车辆动力学-操纵动力学-2013汇总
- 格式:ppt
- 大小:3.99 MB
- 文档页数:63
车辆动力学
车辆动力学是指研究有关车辆的运动的动力学学科。
许多路面车辆的运动都取决于动力学的原理。
因此,车辆动力学研究车辆在影响其运动的各种因素,比如车辆的设计、行驶路线、驾驶者的行为以及外部环境条件等。
车辆动力学的研究着重于各种车辆如何根据动力学原理运动,即控制速度、加速度和行驶方向。
具体而言,车辆动力学研究车辆动力、空气动力学、车辆稳定性和控制、空气抵抗力和车辆振动、车辆悬挂等复杂力学问题。
车辆动力学是车辆动力性能、操纵性能以及安全性能的重要基础。
车辆动力学主要用于设计驾驶安全的车辆以及提高车辆的性能和可
靠性。
这一领域的研究也为行车安全提供了重要的理论指导。
在车辆动力学研究中,需要考虑许多复杂的因素,如路况、行驶时间、当前车辆状态,以及驾驶者的行为等。
从这个角度看,车辆动力学的研究有时也称为复杂动力学研究,是一门涉及许多技术和理论的研究领域。
车辆动力学研究的方法也很多,其中包括实验设计、数值模拟和分析、理论分析等。
这些方法不仅可以提供对车辆特性的精准测量,而且可以提供更有效的车辆设计方案。
最后,车辆动力学不仅用于车辆研究,也用于航空、航天、船舶等机动载具的研究。
车辆动力学在实际应用中也有相当重要的地位,能帮助许多研究者和企业提高车辆性能和提供更安全的驾驶环境。
可编辑修改精选全文完整版车辆系统动力学车辆系统动力学是一门涉及汽车系统的动力性研究的学科,旨在分析和模拟汽车的动力性能。
它是由应用力学和流体力学原理来研究动态特性,从而为汽车开发工程人员提供关键性信息和支持,以实现车辆系统的有效运行。
车辆系统动力学的研究分为两个主要方面:静动力学和结构动力学。
静动力学是研究汽车静力学和动力学系统,以及它们之间的相互作用。
静动力学的研究内容包括汽车的刚性构件的静力学计算,汽车转矩和加速度的动态测定,车辆悬架系统的构造、测量和控制,动力性能的行驶特性测定,以及汽车的操纵和漂移特性的研究。
结构动力学包括研究汽车结构,如悬架、底盘和发动机,以及这些系统的动态特性测定。
车辆系统动力学的研究可以分为三个主要领域:实验动力学、分析动力学和仿真动力学。
实验动力学主要负责试验机械结构以及机械系统的动力特性测定。
它可以分析出机械系统的动力特性,以及机械系统和动力学分析模型之间的关系。
分析动力学是通过数学分析的方法,计算和分析汽车的动力特性。
仿真动力学则使用计算机模拟技术,模拟汽车在不同行驶条件下的性能,并进行动力学和控制分析。
车辆系统动力学是一个复杂的研究领域,需要广泛的原理、理论和技术来支持。
它为车辆开发工程人员提供关键的研究信息,以便更好地了解汽车的动力性能,从而更好地解决汽车发动机、悬架和底盘等系统的限制问题,实现更低排放、更安全的汽车运行。
车辆系统动力学的研究目标是提高汽车的动力性能:提高燃油经济性、排放控制效果,降低汽车维护成本,延长汽车使用寿命,减少汽车故障发生率,并提高汽车在不同地形环境下的行驶质量。
未来,随着新技术的发展,车辆系统动力学的研究将不断进步,为汽车的改进和开发提供可靠的技术支持。
从而,车辆系统动力学是一门跨学科领域的非常重要的研究领域,它不仅涉及传统的汽车工程学科,还涉及力学、控制、物理、流体、电子、计算机等学科,是一门复杂而又有应用前景的学科。
因此,车辆系统动力学是汽车研发、维护和诊断的重要基础,也是汽车系统安全、经济、高效运行的关键。
