晶闸管应用电路讲解
- 格式:ppt
- 大小:358.00 KB
- 文档页数:27
可控硅-晶闸管的几种典型应用电路描述:SCR半波整流稳压电源。
如图4电路,是一种输出电压为+12V的稳压电源。
该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。
SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。
电容器C1起滤波和储能作用。
在输出CD端可获得约+12V的稳压。
晶闸管,又称可控硅(单向SCR、双向BCR)是一种4层的(PNPN)三端器件。
在电子技术和工业控制中,被派作整流和电子开关等用场。
在这里,笔者介绍它们的基本特性和几种典型应用电路。
1.锁存器电路。
图1是一种由继电器J、电源(+12V)、开关K1和微动开关K2组成的锁存器电路。
当电源开关K1闭合时,因J回路中的开关K2和其触点J-1是断开的,继电器J不工作,其触点J-2也未闭合,所以电珠L不亮。
一旦人工触动一下K2,J得电激活,对应的触点J-1、J-2闭合,L点亮。
此时微动开关K2不再起作用(已自锁)。
要使电珠L熄灭,只有断开电源开关K1使继电器释放,电珠L才会熄灭。
所以该电路具有锁存器(J-1自锁)的功能。
图2电路是用单向可控硅SCR代替图1中的继电器J,仍可完成图1的锁存器功能,即开关K1闭合时,电路不工作,电珠L不亮。
当触动一下微动开关K2时,SCR因电源电压通过R1对门极加电而被触发导通且自锁,L点亮,此时K2不再起作用,要使L熄灭,只有断开K1。
由此可见,图2电路也具有锁存器的功能。
图2与图1虽然都具有锁存器功能,但它们的工作条件仍有区别:(1)图1的锁存功能是利用继电器触点的闭合维持其J线圈和L的电流,但图2中,是利用SCR自身导通完成锁存功能。
(2)图1的J与控制器件L完全处于隔离状态,但图2中的SCR与L不能隔离。
所以在实际应用电路中,常把图1和图2电路混合使用,完成所需的锁存器功能。
2.单向可控硅SCR振荡器。
图3电路是利用SCR的锁存性制作的低频振荡器电路。
晶闸管的原理及应用1. 晶闸管的原理晶闸管是一种半导体器件,其工作原理基于PN结的导通与截止特性。
晶闸管由四层PNPN结构组成,其中的P1-N1和N2-P2结称为控制结,而P2-N2结称为工作结。
晶闸管的工作原理可以分为两个状态:触发和导通。
1.1 触发状态在触发状态下,当控制结接受到一个正向脉冲电压时,会导致控制结内的正电荷的积累,从而降低控制结内的屏蔽电压。
一旦屏蔽电压降低到一定程度,晶闸管会进入导通状态。
1.2 导通状态在导通状态下,晶闸管的P2-N2结中的准电子可以移动到N2区域,将晶闸管的内部转变为一个低阻抗通路。
此时,只要存在足够的电流注入,晶闸管就能保持导通状态。
2. 晶闸管的应用晶闸管作为一种重要的半导体器件,广泛应用于各种电子电路中。
以下是晶闸管应用的一些常见场景:•电能调节:晶闸管可用于控制大功率电流,实现电力传输的调节,例如在工厂中用于控制电机的启停和速度调节。
•直流电动机驱动:晶闸管可以作为直流电动机的电流控制装置,通过控制晶闸管的导通时间和关断时间,可以调节直流电动机的转速。
•交流电源控制:晶闸管可用于交流电源的控制,例如用于电子变压器的调节。
•逆变器:晶闸管逆变器是将直流电压转换为交流电压的关键组成部分,广泛应用于太阳能和风能发电等领域。
•发光器件驱动:晶闸管可以用于驱动各种发光器件,如LED等。
•温度控制:通过控制晶闸管的导通时间和关断时间,可以实现温度控制,例如烤箱和电熨斗等家电产品中的温度控制。
3. 总结晶闸管是一种重要的半导体器件,其工作原理基于PN结的导通与截止特性。
它在电力调节、直流电机驱动、交流电源控制、逆变器、发光器件驱动和温度控制等领域都有重要的应用。
