系统动力学第2讲
- 格式:ppt
- 大小:815.50 KB
- 文档页数:48
第二章车辆动力学建模方法及基础理论§2-1 动力学方程的建立方法在车辆动力学研究中,建立系统运动微分方程的传统方法主要有两种:一是利用牛顿矢量力学体系的动量定理及动量矩定理,二是利用拉格朗日的分析力学体系。
本节将对这两种体系作一简单回顾,并介绍几个新的原理。
一牛顿矢量力学体系(1)质点系动量定理质点系动量矢p对时间的导数等于作用于质点系的所有外力F i的矢量和(即主矢),其表达式为:二、分析力学体系分析力学是用分析的方法来讨论力学问题,较适合处理受约束的质点系。
(1)动力学普遍方程动力学普遍方程由拉格朗日(Lagrange)于1760年给出的,方程建立的基本依据是虚位移原理,表示如下:(2-6)(2)拉格朗日方程拉格朗日法的基本思想是将系统的总动能和总势能均以系统变量的形式表示,然后将其代入拉格朗日方程,再对其求偏导数,即可得到系统的运动方程。
拉格朗日方程形式如下:利用此方程推导车辆动力学方程时,因采用广义坐标,从而使描述系统位移的坐标数量大大减少,并可以自动消去无功内力。
但也存在下述问题:①应用拉格朗日方程时,有赖于广义坐标选取得是否得当,而适当地选择广义坐标有时要靠经验;②拉格朗日能量函数对于刚体系统的表达式可能非常复杂,代人拉格朗日方程后要作大量运算。
而对于复杂的车辆系统,写出能量函数的表达式就更加困难。
三、虚功率原理若丹(Jourdain)于1908年推导出另一种形式的动力学普遍方程,其所依据的原理称之为虚功率原理。
虚功率形式的动力学普遍方程为:四、高斯原理1829年,高斯(Gauss)提出动力学普遍方程的又一形式,称为高斯原理,其表达式为:§2-2 非完整系统动力学一、非完整系统动力学简介1894年,德国学者Henz第一次将约束系统分成“完整”和“非完整”两大类,从此开辟了非完整系统动力学(Nonholonomie System)的新领域,如今它已成为分析力学的一个重要分支。
系统动力学讲稿第一篇:系统动力学讲稿a.水准(L)变量是积累变量,可定义在任何时点;速率(R)变量只在一个时段才有意义。
b.决策者最为关注和需要输出的要素一般被处理成L变量。
c.在反馈控制回路中,两个L变量或两个R变量不能直接相连。
d.为降低系统的阶次,应尽可能减少回路中L变量的个数。
故在实际系统描述中,辅助(A)变量在数量上一般是较多的。
P1 我们在上次课共同学习了系统动力学方法特点和基本原理,了解了系统动力学方法首先通过建立系统的因果关系图,将因果关系图转化为其结构模型——流(程)图,进而使用DYNAMO仿真语言对真实系统进行仿真。
所以我们说它是一种定性和定量相结合的分析方法。
P2 上节课我们讲到商店库存模型的分析,系统要素界定为商店和工厂,又由于我们要研究的库存量是一个与时间有关的要素(随时间的变化关系),所以我们还必须把商店销售、商店订货,工厂生产过程的各个环节考虑在我们的系统中。
P3 如图所示,是商品库存问题的因果关系图。
图中有两个反馈回路:第一个,我们要考察的商品库存量,它的多少对商店订货产生影响,商店订货到了工厂以后,工厂会根据自己的“未供订货量”来预定自己的产量、调整它的生产能力、进行产品生产,产品生产出来后送到商店仓库,使得商店库存增加(也即库存量发生变化),库存量的变化又会引起商店订货量变化……,这是一个负的反馈回路;第二个,工厂生产出产品,供货给商店的同时,又会引起“工厂未供订货”的减少,也是一个负的反馈回路。
还有一个关系要说明,商店的销售会对商店的库存和商店的订货量产生作用。
P4 下面我们进行将这个因果关系图转化为我们的结构模型——流(程)图。
从刚才的分析,显然商店库存是我们最关注和要考察的量,我们将它定为水准变量,记为L2;商店订货是人们的决策过程,它在一个时间段内订货量的多少,决定了工厂未供订货的大小,即它为一个速率变量,记为R1;工厂未供订货量是一个可以定义在任意时刻的量,我们把它定义为水准变量,记为L1;预定产量和生产能力都对工厂生产产品速率产生影响,很容易理解工厂生产是个速率变量,即为R2;对于预定产量和生产能力,我们可以将它定义为辅助变量,分别即为A1、A2;商品销售过程,是引起商店库存量变化的量,我们把它定义为速率变量,记为R3。