车辆系统动⼒学复习重点1.系统动⼒学研究内容及发展趋势研究内容长期以来,⼈们⼀直在很⼤程度上习惯按纵向、垂向和横向分别独⽴研究车辆动⼒学问题;⽽实际中的车辆同时会受到三个⽅向的输⼊,各⽅向所表现的运动响应特性必然是相互作⽤、相互耦合的.纵向动⼒学:纵向动⼒学研究车辆直线运动及其控制的问题,主要是车辆沿前进⽅向的受⼒与其运动的关系。
按车辆⼯况的不同,可分为驱动动⼒学和制动动⼒学两⼤部分。
⾏驶动⼒学:主要是研究由路⾯的不平激励,通过悬架和轮胎垂向⼒引起的车⾝跳动和俯仰以及车辆的运动。
操纵动⼒学:主要研究车辆的操纵特性,主要与轮胎侧向⼒有关,并由此引起车辆侧滑、横摆和侧倾运动。
操纵动⼒学的研究范围分为三个区域:线性域:侧向加速度越⼩于0.4kg时,通常意味着车辆在⾼附着路⾯做⼩转向运动;⾮线性域:在超过线性域且⼩于极限侧向加速度(约为0.8kg)范围内;⾮线性联合⼯况:通常指车辆在转弯制动或转弯加速时的情况。
发展趋势:(1)车辆主动控制:ABS,TCS等逐步向车⾝侧倾控制,可切换阻尼的半主动悬架和四轮底盘控制系统的集成,转向等当⾯扩展。
通过控制算法、传感器技术和执⾏机构的开发实现的⾃动调节。
(2)车辆多体运动动⼒学:车辆的多刚体模型逐步向多柔体模型发型。
可以准确分析虚拟样机的性能,检查虚拟样机的缺陷从⽽缩短产品的设计周期,节约试制费⽤,同时提⾼物理样机与最终产品之间的相似性。
(3)“⼈—车—路”闭环系统:充分考虑驾驶员模型以及车辆本⾝的⼀些动⼒学问题来提⾼汽车稳定性。
2.轮胎滚动阻⼒概念及其分类:概念:当充⽓的轮胎在理想路⾯(通常指平坦的⼲、硬路⾯)上直线滚动时,其外缘中⼼对称⾯与车轮滚动⽅向⼀致,所受到的滚动⽅向相反的阻⼒。
分类:弹性迟滞阻⼒、摩擦阻⼒和风扇效应阻⼒。
3.什么是滚动阻⼒系数?影响因素有哪些?其值等于相应载荷作⽤下滚动阻⼒F R与车轮垂直载荷F X的⽐值。
影响因素:车轮载荷(反⽐)、胎压(反⽐)、车速(正⽐,先缓慢增加,再明显增加)、轮胎的结构设计、嵌⼊材料和橡胶混合物的选⽤。
汽车操纵动力学
汽车操纵动力学是一门研究汽车的性能表现和操纵技术的学科,它试图揭示驾驶员操纵车辆和车辆性能之间的不同部分之间的关系。
这个学科研究了汽车操纵时所需要的可视技术和力学系统。
它还研究了车辆操纵系统的性能,检测了不同类型车辆操纵系统的表现。
汽车操纵动力学是一门复杂而又广泛的学科,它结合了物理学、力学、机械学和经济学等诸多学科,以及汽车行业的最新技术,研究汽车操纵的动力学行为。
它既研究实验方法,又研究计算机仿真行为,对汽车操纵技术进行了深入的研究。
汽车操纵动力学研究了车辆在不同气候和道路条件下的性能。
车辆性能的方面包括转向、加速、制动和变速等。
汽车操纵动力学还研究了车辆的操纵结构,比如油门、刹车、转向、悬架等,以及汽车操纵的精度、灵敏度和稳定性等。
汽车操纵动力学研究了车辆的操纵系统的性能,比如刹车、悬架和转向等。
它还研究了车辆操纵系统的可靠性、耐用性和效率等性能。
它还研究了汽车操纵技术,比如驾驶员对车辆操纵的平衡能力,以及车辆操纵性能的检测和诊断技术等。
汽车操纵动力学是一门横跨多学科的学科,由现代汽车的发展,汽车操纵动力学也在持续发展。
它在汽车行业提供了重要的科学技术支持,有利于安全驾驶和更好的驾驶体验。
但同时,由于汽车操纵动力学研究内容的多样性,以及汽车系统复杂多变等因素,希望未来科学技术能更进一步发展汽车操纵动力学,提供更准确和实用的技术支