通过掌握晶闸管的原理及应用,可以更好地理解和应用该器件,实现各种电子电路的设计与控制。
以上就是晶闸管的原理及应用的介绍。
希望对你有所帮助!。
晶闸管的工作原理及应用晶闸管是一种半导体器件,它可以控制和放大电流。
晶闸管具有以下几个主要部分:PN结、栅极、阳极和触发极。
晶闸管的工作原理是由PN结的导通和截止状态之间的转换来完成的。
晶闸管的工作原理如下:1. PN结导通:当晶闸管的栅极电压为零时,PN结处于正向偏置状态,导通状态。
电流可以从阳极流向触发极,并且电流可以在晶闸管上形成一个低阻态。
2. PN结截止:当晶闸管的栅极电压大于阈值电压(通常为0.6V)时,PN结处于反向偏置状态,截止状态。
此时电流无法流过晶闸管,晶闸管上的电压为源电压(通常为几十伏)。
3. 触发控制:当需要导通晶闸管时,可以通过一个脉冲信号或电流输入到触发极,使晶闸管从截止状态转换为导通状态。
当晶闸管被触发后,它将保持导通状态直到重新施加反向电压或将栅极电压降至零。
晶闸管的应用非常广泛,主要有以下几个方面:1. 电力调节:晶闸管可以通过控制导通时间和截止时间来改变电流的大小,从而实现对电力的调节。
它广泛应用于变频调速、电机启动控制、磁控管发射脉冲控制等领域。
2. 电能控制:晶闸管可以用于电能的控制和转换。
例如,晶闸管可以实现电能的变换和分配,用于电力系统的能量调度和优化。
3. 交流电压调节:晶闸管可以用于控制交流电压的大小和频率。
通过控制晶闸管的导通角度,可以实现对交流电压的变压和调节。
4. 光、声、热控制:晶闸管可以用于控制光、声和热能的输出。
例如,晶闸管可用于控制光的强弱和频率,用于光通信和光电子设备。
5. 电源开关:晶闸管可以用作高压、高电流的开关,用于开关电源和电能传输系统。
总之,晶闸管是一种非常重要的半导体器件,具有广泛的应用领域。
通过控制晶闸管的导通和截止状态,可以实现对电流的控制和调节,从而满足不同领域的需求。
第四章晶闸管及其应用第一节晶闸管的构造、工作原理、特性和参数晶闸管—可控硅,是一种受控硅二极管。
优点:体积小、重量轻、耐压高、容量大、响应速度快、控制灵活、寿命长、使用维护方便。
缺点:大多工作与断续的非线性周期工作状态,产生大量谐波干扰电网;过载能力和抗扰能力较差、控制电路复杂。
(由于技术进步,近年有改善)1.1晶闸管的基本结构:晶闸管是具有三个PN结的四层结构,其外形、结构及符号如图。
1.2晶闸管的工作原理在极短时间内使两个三极管均饱和导通,此过程称触发导通。
晶闸管导通后,去掉EG ,依靠正反馈,仍可维持导通状态。
晶闸管导通必须同时具备两个条件:1. 晶闸管阳极电路(阳极与阴极之间)施加正向电压。
2. 晶闸管控制电路(控制极与阴极之间)加正向电压或正向脉冲(正向触发电压)。
晶闸管导通后,控制极便失去作用。
依靠正反馈,晶闸管仍可维持导通状态。
晶闸管关断的条件:1. 必须使可控硅阳极电流减小,直到正反馈效应不能维持。
2. 将阳极电源断开或者在晶闸管的阳极和阴极间加反向电压。
1.3晶闸管的伏安特性静态特性承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通;承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通;晶闸管一旦导通,门极就失去控制作用;要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。
晶闸管的阳极伏安特性是指晶闸管阳极电流和阳极电压之间的关系曲线,如图3所示。
其中:第I象限的是正向特性;第III象限的是反向特性图3 晶闸管阳极伏安特性I G2>I G1>I GI G=0时,器件两端施加正向电压,正向阻断状态,只有很小的正向漏电流流过,正向电压超过临界极限即正向转折电压U bo,则漏电流急剧增大,器件开通。
