用电路
- 格式:ppt
- 大小:522.00 KB
- 文档页数:30
晶闸管的原理与应用一、晶闸管的基本原理晶闸管是一种电子器件,具有可控硅的特点。
其基本原理如下:1.PN结–晶闸管由P型半导体、N型半导体和P型半导体三层特殊结构构成。
–P型半导体具有正电荷载流子,N型半导体具有负电荷载流子,形成PN结。
2.开关特性–当PN结两端没有电压时,晶闸管处于关断状态。
–当PN结两端有正向电压时,晶闸管依然处于关断状态。
–当PN结两端有反向电压时,当反向电压超过某一临界值时,晶闸管会被击穿,进入导通状态。
3.可控性–通过控制晶闸管的控制电极,可以改变晶闸管的导通时间和导通电流。
–当控制电极施加正脉冲信号时,晶闸管进入导通状态,电流流过。
–当控制电极施加负脉冲信号时,晶闸管恢复关断状态,电流停止流动。
二、晶闸管的应用晶闸管由于其独特的特性,在电力控制、电动机控制和功率供应等领域有着广泛的应用。
1.电力控制–晶闸管可以控制电流的大小和方向,广泛应用于电力变频调速系统中。
–通过调节晶闸管的导通时间和导通电流,可以实现对电力系统的精确控制。
2.电动机控制–晶闸管可以控制电动机的启动、停止和转速等参数。
–通过控制晶闸管的导通时间和导通电流,可以实现对电动机的精确控制。
3.功率供应–晶闸管具有高功率控制能力,适用于高功率负载。
–晶闸管广泛应用于电力系统的功率供应、工业控制和电压变换等领域。
4.电流调制–晶闸管可通过不同的控制方式,实现电流的调制。
–通过改变晶闸管的导通时间和导通电流,可以实现正弦波、脉冲及方波等各种电流波形的调制。
三、晶闸管的优势与发展晶闸管作为一种可控硅器件,具有以下优势:•高可靠性:晶闸管的寿命长,无机械动部件,可靠性高。
•调制能力强:晶闸管能够实现多种电流波形的调制。
•功率控制精度高:晶闸管能够实现对功率的精确控制。
•体积小:晶闸管体积小,便于集成和安装。
晶闸管在过去几十年里得到了快速发展,随着科技的进步,有望在以下领域实现更多突破:1.新能源–晶闸管在风能、太阳能等新能源的开发和利用中有着广阔的应用前景。
电力电子技术第8章晶闸管主电路的参数计算及保护晶闸管主电路的参数计算及保护是电力电子技术中非常重要的内容。
晶闸管主电路的参数计算需要考虑电路的稳定性及性能的优化,而晶闸管的保护则是为了保证电路的安全运行。
首先,对于晶闸管主电路的参数计算,主要包括以下几个方面:1.阻抗参数计算:阻抗参数包括输入电抗和输出电抗。
输入电抗可以通过电源的特性以及电路的设计来计算,输出电抗则是通过负载的特性和电路的设计来计算。
阻抗参数的计算可以帮助我们确定电路的稳定性和性能。
2.电流和电压参数计算:计算电流和电压参数是为了确保晶闸管的正常工作。
电流参数主要包括峰值电流和有效电流,需要根据负载以及晶闸管的特性来计算。
电压参数主要包括峰值电压和平均电压,同样需要根据负载和晶闸管的特性来计算。
3.热参数计算:晶闸管工作时会产生热量,因此需要计算热参数来确保晶闸管的温度不超过其允许的工作温度。
热参数包括导通状态和关断状态下的热阻,以及晶闸管的最大工作温度。
此外,晶闸管主电路的保护也非常重要。
保护电路的设计可以避免晶闸管受到过载、短路、过压和过流等因素的损坏。
1.过载保护:晶闸管受到过载时会发热,保护电路需要及时检测并切断电路以防止晶闸管被损坏。
过载保护可以通过电流检测电路来实现。
2.短路保护:当负载发生短路故障时,保护电路需要能够检测并切断电路,避免晶闸管受到过大电流的损坏。
3.过压保护:过压保护可以通过电压检测电路来实现,当晶闸管主电路中电压超过设定值时,保护电路会及时切断电路。
4.过流保护:过流保护可以通过电流检测电路来实现,当晶闸管主电路中电流超过预设值时,保护电路会及时切断电路。
5.温度保护:通过温度传感器来监测晶闸管的温度,当温度超过设定值时,保护电路会切断电路以避免晶闸管过热而损坏。
总之,晶闸管主电路的参数计算及保护是电力电子技术中非常重要的内容。
参数计算可以帮助我们优化电路设计,使其具有更好的性能和稳定性;保护电路可以确保晶闸管主电路的安全运行,避免晶闸管受到过载、短路、过压和过流等因素的损坏。
理论课授课教案197斩波器:将恒定的直流电变换为断续脉冲,以改变其平均值。
可用于开关型稳压电路、直流电动机的拖动等。
无触点开关:可迅速接通或切断大功率的交流或直流回路,而不产生火花或拉弧现象,特别适用于防火防爆的场合。
晶闸管的种类很多,包括普通型(单向型)、双向型、可管断型、快速型、光控型等。
其中普通晶闸管应用最广,而且其结构及工作原理也是分析其他晶闸管的基础。
以下所称晶闸管,如果没有特殊说明,均指普通晶闸管。
一、晶闸管的结构与符号图一晶闸管的结构与符号a)内部结构示意图 b)、c)、d)符号晶闸管的内部结构如图一a)所示。
它由PNPN四层半导体材料所构成,中间形成了3个PN结,由外层P型半导体引出阳极A,由外层N型半导体引出阴极K,由中间P型半导体引出控制极G(或称为门极)。
图一b、c所示分别为阴极侧受控和阳极侧受控晶闸管的符号,当没有必要规定控制极的类型时,可用图一d所示的符号表示晶闸管。
晶闸管的外形有塑封式a(小功率)、平板式b(中功率)、螺栓式c(大、中功率)几种。
如图二所示。
平板式和螺栓式晶闸管实用时固定在散热器上。
图二晶闸管外形198二、晶闸管的工作特性为了更清楚的说明工作原理,晶闸管可以看作是两个三极管PNP(V1)管和NPN(V2)管组合而成,电路模型如图三所示。
图三晶闸管电路模型设在阳极和阴极之间接上电源U A,在控制极和阴极之间接入电源U G,如图四所示。
图四晶闸管工作原理(1) 晶闸管加阳极负电压-U A时,晶闸管处于反向阻断状态。
(2) 晶闸管加阳极正电压U A,控制极不加电压时,晶闸管处于正向阻断状态。
(3) 晶闸管加阳极正电压+U A,同时也加控制极正电压+U G,晶闸管导通。
(4) 要使导通的晶闸管截止,必须将阳极电压降至零或为负,使晶闸管阳极电流降至维持电流I H以下。
综上所述,可得如下结论:①晶闸管与硅整流二极管相似,都具有反向阻断能力,但晶闸管还具有正向阻断能力,即晶闸管正向导通必须具有一定的条件:阳极加正向199200理论课授课教案201正向电阻小。