持,使车辆行驶安全可靠。
绪篇概论和基础理论本篇首先介绍:1.车辆动力学的发展历史;2.车辆动力学理论对实际车辆设计所作的贡献;3.车辆动力学的研究内容和范围及其未来的发展趋势;4.介绍车辆动力学模型建立的基础理论和方法。
第一章车辆动力学概述§1-1 历史回顾车辆动力学是近代发展起来的一门新兴学科。
有关车辆行驶振动分析的理论研究,最早可追溯到100年前。
事实上,直到20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester(兰切斯特)、美国的Olley(奥利尔)、法国的Broulhiet(勃劳希特)开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。
开始出现有关转向、稳定性、悬架方面的文章。
同时,人们对轮胎侧向动力学的重要性也开始有所认识。
1.首先要肯定Frederick (费雷德里克)W.Lanchester对这门学科的早期发展所做的贡献。
在他所处的时代,尽管缺乏成熟的理论,但作为当时最杰出的工程师,他对车辆设计的见解不但敏锐,而且深刻。
即使在今天,Lanchester的思想仍有一定的借鉴意义。
2.对本学科发展有卓越贡献的人物是Maurice (莫里斯)Olley,他率先系统地提出了操纵动力学分析理论。
3.Olley这样总结了20世纪30年代早期的车辆设计状况:“那时,已经零星出现了一些尝试性的方法,其目的在于提高车辆的行驶性能,但实际上却几乎没有什么作用。
坐在后座的乘客仍然象压载物一般,被施加在后轮后上方的位置。
人们对车辆转向不稳定的表现已习以为常,而装有前制动器的前桥摆振几乎成为了汽车驾驶中的必然现象。
工程师使所有的单个部件都制作得精致完好,但将它们组装成整车时,却很少能得到令人满意的性能。
”就在这个时期,人们对行驶平顺性和操纵稳定性之间的重要协调关系开始有所认识。
但对车辆性能的评价,仍主要凭经验而非数学计算。
1932年,Olley在美国凯迪拉克(Cadillac)公司建立了著名的“K2”试验台(一个具有前、后活动质量的车架),来研究前后悬架匹配及轴距对前后轮相位差的影响。
《车辆动力学综述》第一篇:车辆动力学综述车辆动力学综述人们常说控制一辆高速机动车的主要作用力产生于四块只有手掌般大小的区域——车轮与地面的接触区。
这种说法恰如其分。
对充气(橡胶)轮胎在路面生所产生的力和力矩的认识。
是了解公路车辆动力学的关键。
广义上,车辆动力学包括了各种运输工具——轮船、飞机、有轨车辆、还有橡胶轮胎车辆。
各种类型运输工具的动力学所包含的原理,各不相同并且十分广泛。
车辆动力学主要分为车辆系统动力学和车辆行驶动力学。
因为车辆性能——在加速、制动、转向和行驶过程中运动的表现——是施加在车辆上的力的响应。
,所以多是车辆动力学的研究必须涉及两个问题:怎样以及为什么会产生这些力。
在车辆上影响性能的主要作用力是地面对轮胎产生的反作用力。
因此,需要密切关注轮胎特性,这些特性有轮胎在各种不同工况下产生的力和力矩所表征。
研究轮胎性能。
而不彻底了解其在车辆中的重要意义,是不够的:反之亦然。
车辆系统动力学的研究的主要方向是如何提高车辆的平顺性、稳定性以及安全性。
主要将动力学原理用于车辆行驶系统的控制以及优化控制,包括轮胎、转向、悬架以及电控系统的分析研究,进而得到更优的力学特性。