这种开通叫“硬开通”,一般不允许硬开通;随着门极电流幅值的增大,正向转折电压降低;导通后的晶闸管特性和二极管的正向特性相仿;晶闸管本身的压降很小,在1V左右;导通期间,如果门极电流为零,并且阳极电流降至接近于零的某一数值I H以下,则晶闸管又回到正向阻断状态。
晶闸管的工作原理与应用晶闸管,又称为可控硅器件,是一种半导体器件,通过控制电流的输入使其在导通和关断之间切换,从而实现电能的控制和调节。
下面将详细介绍晶闸管的工作原理和应用。
晶闸管是由PNP型晶体管和PNP型二极管组成的四层结构。
它具有三个电极,分别是阳极(A端)、阴极(K端)和控制极(G端)。
晶闸管的工作原理可概括为以下五个阶段:1.断电状态:当外电源施加在晶闸管的阳极和阴极之间时,控制极无电压,晶闸管处于关断状态。
2.触发状态:当控制极施加一个正向电压时,晶闸管开始被触发,进入导通状态。
在此状态下,晶闸管的阳极和阴极之间的电流(也称为主电流)开始流动。
3.工作状态:一旦晶闸管被触发,晶闸管将持续一直到主电流下降到零。
即使控制极上施加的电压被移除或降低,晶闸管仍然保持导通。
4.关断状态:当主电流下降到零时,晶闸管将自动关断。
在此状态下,晶闸管的阻断电压(也称为封闭电压)为控制极和阳极之间的电压。
5.关断恢复状态:一旦晶闸管被关断,即使在问题电压下晶闸管的条件保持一段时间,它仍然不会被重新触发。
要重新触发晶闸管,需要重新施加电压来打开控制极。
晶闸管的应用:晶闸管具有较高的电流和电压承受能力,以及快速的开关速度,因此在各种电子和电力电路中得到广泛应用。
以下是晶闸管的主要应用领域:1.调光控制:晶闸管可以通过调整导通角来实现灯的亮度调节,用于家庭照明、道路照明等领域。
2.功率控制:晶闸管可以用于电力系统中的负载控制,如电动机调速、电阻炉加热控制等。
3.电源开关:晶闸管可以用于交流电源的整流和开关过程,实现直流电源的输出。
4.频率变换:晶闸管可以用于交流调制,实现交流电的频率变换。
5.电压调节:晶闸管可以作为稳压器,控制输出电压来保护负载设备。
6.电力因数校正:晶闸管可以用于改善电力系统的功率因数,提高系统效率。
7.电流开关:晶闸管可以用于过电流保护,当电流超过预设值时,晶闸管将自动关断以保护电路和设备。
晶闸管开关电路原理
晶闸管开关电路的原理是利用晶闸管的特性实现开关功能。
晶闸管是一种具有双向导电性的电子器件,通常由四个层状结构组成。
在正常工作状态下,晶闸管处于关断状态,两个 PN 结之间的
耗尽层阻止电流流动。
当接入一个适当的阳极电压时,晶闸管的 PN 结会极化,进入导通状态。
要使晶闸管导通,需要满足以下条件:
1. 阳极电压(Vak)达到导通电压(Vgt):晶闸管的导通电
压是指当晶闸管处于关断状态时,需要施加在阳极和阴极之间的电压,使其开始导通。
2. 电压施加在晶闸管的正向极性:当阳极电压施加在阴极上时,使得结 J2-J3 处于正向偏置状态,从而形成导电通道。
3. 施加一个触发脉冲:晶闸管的触发是通过施加一个电压脉冲在门极(G)和阴极(K)之间实现的。
触发脉冲可以是一个
正脉冲或者是从阴极向门极施加一个负脉冲。
当晶闸管导通后,只要阳极电流处于正常工作区间,晶闸管将一直保持导通状态。
要使晶闸管停止导通,需通过强制断开电路或者降低阳极电流到零来实现。
晶闸管开关电路可以用于控制高功率负载的开关,如大功率马达、发电机等。
其主要优点是控制简单、可靠性高,缺点则是开关速度较慢,导通电压较高,仅适用于交流电源。
(一)普通晶闸管普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G、图8-4是其电路图形符号。
普通晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP晶闸管和一只NPN晶闸管组成的组合管,如图8-5所示。
当晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G 所加电压是什么极性,晶闸管均处于阻断状态。
当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。
此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K 极之间压降约为1V。
普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K 之间仍保持正向电压,晶闸管将维持低阻导通状态。
只有把阳极A电压撤除或阳极A、阴极K之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。
普通晶闸管一旦阻断,即使其阳极A与阴极K之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。
普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。
(二)双向晶闸管双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和门极G。
图8-6是双向晶闸管的结构和等效电路,图8-7是其电路图形符号。
双向晶闸管可以双向导通,即门极加上正或负的触发电压,均能触发双向晶闸管正、反两个方向导通。
图8-8是其触发状态。
当门极G和主电极T2相对于主电极T1的电压为正(V T2>V T1、V G>V T1)或门极G和主电极T1相对于主电极T2的电压为负(V T1<V T2、V G<V T2)时,晶闸管的导通方向为T2→T1此时T2为阳极,T1为阴极。
晶闸管移相触发集成电路TCA785应用TCA785是德国西门子(Siemens)公司于1988年前后开发的第三代晶闸管单片移相触发集成电路,它是取代TCA780及TCA780D的更新换代产品,其引脚排列与TCA780、TCA780D和国产的KJ785完全相同,因此可以互换。
目前,它在国内变流行业中已广泛应用。
与原有的KJ系列或KC系列晶闸管移相触发电路相比,它对零点的识别更加可靠,输出脉冲的齐整度更好,而移相范围更宽,且由于它输出脉冲的宽度可人为自由调节,所以适用范围较广。
一、引脚排列、各引脚的功能及用法TCA785是双列直插式的16引脚大规模集成电路。
它的引脚排列如图1所示。
图1 TCA785的引脚排列(脚朝下)各引脚的名称、功能及用法如下:引脚16(VS):电源端。
使用中直接接用户为该集成电路工作提供的工作电源正端。
引脚1(OS):接地端。
应用中与直流电源VS、同步电压VSYNC及移相控制信号V11的地端相连接。
引脚4(Q1)和2(Q2):输出脉冲1与2的非端。
该两端可输出宽度变化的脉冲信号,其相位互差180°,两路脉冲的宽度均受非脉冲宽度控制端引脚13 (L)的控制。
它们的高电平最高幅值为电源电压VS,允许最大负载电流为10mA。
若该两端输出脉冲在系统中不用时,电路自身结构允许其开路。
引脚14(Q1)和15(Q2):输出脉冲1和2端。
该两端也可输出宽度变化的脉冲,相位同样互差180°,脉冲宽度受它们的脉宽控制端引脚12(C12)的控制。
两路脉冲输出高电平的最高幅值为VS。
引脚13(L):非输出脉冲宽度控制端。
该端允许施加电平的范围为-0.5V~VS,当该端接地时,Q1、Q2为最宽脉冲输出,而当该端接电源电压VS时,Q1、Q2为最窄脉冲输出。
引脚12(C12):输出Q1、Q2脉宽控制端。
应用中,通过一电容接地,电容C12的电容量范围为150~4700pF,当C12在150~1000pF范围内变化时,Q1、Q2输出脉冲的宽度亦在变化,该两端输出窄脉冲的最窄宽度为100μs,而输出宽脉冲的最宽宽度为2000μs。