1、悬架传统的被动悬架具有固定的悬架刚度和阻尼系数,设计的出发点是在满足汽车平顺性和操纵稳定性之间进行折中。
被动悬架在设计和工艺上得到不断改善,实现低成本、高可靠性的目标,但无法解决平顺性和操纵稳定性之间的矛盾。
20世纪50年代产生了主动悬架的概念,这种悬架在不同的使用条件下具有不同的弹簧刚度和减振阻尼器。
汽车悬架可分为被动悬架和主动悬架。
主动悬架根据控制方式,可分为半主动悬架、慢主动悬架和全主动悬架。
目前,主动悬架的研究主要集中在控制策略和执行器的研发两个方面。
图1所示为上述各种悬架系统的结构示意图,其中k代表悬架弹性元件刚度,代表轮胎等效刚度,c。
代表减振器阻尼,代表主动装置,代表非悬挂质量,代表悬挂质量。
(a)被动悬架(b)阻尼可测试半主动悬架(c)刚度可调式半主动悬架(d)慢主动悬架(e)全主动悬架图1各类悬架结构示意图(1)半主动悬架半主动悬架系统介于被动悬架系统和全主动悬架系统之间。
车辆动力学及控制技术车辆动力学是一门研究汽车运动状态的学科,掌握它可以提高汽车行驶的安全与舒适性。
在现代汽车技术中,控制技术的作用越来越重要,它能在很大程度上降低事故发生的概率。
因此,掌握车辆动力学及控制技术至关重要。
一、车辆动力学车辆是一个复杂的物体,为了掌握车辆动力学,需要先学习物理、力学和数学等基础学科。
车辆动力学运用牛顿的三大定律,分析车辆运动中的各种力的作用情况以及相互之间的关系。
这些力包括:重力、液体阻力、气流阻力、摩擦力等等。
除了车辆自身的运动状态,外部环境对车辆行驶也有很大的影响,如:路面状况和环境温度等。
所以,车辆动力学需要根据不同的环境自适应,对于特殊的情况,我们需要采取一些特殊的措施来防止车辆失控。
二、车辆控制技术在当今高科技和智能领域,随着车辆的智能化发展,车辆控制技术成为了汽车行业的一个重要方向。
车辆控制技术是一门跨学科的学科,涉及到计算机科学、自动化技术、机械工程、电子技术和通信技术等学科。
这些技术可以确保车辆在高速公路和其他道路上稳定行驶,可靠地获得能耗优化,提高燃油经济性和减少环境影响。
车辆控制技术的主要形式有车辆动态控制系统、自适应巡航控制系统、车身稳定控制系统等等。
其中,车辆动态控制系统包括牵引力控制和刹车力控制,主要用于提高行驶的性能和安全性;自适应巡航控制系统则是在保证安全的前提下,使车辆能够自动加速、减速和跟随其他车辆;车身稳定控制系统通过减小侧滑、过度转弯和侧翻风险等,提高汽车的安全性和耐久性。
三、车辆动力学与控制技术的发展趋势车辆动力学与控制技术是一门不断发展的学科,它在现代汽车工业中扮演着越来越重要的角色。
针对未来汽车智能化与环保的趋势,未来车辆动力学与控制技术的发展很可能呈现以下几个特点。
首先,车辆智能化和自主驾驶将成为车辆动力学与控制技术发展的重要趋势。
这将涉及到感知技术、决策技术和执行技术等方方面面。
其次,汽车的轻量化将是未来的主流方向,新型材料的出现将会降低车辆的重量,在保证质量的同时减少对环境带来的影响。
汽车动力学学习总结严格的说,汽车动力学是研究所有与汽车系统运动有关的学科。
它涉及的范围广,除了影响车辆纵向运动及其子系统的动力学响应(如发动机、传动、加速、制动、防抱死和牵引力控制系统等方面的因素)外,还有车辆在垂向和横向两个方面的动力学内容,即行驶动力学和操纵动力学。
行驶动力学主要研究由路面的不平激励,通过悬架和轮胎垂向力引起的车身跳动和俯仰以及车轮的运动;而操纵动力学研究车辆的操纵性,主要与轮胎侧向力有关,并由此引起车辆侧滑、横摆和侧倾运动。
1 轮胎动力学轮胎是车辆重要的组成部分,直接与地面接触。
其作用是支撑整车的重量,与悬架共同缓冲来自路面的不平度激励,以保证车辆具有良好的乘坐舒适性和行驶平顺性;保证车轮和路面具有良好的附着性,以提高车辆驱动性、制动性和通过性,并为车辆提供充分的转向力。
所以轮胎动力学的研究对于整车动力学研究具有重要意义。
轮胎的结构特性很大程度上影响了轮胎的物理特性。
所以轮胎模型的建立对于车辆轮胎动力学特性的研究具有重大影响。
轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,轮胎模型在特定工作条件下的输入量有纵向滑动率s 侧偏角α径向变形ρ车轮外倾角γ车轮转速w 转偏率φ而输出量为纵向力F x 侧向力F y 法向力F z 侧向力矩M x 滚动阻力矩M y 回正力矩M z 根据车辆动力学研究内容的不同,轮胎模型可分为:1)轮胎纵滑模型主要用于预测车辆在驱动和制动工况时的纵向力滚动的车轮产生的所有阻力为车轮滚动阻力,主要包括轮胎滚动阻力分量、道路阻力分量和轮胎侧滑阻力分量。
其中车轮滚动阻力包括弹性迟滞阻力、摩擦阻力和风扇效应阻力;由不平路面、塑性路面和湿路面的道路情况引起的阻力成为道路阻力;侧向载荷和车轮定位引起的侧偏阻力。
2)轮胎侧偏模型和侧倾模型 主要用于预测轮胎的侧向力和回正力矩,评价转向工况下低频 转角输入响应。
影响轮胎侧向力的三个重要的因素是侧偏角、垂向载荷和车轮外倾角。
非线性二自由度整车模型仿真分析一、整车模型建立推导二自由度整车模型,并加入魔术公式计算轮胎侧向力,在Simulink中建立非线性二自由度整车模型,设定方向盘角阶跃和方向盘正弦波两种工况,输出整车仿真结果。
建立的模型如下:1)方向盘角阶跃工况整车Simulink模型为:erziyoudu_step.mdl和erziyoudu_step_ay.mdl2)方向盘正弦波工况整车Simulink模型为:erziyoudu_sine.mdl和erziyoudu_sine_ay.mdl3)整车Matlab Function文件:zhengche.m4)轮胎Matlab Function文件:MFtire.m5)轮胎模型仿真为:MF_waiyan.m1、二自由度整车模型:β=−r+2F Yfmvcos(β−δ)+2F Yrmvcosβṙ=2l fI zzF Yf−2l rI zzF Yf2、Simulink整车模型:图1 Simulink整车模型3、轮胎模型:轮胎模型采用ADAMS中的PAC2002轮胎模型pac2002_195_65R15.tir中的侧向力参数。
整车前后轮的侧向力随侧偏角变化曲线如图所示。
图2 前轮的侧向力随侧偏角变化曲线图3 后轮的侧向力随侧偏角变化曲线二、整车操稳仿真1、方向盘角阶跃输入(1)工况设定:车速:60km/h,方向盘角阶跃角度为17.2度,仿真时间为5秒。
(2)仿真结果:图4 质心侧偏角随时间变化曲线图5 质心横摆角速度随时间变化曲线图6 前轴单个车轮侧向力随时间变化曲线图7 后轴单个车轮侧向力随时间变化曲线图8 质心侧向加速度随时间变化曲线2、方向盘角度正弦波输入(1)工况设定:车速:60km/h,方向盘角度正弦波输入振幅为17.2度,周期为6.2832秒,仿真时间为25秒。
(2)仿真结果:图9 方向盘转角随时间变化曲线图10 质心侧偏角随时间变化曲线图11 质心横摆角速度随时间变化曲线图12 前轴单个车轮侧向力随时间变化曲线图13 后轴单个车轮侧向力随时间变化曲线图14 质心侧向加速度随时间变化曲线。
基础概念一、车体运动的六种形式是什么?沿着XYZ 轴三个方向分别平移的:伸缩、横摆、浮沉。
沿着XYZ 轴三个轴分别回转的:侧滚、点头、摇头。
二、车辆动力性能有哪几种?(3种)各用什么指标描述?1. 运动平稳性:德国sperling 指标;国际联盟UIC 指标2. 运动稳定性:防止蛇行运动(运行速度远低于蛇行运动临界速度);防止脱轨稳定性(脱轨系数:Q/P 即横向力比垂向力;轮重减载率:△P/P );防止倾覆稳定性(倾覆系数:P 动载荷/P 静载荷)3. 曲线通过能力:磨耗指数三、轨道不平顺有哪几种?(4种)1. 几何性轨道不平顺:垂向不平顺(轨道在同一轮载下沿长度方向高低不平);水平不平顺(左右轨道对应点高度差);轨距不平顺(左右轨道横向平面内轨距有偏差);方向不平顺(左右轨道横向平面内弯曲不直)2. 随机性轨道不平顺3. 周期性轨道不平顺:钢轨接头处4. 局部轨道不平顺:路基隆起或下沉、过道岔、钢轨局部磨损、曲线顺坡轨距变化四、为何轮缘根部圆弧最小半径要小于钢轨肩部圆弧半径?一般情况下,当轮对相对于轨道的横移量不大时产生一点接触;而相对于轨道具有横移量过大时产生两点接触。
当轮缘根部半径小于钢轨肩部圆弧半径时,可以使轮对相对于轨道具有的较大横移量时(即轮缘根部移动到轨道肩部时)也不会出现两点接触,减小轮轨磨耗。
五、踏面斜度与等效斜度的定义、区别、作用?锥形踏面的车轮在滚动圆附近做一斜度为λ的直线段,当轮对中心离开对中位置时,有一横移量为y w 时,左右轮实际滚动圆:r L =r 0-λy w ,r R =r 0+λy w ,联立得: 踏面斜度:wL R y r 2r -=λ 对于纯锥形踏面,踏面斜度λ恒为常数;对于磨耗型踏面,踏面由多段弧组成,踏面斜度λ随着轮对横移量y w 的改变而改变,λ不再为一个恒定的常数,因此在计算时,取等效值,踏面等效斜度:w L R y r 2r e -=λ 等效斜度直接影响车辆曲线通过性能。
可编辑修改精选全文完整版汽车动力学学习总结严格地说,车辆动力学是研究所有与车辆系统运动有关的学科。
它涉及的范围很广,除了影响车辆纵向运动及其子系统的动力学响应(如发动机、传动、加速、制动、防抱死和牵引力控制系统等方面的因素)外,还有车辆在垂向和横向两个方面的动力学内容,即行驶动力学和操纵动力学。
行驶动力学主要研究由路面的不平激励,通过悬架和轮胎垂向力引起的车身跳动和俯仰以及车轮的运动;而操纵动力学研究车辆的操纵性,主要与轮胎侧向力有关,并由此引起车辆侧滑、横摆和侧倾运动。
1轮胎动力学轮胎是车辆重要的组成部分,直接与地面接触。
其作用是支承整车的重量,与悬架共同缓冲来自路面的不平度激励,以保证车辆具有良好的乘坐舒适性和行驶平顺性;保证车轮和路面具有良好的附着性,以提高车辆驱动性、制动性和通过性,并为车辆提供充分的转向力。
所以轮胎动力学的研究对于整车动力学研究具有重要意义。
轮胎的结构特性很大程度上影响了轮胎的物理特性。
所以轮胎模型的建立对于车辆轮胎动力学特性的研究具有重大影响。
轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,轮胎模型在特定工作条件下的输入量有纵向滑动率s侧偏角α径向变形ρ车轮外倾角γ车轮转速ω转偏率φ而输出量为纵向力F x侧向力F y法向力F z侧向力矩M x滚动阻力矩M y 回正力矩M z根据车辆动力学研究内容不同,轮胎模型可分为:1)轮胎纵滑模型主要用于预测车辆在驱动和制动工况时的纵向力滚动的车轮产生的所有阻力为车轮滚动阻力,主要包括轮胎滚动阻力分量、道路阻力分量和轮胎侧偏阻力分量。
其中车轮滚动阻力包括弹性迟滞阻力、摩擦阻力和风扇效应阻力;由不平路面、塑性路面和湿路面的道路情况引起的阻力成为道路阻力;侧向载荷和车轮定位引起的侧偏阻力。
2)轮胎侧偏模型和侧倾模型主要用于预测轮胎的侧向力和回正力矩,评价转向工况下低频转角输入响应。
影响轮胎侧向力的三个重要的因素是侧偏角、垂向载荷和车轮外倾角。
车辆系统动⼒学重点梳理基础概念⼀、车体运动的六种形式是什么?沿着XYZ 轴三个⽅向分别平移的:伸缩、横摆、浮沉。
沿着XYZ 轴三个轴分别回转的:侧滚、点头、摇头。
⼆、车辆动⼒性能有哪⼏种?(3种)各⽤什么指标描述?1. 运动平稳性:德国sperling 指标;国际联盟UIC 指标2. 运动稳定性:防⽌蛇⾏运动(运⾏速度远低于蛇⾏运动临界速度);防⽌脱轨稳定性(脱轨系数:Q/P 即横向⼒⽐垂向⼒;轮重减载率:△P/P );防⽌倾覆稳定性(倾覆系数:P 动载荷/P 静载荷)3. 曲线通过能⼒:磨耗指数三、轨道不平顺有哪⼏种?(4种)1. ⼏何性轨道不平顺:垂向不平顺(轨道在同⼀轮载下沿长度⽅向⾼低不平);⽔平不平顺(左右轨道对应点⾼度差);轨距不平顺(左右轨道横向平⾯内轨距有偏差);⽅向不平顺(左右轨道横向平⾯内弯曲不直)2. 随机性轨道不平顺3. 周期性轨道不平顺:钢轨接头处4. 局部轨道不平顺:路基隆起或下沉、过道岔、钢轨局部磨损、曲线顺坡轨距变化四、为何轮缘根部圆弧最⼩半径要⼩于钢轨肩部圆弧半径?⼀般情况下,当轮对相对于轨道的横移量不⼤时产⽣⼀点接触;⽽相对于轨道具有横移量过⼤时产⽣两点接触。
当轮缘根部半径⼩于钢轨肩部圆弧半径时,可以使轮对相对于轨道具有的较⼤横移量时(即轮缘根部移动到轨道肩部时)也不会出现两点接触,减⼩轮轨磨耗。
五、踏⾯斜度与等效斜度的定义、区别、作⽤?锥形踏⾯的车轮在滚动圆附近做⼀斜度为λ的直线段,当轮对中⼼离开对中位置时,有⼀横移量为y w 时,左右轮实际滚动圆:r L =r 0-λy w ,r R =r 0+λy w ,联⽴得:踏⾯斜度:wL R y r 2r -=λ对于纯锥形踏⾯,踏⾯斜度λ恒为常数;对于磨耗型踏⾯,踏⾯由多段弧组成,踏⾯斜度λ随着轮对横移量y w 的改变⽽改变,λ不再为⼀个恒定的常数,因此在计算时,取等效值,踏⾯等效斜度:w L R y r 2r e -=λ等效斜度直接影响车辆曲线通过性能。
目录绪论 (2)1. 车辆操纵动力学简述 (3)1.1 车辆操纵动力学的基本概念 (3)1.2 车辆操纵稳定性的研究意义: (3)2. 国内外对操纵稳定性研究现状 (4)2.1 车辆操纵稳定性的理论研究与仿真实验 (4)2.1.1 基于“汽车—驾驶员—环境(道路) 闭环系统”的汽车操纵稳定性研究 (4)2.1.2 基于模糊神经理论的汽车操纵稳定性的研究 (5)2.1.3 基于虚拟试验技术的汽车操纵稳定性研究 (7)2.2 汽车转向系统的技术发展 (9)3. 车辆操纵转向动力学的展望 (10)3.1 目前研究的不足之处 (10)3.2 未来的研究方向 (11)参考文献 (13)绪论随着高速公路的发展,车辆数量的急剧增加,交通事故的发生剧增,并成为社会的主要公害之一。
据加拿大、德国、日本、美国等国政府及有关部门统计、事故调查与研究报告表明:大多数恶性交通事故的发生都与车辆的转向操纵有关,事故的发生绝大多数是由于车辆在恶劣环境或极限工况下运行时转向操纵失控引起的。
在交通事故中,驾驶员的失误因素只占事故总数的19%,而环境和车辆的因素占到事故总数的81%,其中50%的交通事故涉及到车辆的转向操纵特性。
因此,改善汽车转向特性,提高汽车行驶安全性,一直是汽车工程领域研究的热点之一。
近些年来,随着计算机技术和仿真技术的发展,国内外对车辆操纵稳定性的研究从单一的汽车本身的特性研究到汽车—驾驶员—环境闭环系统。
人工神经网络、模糊控制理论和模糊神经等新思想、新理论也应用到汽车操纵稳定性的研究中, 在研究方法上采用虚拟试验技术。
在提高汽车操纵稳定性的主动控制技术方面,从对普通前轮转向的研究发展到四轮转向。
四轮转向(4WS)作为提高汽车操纵稳定性的主动控制技术之一日益受到各大汽车厂商的重视,许多汽车商纷纷推出了带有4WS的概念车。
4WS汽车的主要优点在于:当汽车在高速转向时,前后轮同相位转向,后轮可以产生与前轮反向的重心侧偏角,这使整个车辆的重心侧偏角基本为零,极大地了改善横摆角速度和侧向加速度的瞬态性能指标,大幅度提高汽车对方向盘输入的动态响应特性;当汽车低速度转向时,前后轮逆相位转向,能够减小汽车的转弯半径,使汽车在低速时更加灵活。
3 汽车的操纵稳定性目录3 汽车的操纵稳定性 03.1 自由刚体运动微分方程 (1)补充知识:自由刚体的运动(摘自《理论力学》上册) (1)(一)建立坐标系 (3)(二)汽车上任一点的运动方程 (5)(三)汽车运动的动力学方程 (8)3.2 线性二自由度汽车运动微分方程及分析 (11)(一)运动微分方程 (11)(二)稳态响应分析 (13)(三)瞬态响应分析 (17)3.3 车厢侧倾分析 (19)(一)车厢的侧倾轴线 (19)(二)悬架的侧倾线刚度 (22)(三)悬架的侧倾角刚度 (25)(四)车厢的侧倾角 (26)(五)车厢侧倾后垂直载荷在左、右侧车轮上的重新分配 (29)(六)车厢侧倾对转向系统的其它影响 (32)3.4 线性三自由度汽车运动微分方程分析 (35)(一)三自由度汽车运动微分方程 (35)(二)稳态响应 (43)(三)瞬态响应 (43)3.5 前轴和转向轮摆振方程 (47)(一)前左轮主销的摆动方程 (47)(二)前右轮主销的摆动方程 (52)(三)前轴绕纵轴的摆动方程 (52)3汽车的操纵稳定性操纵稳定性定义(两个方面):a 、汽车能遵循驾驶员通过转向系及转向车轮给定的方向行驶;b 、当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。
汽车的操纵稳定性是决定高速汽车安全行驶的一个主要性能,也称为“高速车辆的生命线”。
3.1 自由刚体运动微分方程补充知识:自由刚体的运动(摘自《理论力学》上册)工程中,有一些刚体,如飞机、火箭、人造卫星等,它们在空间可以作任意的运动,这样的刚体称为自由刚体。
为了确定自由刚体在空间的位置,取定坐标系oxyz 和与刚体固结的动坐标系0x y z '''',如下图所示。
只要确定了动坐标系的位置,刚体的位置也就确定了。
动坐标系的原点o '是任意选取的,称为基点。
在基点上安上一个始终保持平动的坐标系o ξηζ',则自由刚体的运动可分解为随基点的平动和绕基点的转动。